Blame | Last modification | View Log | Download
This is bfd.info, produced by makeinfo version 4.13 from/home/sdcc-builder/build/sdcc-build/orig/sdcc/support/sdbinutils/bfd/doc/bfd.texinfo.INFO-DIR-SECTION Software developmentSTART-INFO-DIR-ENTRY* Bfd: (bfd). The Binary File Descriptor library.END-INFO-DIR-ENTRYThis file documents the BFD library.Copyright (C) 1991-2014 Free Software Foundation, Inc.Permission is granted to copy, distribute and/or modify this documentunder the terms of the GNU Free Documentation License, Version 1.3 orany later version published by the Free Software Foundation; with theInvariant Sections being "GNU General Public License" and "Funding FreeSoftware", the Front-Cover texts being (a) (see below), and with theBack-Cover Texts being (b) (see below). A copy of the license isincluded in the section entitled "GNU Free Documentation License".(a) The FSF's Front-Cover Text is:A GNU Manual(b) The FSF's Back-Cover Text is:You have freedom to copy and modify this GNU Manual, like GNUsoftware. Copies published by the Free Software Foundation raisefunds for GNU development.File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)This file documents the binary file descriptor library libbfd.* Menu:* Overview:: Overview of BFD* BFD front end:: BFD front end* BFD back ends:: BFD back ends* GNU Free Documentation License:: GNU Free Documentation License* BFD Index:: BFD IndexFile: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top1 Introduction**************BFD is a package which allows applications to use the same routines tooperate on object files whatever the object file format. A new objectfile format can be supported simply by creating a new BFD back end andadding it to the library.BFD is split into two parts: the front end, and the back ends (onefor each object file format).* The front end of BFD provides the interface to the user. It managesmemory and various canonical data structures. The front end alsodecides which back end to use and when to call back end routines.* The back ends provide BFD its view of the real world. Each backend provides a set of calls which the BFD front end can use tomaintain its canonical form. The back ends also may keep aroundinformation for their own use, for greater efficiency.* Menu:* History:: History* How It Works:: How It Works* What BFD Version 2 Can Do:: What BFD Version 2 Can DoFile: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview1.1 History===========One spur behind BFD was the desire, on the part of the GNU 960 team atIntel Oregon, for interoperability of applications on their COFF andb.out file formats. Cygnus was providing GNU support for the team, andwas contracted to provide the required functionality.The name came from a conversation David Wallace was having withRichard Stallman about the library: RMS said that it would be quitehard--David said "BFD". Stallman was right, but the name stuck.At the same time, Ready Systems wanted much the same thing, but fordifferent object file formats: IEEE-695, Oasys, Srecords, a.out and 68kcoff.BFD was first implemented by members of Cygnus Support; SteveChamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace(`gumby@cygnus.com').File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview1.2 How To Use BFD==================To use the library, include `bfd.h' and link with `libbfd.a'.BFD provides a common interface to the parts of an object file for acalling application.When an application successfully opens a target file (object,archive, or whatever), a pointer to an internal structure is returned.This pointer points to a structure called `bfd', described in `bfd.h'.Our convention is to call this pointer a BFD, and instances of itwithin code `abfd'. All operations on the target object file areapplied as methods to the BFD. The mapping is defined within `bfd.h'in a set of macros, all beginning with `bfd_' to reduce namespacepollution.For example, this sequence does what you would probably expect:return the number of sections in an object file attached to a BFD`abfd'.#include "bfd.h"unsigned int number_of_sections (abfd)bfd *abfd;{return bfd_count_sections (abfd);}The abstraction used within BFD is that an object file has:* a header,* a number of sections containing raw data (*note Sections::),* a set of relocations (*note Relocations::), and* some symbol information (*note Symbols::).Also, BFDs opened for archives have the additional attribute of anindex and contain subordinate BFDs. This approach is fine for a.out andcoff, but loses efficiency when applied to formats such as S-records andIEEE-695.File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview1.3 What BFD Version 2 Can Do=============================When an object file is opened, BFD subroutines automatically determinethe format of the input object file. They then build a descriptor inmemory with pointers to routines that will be used to access elements ofthe object file's data structures.As different information from the object files is required, BFDreads from different sections of the file and processes them. Forexample, a very common operation for the linker is processing symboltables. Each BFD back end provides a routine for converting betweenthe object file's representation of symbols and an internal canonicalformat. When the linker asks for the symbol table of an object file, itcalls through a memory pointer to the routine from the relevant BFDback end which reads and converts the table into a canonical form. Thelinker then operates upon the canonical form. When the link is finishedand the linker writes the output file's symbol table, another BFD backend routine is called to take the newly created symbol table andconvert it into the chosen output format.* Menu:* BFD information loss:: Information Loss* Canonical format:: The BFD canonical object-file formatFile: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do1.3.1 Information Loss----------------------_Information can be lost during output._ The output formats supportedby BFD do not provide identical facilities, and information which canbe described in one form has nowhere to go in another format. Oneexample of this is alignment information in `b.out'. There is nowherein an `a.out' format file to store alignment information on thecontained data, so when a file is linked from `b.out' and an `a.out'image is produced, alignment information will not propagate to theoutput file. (The linker will still use the alignment informationinternally, so the link is performed correctly).Another example is COFF section names. COFF files may contain anunlimited number of sections, each one with a textual section name. Ifthe target of the link is a format which does not have many sections(e.g., `a.out') or has sections without names (e.g., the Oasys format),the link cannot be done simply. You can circumvent this problem bydescribing the desired input-to-output section mapping with the linkercommand language._Information can be lost during canonicalization._ The BFD internalcanonical form of the external formats is not exhaustive; there arestructures in input formats for which there is no direct representationinternally. This means that the BFD back ends cannot maintain allpossible data richness through the transformation between external tointernal and back to external formats.This limitation is only a problem when an application reads oneformat and writes another. Each BFD back end is responsible formaintaining as much data as possible, and the internal BFD canonicalform has structures which are opaque to the BFD core, and exported onlyto the back ends. When a file is read in one format, the canonical formis generated for BFD and the application. At the same time, the backend saves away any information which may otherwise be lost. If the datais then written back in the same format, the back end routine will beable to use the canonical form provided by the BFD core as well as theinformation it prepared earlier. Since there is a great deal ofcommonality between back ends, there is no information lost whenlinking or copying big endian COFF to little endian COFF, or `a.out' to`b.out'. When a mixture of formats is linked, the information is onlylost from the files whose format differs from the destination.File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do1.3.2 The BFD canonical object-file format------------------------------------------The greatest potential for loss of information occurs when there is theleast overlap between the information provided by the source format,that stored by the canonical format, and that needed by the destinationformat. A brief description of the canonical form may help youunderstand which kinds of data you can count on preserving acrossconversions._files_Information stored on a per-file basis includes target machinearchitecture, particular implementation format type, a demandpageable bit, and a write protected bit. Information like Unixmagic numbers is not stored here--only the magic numbers' meaning,so a `ZMAGIC' file would have both the demand pageable bit and thewrite protected text bit set. The byte order of the target isstored on a per-file basis, so that big- and little-endian objectfiles may be used with one another._sections_Each section in the input file contains the name of the section,the section's original address in the object file, size andalignment information, various flags, and pointers into other BFDdata structures._symbols_Each symbol contains a pointer to the information for the objectfile which originally defined it, its name, its value, and variousflag bits. When a BFD back end reads in a symbol table, itrelocates all symbols to make them relative to the base of thesection where they were defined. Doing this ensures that eachsymbol points to its containing section. Each symbol also has avarying amount of hidden private data for the BFD back end. Sincethe symbol points to the original file, the private data formatfor that symbol is accessible. `ld' can operate on a collectionof symbols of wildly different formats without problems.Normal global and simple local symbols are maintained on output,so an output file (no matter its format) will retain symbolspointing to functions and to global, static, and common variables.Some symbol information is not worth retaining; in `a.out', typeinformation is stored in the symbol table as long symbol names.This information would be useless to most COFF debuggers; thelinker has command line switches to allow users to throw it away.There is one word of type information within the symbol, so if theformat supports symbol type information within symbols (forexample, COFF, IEEE, Oasys) and the type is simple enough to fitwithin one word (nearly everything but aggregates), theinformation will be preserved._relocation level_Each canonical BFD relocation record contains a pointer to thesymbol to relocate to, the offset of the data to relocate, thesection the data is in, and a pointer to a relocation typedescriptor. Relocation is performed by passing messages throughthe relocation type descriptor and the symbol pointer. Therefore,relocations can be performed on output data using a relocationmethod that is only available in one of the input formats. Forinstance, Oasys provides a byte relocation format. A relocationrecord requesting this relocation type would point indirectly to aroutine to perform this, so the relocation may be performed on abyte being written to a 68k COFF file, even though 68k COFF has nosuch relocation type._line numbers_Object formats can contain, for debugging purposes, some form ofmapping between symbols, source line numbers, and addresses in theoutput file. These addresses have to be relocated along with thesymbol information. Each symbol with an associated list of linenumber records points to the first record of the list. The headof a line number list consists of a pointer to the symbol, whichallows finding out the address of the function whose line numberis being described. The rest of the list is made up of pairs:offsets into the section and line numbers. Any format which cansimply derive this information can pass it successfully betweenformats (COFF, IEEE and Oasys).File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top2 BFD Front End**************** Menu:* typedef bfd::* Error reporting::* Miscellaneous::* Memory Usage::* Initialization::* Sections::* Symbols::* Archives::* Formats::* Relocations::* Core Files::* Targets::* Architectures::* Opening and Closing::* Internal::* File Caching::* Linker Functions::* Hash Tables::File: bfd.info, Node: typedef bfd, Next: Error reporting, Prev: BFD front end, Up: BFD front end2.1 `typedef bfd'=================A BFD has type `bfd'; objects of this type are the cornerstone of anyapplication using BFD. Using BFD consists of making references thoughthe BFD and to data in the BFD.Here is the structure that defines the type `bfd'. It contains themajor data about the file and pointers to the rest of the data.enum bfd_direction{no_direction = 0,read_direction = 1,write_direction = 2,both_direction = 3};struct bfd{/* The filename the application opened the BFD with. */const char *filename;/* A pointer to the target jump table. */const struct bfd_target *xvec;/* The IOSTREAM, and corresponding IO vector that provide accessto the file backing the BFD. */void *iostream;const struct bfd_iovec *iovec;/* The caching routines use these to maintain aleast-recently-used list of BFDs. */struct bfd *lru_prev, *lru_next;/* When a file is closed by the caching routines, BFD retainsstate information on the file here... */ufile_ptr where;/* File modified time, if mtime_set is TRUE. */long mtime;/* A unique identifier of the BFD */unsigned int id;/* The format which belongs to the BFD. (object, core, etc.) */ENUM_BITFIELD (bfd_format) format : 3;/* The direction with which the BFD was opened. */ENUM_BITFIELD (bfd_direction) direction : 2;/* Format_specific flags. */flagword flags : 17;/* Values that may appear in the flags field of a BFD. These alsoappear in the object_flags field of the bfd_target structure, wherethey indicate the set of flags used by that backend (not all flagsare meaningful for all object file formats) (FIXME: at the moment,the object_flags values have mostly just been copied from backendto another, and are not necessarily correct). */#define BFD_NO_FLAGS 0x00/* BFD contains relocation entries. */#define HAS_RELOC 0x01/* BFD is directly executable. */#define EXEC_P 0x02/* BFD has line number information (basically used for F_LNNO in aCOFF header). */#define HAS_LINENO 0x04/* BFD has debugging information. */#define HAS_DEBUG 0x08/* BFD has symbols. */#define HAS_SYMS 0x10/* BFD has local symbols (basically used for F_LSYMS in a COFFheader). */#define HAS_LOCALS 0x20/* BFD is a dynamic object. */#define DYNAMIC 0x40/* Text section is write protected (if D_PAGED is not set, this islike an a.out NMAGIC file) (the linker sets this by default, butclears it for -r or -N). */#define WP_TEXT 0x80/* BFD is dynamically paged (this is like an a.out ZMAGIC file) (thelinker sets this by default, but clears it for -r or -n or -N). */#define D_PAGED 0x100/* BFD is relaxable (this means that bfd_relax_section may be able todo something) (sometimes bfd_relax_section can do something even ifthis is not set). */#define BFD_IS_RELAXABLE 0x200/* This may be set before writing out a BFD to request using atraditional format. For example, this is used to request that whenwriting out an a.out object the symbols not be hashed to eliminateduplicates. */#define BFD_TRADITIONAL_FORMAT 0x400/* This flag indicates that the BFD contents are actually cachedin memory. If this is set, iostream points to a bfd_in_memorystruct. */#define BFD_IN_MEMORY 0x800/* This BFD has been created by the linker and doesn't correspondto any input file. */#define BFD_LINKER_CREATED 0x1000/* This may be set before writing out a BFD to request that itbe written using values for UIDs, GIDs, timestamps, etc. thatwill be consistent from run to run. */#define BFD_DETERMINISTIC_OUTPUT 0x2000/* Compress sections in this BFD. */#define BFD_COMPRESS 0x4000/* Decompress sections in this BFD. */#define BFD_DECOMPRESS 0x8000/* BFD is a dummy, for plugins. */#define BFD_PLUGIN 0x10000/* Flags bits to be saved in bfd_preserve_save. */#define BFD_FLAGS_SAVED \(BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_PLUGIN)/* Flags bits which are for BFD use only. */#define BFD_FLAGS_FOR_BFD_USE_MASK \(BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_LINKER_CREATED \| BFD_PLUGIN | BFD_TRADITIONAL_FORMAT | BFD_DETERMINISTIC_OUTPUT)/* Is the file descriptor being cached? That is, can it be closed asneeded, and re-opened when accessed later? */unsigned int cacheable : 1;/* Marks whether there was a default target specified when theBFD was opened. This is used to select which matching algorithmto use to choose the back end. */unsigned int target_defaulted : 1;/* ... and here: (``once'' means at least once). */unsigned int opened_once : 1;/* Set if we have a locally maintained mtime value, rather thangetting it from the file each time. */unsigned int mtime_set : 1;/* Flag set if symbols from this BFD should not be exported. */unsigned int no_export : 1;/* Remember when output has begun, to stop strange thingsfrom happening. */unsigned int output_has_begun : 1;/* Have archive map. */unsigned int has_armap : 1;/* Set if this is a thin archive. */unsigned int is_thin_archive : 1;/* Set if only required symbols should be added in the link hash table forthis object. Used by VMS linkers. */unsigned int selective_search : 1;/* Set if this is the linker output BFD. */unsigned int is_linker_output : 1;/* Currently my_archive is tested before adding origin toanything. I believe that this can become always an add oforigin, with origin set to 0 for non archive files. */ufile_ptr origin;/* The origin in the archive of the proxy entry. This willnormally be the same as origin, except for thin archives,when it will contain the current offset of the proxy in thethin archive rather than the offset of the bfd in its actualcontainer. */ufile_ptr proxy_origin;/* A hash table for section names. */struct bfd_hash_table section_htab;/* Pointer to linked list of sections. */struct bfd_section *sections;/* The last section on the section list. */struct bfd_section *section_last;/* The number of sections. */unsigned int section_count;/* A field used by _bfd_generic_link_add_archive_symbols. This willbe used only for archive elements. */int archive_pass;/* Stuff only useful for object files:The start address. */bfd_vma start_address;/* Symbol table for output BFD (with symcount entries).Also used by the linker to cache input BFD symbols. */struct bfd_symbol **outsymbols;/* Used for input and output. */unsigned int symcount;/* Used for slurped dynamic symbol tables. */unsigned int dynsymcount;/* Pointer to structure which contains architecture information. */const struct bfd_arch_info *arch_info;/* Stuff only useful for archives. */void *arelt_data;struct bfd *my_archive; /* The containing archive BFD. */struct bfd *archive_next; /* The next BFD in the archive. */struct bfd *archive_head; /* The first BFD in the archive. */struct bfd *nested_archives; /* List of nested archive in a flattenedthin archive. */union {/* For input BFDs, a chain of BFDs involved in a link. */struct bfd *next;/* For output BFD, the linker hash table. */struct bfd_link_hash_table *hash;} link;/* Used by the back end to hold private data. */union{struct aout_data_struct *aout_data;struct artdata *aout_ar_data;struct _oasys_data *oasys_obj_data;struct _oasys_ar_data *oasys_ar_data;struct coff_tdata *coff_obj_data;struct pe_tdata *pe_obj_data;struct xcoff_tdata *xcoff_obj_data;struct ecoff_tdata *ecoff_obj_data;struct ieee_data_struct *ieee_data;struct ieee_ar_data_struct *ieee_ar_data;struct srec_data_struct *srec_data;struct verilog_data_struct *verilog_data;struct ihex_data_struct *ihex_data;struct tekhex_data_struct *tekhex_data;struct elf_obj_tdata *elf_obj_data;struct nlm_obj_tdata *nlm_obj_data;struct bout_data_struct *bout_data;struct mmo_data_struct *mmo_data;struct sun_core_struct *sun_core_data;struct sco5_core_struct *sco5_core_data;struct trad_core_struct *trad_core_data;struct som_data_struct *som_data;struct hpux_core_struct *hpux_core_data;struct hppabsd_core_struct *hppabsd_core_data;struct sgi_core_struct *sgi_core_data;struct lynx_core_struct *lynx_core_data;struct osf_core_struct *osf_core_data;struct cisco_core_struct *cisco_core_data;struct versados_data_struct *versados_data;struct netbsd_core_struct *netbsd_core_data;struct mach_o_data_struct *mach_o_data;struct mach_o_fat_data_struct *mach_o_fat_data;struct plugin_data_struct *plugin_data;struct bfd_pef_data_struct *pef_data;struct bfd_pef_xlib_data_struct *pef_xlib_data;struct bfd_sym_data_struct *sym_data;struct asxxxx_data_struct *asxxxx_data;void *any;}tdata;/* Used by the application to hold private data. */void *usrdata;/* Where all the allocated stuff under this BFD goes. This is astruct objalloc *, but we use void * to avoid requiring the inclusionof objalloc.h. */void *memory;};/* See note beside bfd_set_section_userdata. */static inline bfd_booleanbfd_set_cacheable (bfd * abfd, bfd_boolean val){abfd->cacheable = val;return TRUE;}File: bfd.info, Node: Error reporting, Next: Miscellaneous, Prev: typedef bfd, Up: BFD front end2.2 Error reporting===================Most BFD functions return nonzero on success (check their individualdocumentation for precise semantics). On an error, they call`bfd_set_error' to set an error condition that callers can check bycalling `bfd_get_error'. If that returns `bfd_error_system_call', thencheck `errno'.The easiest way to report a BFD error to the user is to use`bfd_perror'.2.2.1 Type `bfd_error_type'---------------------------The values returned by `bfd_get_error' are defined by the enumeratedtype `bfd_error_type'.typedef enum bfd_error{bfd_error_no_error = 0,bfd_error_system_call,bfd_error_invalid_target,bfd_error_wrong_format,bfd_error_wrong_object_format,bfd_error_invalid_operation,bfd_error_no_memory,bfd_error_no_symbols,bfd_error_no_armap,bfd_error_no_more_archived_files,bfd_error_malformed_archive,bfd_error_missing_dso,bfd_error_file_not_recognized,bfd_error_file_ambiguously_recognized,bfd_error_no_contents,bfd_error_nonrepresentable_section,bfd_error_no_debug_section,bfd_error_bad_value,bfd_error_file_truncated,bfd_error_file_too_big,bfd_error_on_input,bfd_error_invalid_error_code}bfd_error_type;2.2.1.1 `bfd_get_error'.......................*Synopsis*bfd_error_type bfd_get_error (void);*Description*Return the current BFD error condition.2.2.1.2 `bfd_set_error'.......................*Synopsis*void bfd_set_error (bfd_error_type error_tag, ...);*Description*Set the BFD error condition to be ERROR_TAG. If ERROR_TAG isbfd_error_on_input, then this function takes two more parameters, theinput bfd where the error occurred, and the bfd_error_type error.2.2.1.3 `bfd_errmsg'....................*Synopsis*const char *bfd_errmsg (bfd_error_type error_tag);*Description*Return a string describing the error ERROR_TAG, or the system error ifERROR_TAG is `bfd_error_system_call'.2.2.1.4 `bfd_perror'....................*Synopsis*void bfd_perror (const char *message);*Description*Print to the standard error stream a string describing the last BFDerror that occurred, or the last system error if the last BFD error wasa system call failure. If MESSAGE is non-NULL and non-empty, the errorstring printed is preceded by MESSAGE, a colon, and a space. It isfollowed by a newline.2.2.2 BFD error handler-----------------------Some BFD functions want to print messages describing the problem. Theycall a BFD error handler function. This function may be overridden bythe program.The BFD error handler acts like printf.typedef void (*bfd_error_handler_type) (const char *, ...);2.2.2.1 `bfd_set_error_handler'...............................*Synopsis*bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);*Description*Set the BFD error handler function. Returns the previous function.2.2.2.2 `bfd_set_error_program_name'....................................*Synopsis*void bfd_set_error_program_name (const char *);*Description*Set the program name to use when printing a BFD error. This is printedbefore the error message followed by a colon and space. The stringmust not be changed after it is passed to this function.2.2.2.3 `bfd_get_error_handler'...............................*Synopsis*bfd_error_handler_type bfd_get_error_handler (void);*Description*Return the BFD error handler function.2.2.3 BFD assert handler------------------------If BFD finds an internal inconsistency, the bfd assert handler iscalled with information on the BFD version, BFD source file and line.If this happens, most programs linked against BFD are expected to wantto exit with an error, or mark the current BFD operation as failed, soit is recommended to override the default handler, which just calls_bfd_error_handler and continues.typedef void (*bfd_assert_handler_type) (const char *bfd_formatmsg,const char *bfd_version,const char *bfd_file,int bfd_line);2.2.3.1 `bfd_set_assert_handler'................................*Synopsis*bfd_assert_handler_type bfd_set_assert_handler (bfd_assert_handler_type);*Description*Set the BFD assert handler function. Returns the previous function.2.2.3.2 `bfd_get_assert_handler'................................*Synopsis*bfd_assert_handler_type bfd_get_assert_handler (void);*Description*Return the BFD assert handler function.File: bfd.info, Node: Miscellaneous, Next: Memory Usage, Prev: Error reporting, Up: BFD front end2.3 Miscellaneous=================2.3.1 Miscellaneous functions-----------------------------2.3.1.1 `bfd_get_reloc_upper_bound'...................................*Synopsis*long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);*Description*Return the number of bytes required to store the relocation informationassociated with section SECT attached to bfd ABFD. If an error occurs,return -1.2.3.1.2 `bfd_canonicalize_reloc'................................*Synopsis*long bfd_canonicalize_reloc(bfd *abfd, asection *sec, arelent **loc, asymbol **syms);*Description*Call the back end associated with the open BFD ABFD and translate theexternal form of the relocation information attached to SEC into theinternal canonical form. Place the table into memory at LOC, which hasbeen preallocated, usually by a call to `bfd_get_reloc_upper_bound'.Returns the number of relocs, or -1 on error.The SYMS table is also needed for horrible internal magic reasons.2.3.1.3 `bfd_set_reloc'.......................*Synopsis*void bfd_set_reloc(bfd *abfd, asection *sec, arelent **rel, unsigned int count);*Description*Set the relocation pointer and count within section SEC to the valuesREL and COUNT. The argument ABFD is ignored.2.3.1.4 `bfd_set_file_flags'............................*Synopsis*bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);*Description*Set the flag word in the BFD ABFD to the value FLAGS.Possible errors are:* `bfd_error_wrong_format' - The target bfd was not of object format.* `bfd_error_invalid_operation' - The target bfd was open forreading.* `bfd_error_invalid_operation' - The flag word contained a bitwhich was not applicable to the type of file. E.g., an attemptwas made to set the `D_PAGED' bit on a BFD format which does notsupport demand paging.2.3.1.5 `bfd_get_arch_size'...........................*Synopsis*int bfd_get_arch_size (bfd *abfd);*Description*Returns the normalized architecture address size, in bits, asdetermined by the object file's format. By normalized, we mean either32 or 64. For ELF, this information is included in the header. Usebfd_arch_bits_per_address for number of bits in the architectureaddress.*Returns*Returns the arch size in bits if known, `-1' otherwise.2.3.1.6 `bfd_get_sign_extend_vma'.................................*Synopsis*int bfd_get_sign_extend_vma (bfd *abfd);*Description*Indicates if the target architecture "naturally" sign extends anaddress. Some architectures implicitly sign extend address values whenthey are converted to types larger than the size of an address. Forinstance, bfd_get_start_address() will return an address sign extendedto fill a bfd_vma when this is the case.*Returns*Returns `1' if the target architecture is known to sign extendaddresses, `0' if the target architecture is known to not sign extendaddresses, and `-1' otherwise.2.3.1.7 `bfd_set_start_address'...............................*Synopsis*bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);*Description*Make VMA the entry point of output BFD ABFD.*Returns*Returns `TRUE' on success, `FALSE' otherwise.2.3.1.8 `bfd_get_gp_size'.........................*Synopsis*unsigned int bfd_get_gp_size (bfd *abfd);*Description*Return the maximum size of objects to be optimized using the GPregister under MIPS ECOFF. This is typically set by the `-G' argumentto the compiler, assembler or linker.2.3.1.9 `bfd_set_gp_size'.........................*Synopsis*void bfd_set_gp_size (bfd *abfd, unsigned int i);*Description*Set the maximum size of objects to be optimized using the GP registerunder ECOFF or MIPS ELF. This is typically set by the `-G' argument tothe compiler, assembler or linker.2.3.1.10 `bfd_scan_vma'.......................*Synopsis*bfd_vma bfd_scan_vma (const char *string, const char **end, int base);*Description*Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'integer, and return that integer. (Though without as many bells andwhistles as `strtoul'.) The expression is assumed to be unsigned(i.e., positive). If given a BASE, it is used as the base forconversion. A base of 0 causes the function to interpret the string inhex if a leading "0x" or "0X" is found, otherwise in octal if a leadingzero is found, otherwise in decimal.If the value would overflow, the maximum `bfd_vma' value is returned.2.3.1.11 `bfd_copy_private_header_data'.......................................*Synopsis*bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);*Description*Copy private BFD header information from the BFD IBFD to the the BFDOBFD. This copies information that may require sections to exist, butdoes not require symbol tables. Return `true' on success, `false' onerror. Possible error returns are:* `bfd_error_no_memory' - Not enough memory exists to create privatedata for OBFD.#define bfd_copy_private_header_data(ibfd, obfd) \BFD_SEND (obfd, _bfd_copy_private_header_data, \(ibfd, obfd))2.3.1.12 `bfd_copy_private_bfd_data'....................................*Synopsis*bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);*Description*Copy private BFD information from the BFD IBFD to the the BFD OBFD.Return `TRUE' on success, `FALSE' on error. Possible error returns are:* `bfd_error_no_memory' - Not enough memory exists to create privatedata for OBFD.#define bfd_copy_private_bfd_data(ibfd, obfd) \BFD_SEND (obfd, _bfd_copy_private_bfd_data, \(ibfd, obfd))2.3.1.13 `bfd_merge_private_bfd_data'.....................................*Synopsis*bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);*Description*Merge private BFD information from the BFD IBFD to the the output fileBFD OBFD when linking. Return `TRUE' on success, `FALSE' on error.Possible error returns are:* `bfd_error_no_memory' - Not enough memory exists to create privatedata for OBFD.#define bfd_merge_private_bfd_data(ibfd, obfd) \BFD_SEND (obfd, _bfd_merge_private_bfd_data, \(ibfd, obfd))2.3.1.14 `bfd_set_private_flags'................................*Synopsis*bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);*Description*Set private BFD flag information in the BFD ABFD. Return `TRUE' onsuccess, `FALSE' on error. Possible error returns are:* `bfd_error_no_memory' - Not enough memory exists to create privatedata for OBFD.#define bfd_set_private_flags(abfd, flags) \BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))2.3.1.15 `Other functions'..........................*Description*The following functions exist but have not yet been documented.#define bfd_sizeof_headers(abfd, info) \BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \BFD_SEND (abfd, _bfd_find_nearest_line, \(abfd, syms, sec, off, file, func, line, NULL))#define bfd_find_nearest_line_discriminator(abfd, sec, syms, off, file, func, \line, disc) \BFD_SEND (abfd, _bfd_find_nearest_line, \(abfd, syms, sec, off, file, func, line, disc))#define bfd_find_line(abfd, syms, sym, file, line) \BFD_SEND (abfd, _bfd_find_line, \(abfd, syms, sym, file, line))#define bfd_find_inliner_info(abfd, file, func, line) \BFD_SEND (abfd, _bfd_find_inliner_info, \(abfd, file, func, line))#define bfd_debug_info_start(abfd) \BFD_SEND (abfd, _bfd_debug_info_start, (abfd))#define bfd_debug_info_end(abfd) \BFD_SEND (abfd, _bfd_debug_info_end, (abfd))#define bfd_debug_info_accumulate(abfd, section) \BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))#define bfd_stat_arch_elt(abfd, stat) \BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))#define bfd_update_armap_timestamp(abfd) \BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))#define bfd_set_arch_mach(abfd, arch, mach)\BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))#define bfd_relax_section(abfd, section, link_info, again) \BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))#define bfd_gc_sections(abfd, link_info) \BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))#define bfd_lookup_section_flags(link_info, flag_info, section) \BFD_SEND (abfd, _bfd_lookup_section_flags, (link_info, flag_info, section))#define bfd_merge_sections(abfd, link_info) \BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))#define bfd_is_group_section(abfd, sec) \BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))#define bfd_discard_group(abfd, sec) \BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))#define bfd_link_hash_table_create(abfd) \BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))#define bfd_link_add_symbols(abfd, info) \BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))#define bfd_link_just_syms(abfd, sec, info) \BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))#define bfd_final_link(abfd, info) \BFD_SEND (abfd, _bfd_final_link, (abfd, info))#define bfd_free_cached_info(abfd) \BFD_SEND (abfd, _bfd_free_cached_info, (abfd))#define bfd_get_dynamic_symtab_upper_bound(abfd) \BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))#define bfd_print_private_bfd_data(abfd, file)\BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))#define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \dyncount, dynsyms, ret))#define bfd_get_dynamic_reloc_upper_bound(abfd) \BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))extern bfd_byte *bfd_get_relocated_section_contents(bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,bfd_boolean, asymbol **);2.3.1.16 `bfd_alt_mach_code'............................*Synopsis*bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);*Description*When more than one machine code number is available for the samemachine type, this function can be used to switch between the preferredone (alternative == 0) and any others. Currently, only ELF supportsthis feature, with up to two alternate machine codes.2.3.1.17 `bfd_emul_get_maxpagesize'...................................*Synopsis*bfd_vma bfd_emul_get_maxpagesize (const char *);*Description*Returns the maximum page size, in bytes, as determined by emulation.*Returns*Returns the maximum page size in bytes for ELF, 0 otherwise.2.3.1.18 `bfd_emul_set_maxpagesize'...................................*Synopsis*void bfd_emul_set_maxpagesize (const char *, bfd_vma);*Description*For ELF, set the maximum page size for the emulation. It is a no-opfor other formats.2.3.1.19 `bfd_emul_get_commonpagesize'......................................*Synopsis*bfd_vma bfd_emul_get_commonpagesize (const char *);*Description*Returns the common page size, in bytes, as determined by emulation.*Returns*Returns the common page size in bytes for ELF, 0 otherwise.2.3.1.20 `bfd_emul_set_commonpagesize'......................................*Synopsis*void bfd_emul_set_commonpagesize (const char *, bfd_vma);*Description*For ELF, set the common page size for the emulation. It is a no-op forother formats.2.3.1.21 `bfd_demangle'.......................*Synopsis*char *bfd_demangle (bfd *, const char *, int);*Description*Wrapper around cplus_demangle. Strips leading underscores and othersuch chars that would otherwise confuse the demangler. If passed a g++v3 ABI mangled name, returns a buffer allocated with malloc holding thedemangled name. Returns NULL otherwise and on memory alloc failure.2.3.1.22 `struct bfd_iovec'...........................*Description*The `struct bfd_iovec' contains the internal file I/O class. Each`BFD' has an instance of this class and all file I/O is routed throughit (it is assumed that the instance implements all methods listedbelow).struct bfd_iovec{/* To avoid problems with macros, a "b" rather than "f"prefix is prepended to each method name. *//* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetchingbytes starting at PTR. Return the number of bytes actuallytransfered (a read past end-of-file returns less than NBYTES),or -1 (setting `bfd_error') if an error occurs. */file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,file_ptr nbytes);/* Return the current IOSTREAM file offset, or -1 (setting `bfd_error'if an error occurs. */file_ptr (*btell) (struct bfd *abfd);/* For the following, on successful completion a value of 0 is returned.Otherwise, a value of -1 is returned (and `bfd_error' is set). */int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);int (*bclose) (struct bfd *abfd);int (*bflush) (struct bfd *abfd);int (*bstat) (struct bfd *abfd, struct stat *sb);/* Mmap a part of the files. ADDR, LEN, PROT, FLAGS and OFFSET are the usualmmap parameter, except that LEN and OFFSET do not need to be pagealigned. Returns (void *)-1 on failure, mmapped address on success.Also write in MAP_ADDR the address of the page aligned buffer and inMAP_LEN the size mapped (a page multiple). Use unmap with MAP_ADDR andMAP_LEN to unmap. */void *(*bmmap) (struct bfd *abfd, void *addr, bfd_size_type len,int prot, int flags, file_ptr offset,void **map_addr, bfd_size_type *map_len);};extern const struct bfd_iovec _bfd_memory_iovec;2.3.1.23 `bfd_get_mtime'........................*Synopsis*long bfd_get_mtime (bfd *abfd);*Description*Return the file modification time (as read from the file system, orfrom the archive header for archive members).2.3.1.24 `bfd_get_size'.......................*Synopsis*file_ptr bfd_get_size (bfd *abfd);*Description*Return the file size (as read from file system) for the file associatedwith BFD ABFD.The initial motivation for, and use of, this routine is not so wecan get the exact size of the object the BFD applies to, since thatmight not be generally possible (archive members for example). Itwould be ideal if someone could eventually modify it so that suchresults were guaranteed.Instead, we want to ask questions like "is this NNN byte sizedobject I'm about to try read from file offset YYY reasonable?" As asexample of where we might do this, some object formats use stringtables for which the first `sizeof (long)' bytes of the table containthe size of the table itself, including the size bytes. If anapplication tries to read what it thinks is one of these string tables,without some way to validate the size, and for some reason the size iswrong (byte swapping error, wrong location for the string table, etc.),the only clue is likely to be a read error when it tries to read thetable, or a "virtual memory exhausted" error when it tries to allocate15 bazillon bytes of space for the 15 bazillon byte table it is aboutto read. This function at least allows us to answer the question, "isthe size reasonable?".2.3.1.25 `bfd_mmap'...................*Synopsis*void *bfd_mmap (bfd *abfd, void *addr, bfd_size_type len,int prot, int flags, file_ptr offset,void **map_addr, bfd_size_type *map_len);*Description*Return mmap()ed region of the file, if possible and implemented. LENand OFFSET do not need to be page aligned. The page aligned addressand length are written to MAP_ADDR and MAP_LEN.File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: Miscellaneous, Up: BFD front end2.4 Memory Usage================BFD keeps all of its internal structures in obstacks. There is oneobstack per open BFD file, into which the current state is stored. Whena BFD is closed, the obstack is deleted, and so everything which hasbeen allocated by BFD for the closing file is thrown away.BFD does not free anything created by an application, but pointersinto `bfd' structures become invalid on a `bfd_close'; for example,after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' isstill around, since it has been allocated by the application, but thedata that it pointed to are lost.The general rule is to not close a BFD until all operations dependentupon data from the BFD have been completed, or all the data from withinthe file has been copied. To help with the management of memory, thereis a function (`bfd_alloc_size') which returns the number of bytes inobstacks associated with the supplied BFD. This could be used to selectthe greediest open BFD, close it to reclaim the memory, perform someoperation and reopen the BFD again, to get a fresh copy of the datastructures.File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end2.5 Initialization==================2.5.1 Initialization functions------------------------------These are the functions that handle initializing a BFD.2.5.1.1 `bfd_init'..................*Synopsis*void bfd_init (void);*Description*This routine must be called before any other BFD function to initializemagical internal data structures.File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end2.6 Sections============The raw data contained within a BFD is maintained through the sectionabstraction. A single BFD may have any number of sections. It keepshold of them by pointing to the first; each one points to the next inthe list.Sections are supported in BFD in `section.c'.* Menu:* Section Input::* Section Output::* typedef asection::* section prototypes::File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections2.6.1 Section input-------------------When a BFD is opened for reading, the section structures are createdand attached to the BFD.Each section has a name which describes the section in the outsideworld--for example, `a.out' would contain at least three sections,called `.text', `.data' and `.bss'.Names need not be unique; for example a COFF file may have severalsections named `.data'.Sometimes a BFD will contain more than the "natural" number ofsections. A back end may attach other sections containing constructordata, or an application may add a section (using `bfd_make_section') tothe sections attached to an already open BFD. For example, the linkercreates an extra section `COMMON' for each input file's BFD to holdinformation about common storage.The raw data is not necessarily read in when the section descriptoris created. Some targets may leave the data in place until a`bfd_get_section_contents' call is made. Other back ends may read inall the data at once. For example, an S-record file has to be readonce to determine the size of the data. An IEEE-695 file doesn'tcontain raw data in sections, but data and relocation expressionsintermixed, so the data area has to be parsed to get out the data andrelocations.File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections2.6.2 Section output--------------------To write a new object style BFD, the various sections to be writtenhave to be created. They are attached to the BFD in the same way asinput sections; data is written to the sections using`bfd_set_section_contents'.Any program that creates or combines sections (e.g., the assemblerand linker) must use the `asection' fields `output_section' and`output_offset' to indicate the file sections to which each sectionmust be written. (If the section is being created from scratch,`output_section' should probably point to the section itself and`output_offset' should probably be zero.)The data to be written comes from input sections attached (via`output_section' pointers) to the output sections. The output sectionstructure can be considered a filter for the input section: the outputsection determines the vma of the output data and the name, but theinput section determines the offset into the output section of the datato be written.E.g., to create a section "O", starting at 0x100, 0x123 long,containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and"B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures wouldlook like:section name "A"output_offset 0x00size 0x20output_section -----------> section name "O"| vma 0x100section name "B" | size 0x123output_offset 0x20 |size 0x103 |output_section --------|2.6.3 Link orders-----------------The data within a section is stored in a "link_order". These are muchlike the fixups in `gas'. The link_order abstraction allows a sectionto grow and shrink within itself.A link_order knows how big it is, and which is the next link_orderand where the raw data for it is; it also points to a list ofrelocations which apply to it.The link_order is used by the linker to perform relaxing on finalcode. The compiler creates code which is as big as necessary to makeit work without relaxing, and the user can select whether to relax.Sometimes relaxing takes a lot of time. The linker runs around therelocations to see if any are attached to data which can be shrunk, ifso it does it on a link_order by link_order basis.File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections2.6.4 typedef asection----------------------Here is the section structure:typedef struct bfd_section{/* The name of the section; the name isn't a copy, the pointer isthe same as that passed to bfd_make_section. */const char *name;/* A unique sequence number. */int id;/* Which section in the bfd; 0..n-1 as sections are created in a bfd. */int index;/* The next section in the list belonging to the BFD, or NULL. */struct bfd_section *next;/* The previous section in the list belonging to the BFD, or NULL. */struct bfd_section *prev;/* The field flags contains attributes of the section. Someflags are read in from the object file, and some aresynthesized from other information. */flagword flags;#define SEC_NO_FLAGS 0x000/* Tells the OS to allocate space for this section when loading.This is clear for a section containing debug information only. */#define SEC_ALLOC 0x001/* Tells the OS to load the section from the file when loading.This is clear for a .bss section. */#define SEC_LOAD 0x002/* The section contains data still to be relocated, so there issome relocation information too. */#define SEC_RELOC 0x004/* A signal to the OS that the section contains read only data. */#define SEC_READONLY 0x008/* The section contains code only. */#define SEC_CODE 0x010/* The section contains data only. */#define SEC_DATA 0x020/* The section will reside in ROM. */#define SEC_ROM 0x040/* The section contains constructor information. This sectiontype is used by the linker to create lists of constructors anddestructors used by `g++'. When a back end sees a symbolwhich should be used in a constructor list, it creates a newsection for the type of name (e.g., `__CTOR_LIST__'), attachesthe symbol to it, and builds a relocation. To build the listsof constructors, all the linker has to do is catenate all thesections called `__CTOR_LIST__' and relocate the datacontained within - exactly the operations it would peform onstandard data. */#define SEC_CONSTRUCTOR 0x080/* The section has contents - a data section could be`SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be`SEC_HAS_CONTENTS' */#define SEC_HAS_CONTENTS 0x100/* An instruction to the linker to not output the sectioneven if it has information which would normally be written. */#define SEC_NEVER_LOAD 0x200/* The section contains thread local data. */#define SEC_THREAD_LOCAL 0x400/* The section has GOT references. This flag is only for thelinker, and is currently only used by the elf32-hppa back end.It will be set if global offset table references were detectedin this section, which indicate to the linker that the sectioncontains PIC code, and must be handled specially when doing astatic link. */#define SEC_HAS_GOT_REF 0x800/* The section contains common symbols (symbols may be definedmultiple times, the value of a symbol is the amount ofspace it requires, and the largest symbol value is the oneused). Most targets have exactly one of these (which wetranslate to bfd_com_section_ptr), but ECOFF has two. */#define SEC_IS_COMMON 0x1000/* The section contains only debugging information. Forexample, this is set for ELF .debug and .stab sections.strip tests this flag to see if a section can bediscarded. */#define SEC_DEBUGGING 0x2000/* The contents of this section are held in memory pointed toby the contents field. This is checked by bfd_get_section_contents,and the data is retrieved from memory if appropriate. */#define SEC_IN_MEMORY 0x4000/* The contents of this section are to be excluded by thelinker for executable and shared objects unless thoseobjects are to be further relocated. */#define SEC_EXCLUDE 0x8000/* The contents of this section are to be sorted based on the sum ofthe symbol and addend values specified by the associated relocationentries. Entries without associated relocation entries will beappended to the end of the section in an unspecified order. */#define SEC_SORT_ENTRIES 0x10000/* When linking, duplicate sections of the same name should bediscarded, rather than being combined into a single section asis usually done. This is similar to how common symbols arehandled. See SEC_LINK_DUPLICATES below. */#define SEC_LINK_ONCE 0x20000/* If SEC_LINK_ONCE is set, this bitfield describes how the linkershould handle duplicate sections. */#define SEC_LINK_DUPLICATES 0xc0000/* This value for SEC_LINK_DUPLICATES means that duplicatesections with the same name should simply be discarded. */#define SEC_LINK_DUPLICATES_DISCARD 0x0/* This value for SEC_LINK_DUPLICATES means that the linkershould warn if there are any duplicate sections, althoughit should still only link one copy. */#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000/* This value for SEC_LINK_DUPLICATES means that the linkershould warn if any duplicate sections are a different size. */#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000/* This value for SEC_LINK_DUPLICATES means that the linkershould warn if any duplicate sections contain differentcontents. */#define SEC_LINK_DUPLICATES_SAME_CONTENTS \(SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)/* This section was created by the linker as part of dynamicrelocation or other arcane processing. It is skipped whengoing through the first-pass output, trusting that someoneelse up the line will take care of it later. */#define SEC_LINKER_CREATED 0x100000/* This section should not be subject to garbage collection.Also set to inform the linker that this section should not belisted in the link map as discarded. */#define SEC_KEEP 0x200000/* This section contains "short" data, and should be placed"near" the GP. */#define SEC_SMALL_DATA 0x400000/* Attempt to merge identical entities in the section.Entity size is given in the entsize field. */#define SEC_MERGE 0x800000/* If given with SEC_MERGE, entities to merge are zero terminatedstrings where entsize specifies character size instead of fixedsize entries. */#define SEC_STRINGS 0x1000000/* This section contains data about section groups. */#define SEC_GROUP 0x2000000/* The section is a COFF shared library section. This flag isonly for the linker. If this type of section appears inthe input file, the linker must copy it to the output filewithout changing the vma or size. FIXME: Although thiswas originally intended to be general, it really is COFFspecific (and the flag was renamed to indicate this). Itmight be cleaner to have some more general mechanism toallow the back end to control what the linker does withsections. */#define SEC_COFF_SHARED_LIBRARY 0x4000000/* This input section should be copied to output in reverse orderas an array of pointers. This is for ELF linker internal useonly. */#define SEC_ELF_REVERSE_COPY 0x4000000/* This section contains data which may be shared with otherexecutables or shared objects. This is for COFF only. */#define SEC_COFF_SHARED 0x8000000/* When a section with this flag is being linked, then if the size ofthe input section is less than a page, it should not cross a pageboundary. If the size of the input section is one page or more,it should be aligned on a page boundary. This is for TITMS320C54X only. */#define SEC_TIC54X_BLOCK 0x10000000/* Conditionally link this section; do not link if there are noreferences found to any symbol in the section. This is for TITMS320C54X only. */#define SEC_TIC54X_CLINK 0x20000000/* Indicate that section has the no read flag set. This happenswhen memory read flag isn't set. */#define SEC_COFF_NOREAD 0x40000000/* End of section flags. *//* Some internal packed boolean fields. *//* See the vma field. */unsigned int user_set_vma : 1;/* A mark flag used by some of the linker backends. */unsigned int linker_mark : 1;/* Another mark flag used by some of the linker backends. Set foroutput sections that have an input section. */unsigned int linker_has_input : 1;/* Mark flag used by some linker backends for garbage collection. */unsigned int gc_mark : 1;/* Section compression status. */unsigned int compress_status : 2;#define COMPRESS_SECTION_NONE 0#define COMPRESS_SECTION_DONE 1#define DECOMPRESS_SECTION_SIZED 2/* The following flags are used by the ELF linker. *//* Mark sections which have been allocated to segments. */unsigned int segment_mark : 1;/* Type of sec_info information. */unsigned int sec_info_type:3;#define SEC_INFO_TYPE_NONE 0#define SEC_INFO_TYPE_STABS 1#define SEC_INFO_TYPE_MERGE 2#define SEC_INFO_TYPE_EH_FRAME 3#define SEC_INFO_TYPE_JUST_SYMS 4#define SEC_INFO_TYPE_TARGET 5/* Nonzero if this section uses RELA relocations, rather than REL. */unsigned int use_rela_p:1;/* Bits used by various backends. The generic code doesn't touchthese fields. */unsigned int sec_flg0:1;unsigned int sec_flg1:1;unsigned int sec_flg2:1;unsigned int sec_flg3:1;unsigned int sec_flg4:1;unsigned int sec_flg5:1;/* End of internal packed boolean fields. *//* The virtual memory address of the section - where it will beat run time. The symbols are relocated against this. Theuser_set_vma flag is maintained by bfd; if it's not set, thebackend can assign addresses (for example, in `a.out', wherethe default address for `.data' is dependent on the specifictarget and various flags). */bfd_vma vma;/* The load address of the section - where it would be in arom image; really only used for writing section headerinformation. */bfd_vma lma;/* The size of the section in octets, as it will be output.Contains a value even if the section has no contents (e.g., thesize of `.bss'). */bfd_size_type size;/* For input sections, the original size on disk of the section, inoctets. This field should be set for any section whose size ischanged by linker relaxation. It is required for sections wherethe linker relaxation scheme doesn't cache altered section andreloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxingtargets), and thus the original size needs to be kept to read thesection multiple times. For output sections, rawsize holds thesection size calculated on a previous linker relaxation pass. */bfd_size_type rawsize;/* The compressed size of the section in octets. */bfd_size_type compressed_size;/* Relaxation table. */struct relax_table *relax;/* Count of used relaxation table entries. */int relax_count;/* If this section is going to be output, then this value is theoffset in *bytes* into the output section of the first byte in theinput section (byte ==> smallest addressable unit on thetarget). In most cases, if this was going to start at the100th octet (8-bit quantity) in the output section, this valuewould be 100. However, if the target byte size is 16 bits(bfd_octets_per_byte is "2"), this value would be 50. */bfd_vma output_offset;/* The output section through which to map on output. */struct bfd_section *output_section;/* The alignment requirement of the section, as an exponent of 2 -e.g., 3 aligns to 2^3 (or 8). */unsigned int alignment_power;/* If an input section, a pointer to a vector of relocationrecords for the data in this section. */struct reloc_cache_entry *relocation;/* If an output section, a pointer to a vector of pointers torelocation records for the data in this section. */struct reloc_cache_entry **orelocation;/* The number of relocation records in one of the above. */unsigned reloc_count;/* Information below is back end specific - and not always usedor updated. *//* File position of section data. */file_ptr filepos;/* File position of relocation info. */file_ptr rel_filepos;/* File position of line data. */file_ptr line_filepos;/* Pointer to data for applications. */void *userdata;/* If the SEC_IN_MEMORY flag is set, this points to the actualcontents. */unsigned char *contents;/* Attached line number information. */alent *lineno;/* Number of line number records. */unsigned int lineno_count;/* Entity size for merging purposes. */unsigned int entsize;/* Points to the kept section if this section is a link-once section,and is discarded. */struct bfd_section *kept_section;/* When a section is being output, this value changes as morelinenumbers are written out. */file_ptr moving_line_filepos;/* What the section number is in the target world. */int target_index;void *used_by_bfd;/* If this is a constructor section then here is a list of therelocations created to relocate items within it. */struct relent_chain *constructor_chain;/* The BFD which owns the section. */bfd *owner;/* A symbol which points at this section only. */struct bfd_symbol *symbol;struct bfd_symbol **symbol_ptr_ptr;/* Early in the link process, map_head and map_tail are used to builda list of input sections attached to an output section. Later,output sections use these fields for a list of bfd_link_orderstructs. */union {struct bfd_link_order *link_order;struct bfd_section *s;} map_head, map_tail;} asection;/* Relax table contains information about instructions which canbe removed by relaxation -- replacing a long address with ashort address. */struct relax_table {/* Address where bytes may be deleted. */bfd_vma addr;/* Number of bytes to be deleted. */int size;};/* Note: the following are provided as inline functions rather than macrosbecause not all callers use the return value. A macro implementationwould use a comma expression, eg: "((ptr)->foo = val, TRUE)" and somecompilers will complain about comma expressions that have no effect. */static inline bfd_booleanbfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val){ptr->userdata = val;return TRUE;}static inline bfd_booleanbfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val){ptr->vma = ptr->lma = val;ptr->user_set_vma = TRUE;return TRUE;}static inline bfd_booleanbfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val){ptr->alignment_power = val;return TRUE;}/* These sections are global, and are managed by BFD. The applicationand target back end are not permitted to change the values inthese sections. */extern asection _bfd_std_section[4];#define BFD_ABS_SECTION_NAME "*ABS*"#define BFD_UND_SECTION_NAME "*UND*"#define BFD_COM_SECTION_NAME "*COM*"#define BFD_IND_SECTION_NAME "*IND*"/* Pointer to the common section. */#define bfd_com_section_ptr (&_bfd_std_section[0])/* Pointer to the undefined section. */#define bfd_und_section_ptr (&_bfd_std_section[1])/* Pointer to the absolute section. */#define bfd_abs_section_ptr (&_bfd_std_section[2])/* Pointer to the indirect section. */#define bfd_ind_section_ptr (&_bfd_std_section[3])#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)#define bfd_is_const_section(SEC) \( ((SEC) == bfd_abs_section_ptr) \|| ((SEC) == bfd_und_section_ptr) \|| ((SEC) == bfd_com_section_ptr) \|| ((SEC) == bfd_ind_section_ptr))/* Macros to handle insertion and deletion of a bfd's sections. Theseonly handle the list pointers, ie. do not adjust section_count,target_index etc. */#define bfd_section_list_remove(ABFD, S) \do \{ \asection *_s = S; \asection *_next = _s->next; \asection *_prev = _s->prev; \if (_prev) \_prev->next = _next; \else \(ABFD)->sections = _next; \if (_next) \_next->prev = _prev; \else \(ABFD)->section_last = _prev; \} \while (0)#define bfd_section_list_append(ABFD, S) \do \{ \asection *_s = S; \bfd *_abfd = ABFD; \_s->next = NULL; \if (_abfd->section_last) \{ \_s->prev = _abfd->section_last; \_abfd->section_last->next = _s; \} \else \{ \_s->prev = NULL; \_abfd->sections = _s; \} \_abfd->section_last = _s; \} \while (0)#define bfd_section_list_prepend(ABFD, S) \do \{ \asection *_s = S; \bfd *_abfd = ABFD; \_s->prev = NULL; \if (_abfd->sections) \{ \_s->next = _abfd->sections; \_abfd->sections->prev = _s; \} \else \{ \_s->next = NULL; \_abfd->section_last = _s; \} \_abfd->sections = _s; \} \while (0)#define bfd_section_list_insert_after(ABFD, A, S) \do \{ \asection *_a = A; \asection *_s = S; \asection *_next = _a->next; \_s->next = _next; \_s->prev = _a; \_a->next = _s; \if (_next) \_next->prev = _s; \else \(ABFD)->section_last = _s; \} \while (0)#define bfd_section_list_insert_before(ABFD, B, S) \do \{ \asection *_b = B; \asection *_s = S; \asection *_prev = _b->prev; \_s->prev = _prev; \_s->next = _b; \_b->prev = _s; \if (_prev) \_prev->next = _s; \else \(ABFD)->sections = _s; \} \while (0)#define bfd_section_removed_from_list(ABFD, S) \((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \/* name, id, index, next, prev, flags, user_set_vma, */ \{ NAME, IDX, 0, NULL, NULL, FLAGS, 0, \\/* linker_mark, linker_has_input, gc_mark, decompress_status, */ \0, 0, 1, 0, \\/* segment_mark, sec_info_type, use_rela_p, */ \0, 0, 0, \\/* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, */ \0, 0, 0, 0, 0, 0, \\/* vma, lma, size, rawsize, compressed_size, relax, relax_count, */ \0, 0, 0, 0, 0, 0, 0, \\/* output_offset, output_section, alignment_power, */ \0, &SEC, 0, \\/* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \NULL, NULL, 0, 0, 0, \\/* line_filepos, userdata, contents, lineno, lineno_count, */ \0, NULL, NULL, NULL, 0, \\/* entsize, kept_section, moving_line_filepos, */ \0, NULL, 0, \\/* target_index, used_by_bfd, constructor_chain, owner, */ \0, NULL, NULL, NULL, \\/* symbol, symbol_ptr_ptr, */ \(struct bfd_symbol *) SYM, &SEC.symbol, \\/* map_head, map_tail */ \{ NULL }, { NULL } \}File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections2.6.5 Section prototypes------------------------These are the functions exported by the section handling part of BFD.2.6.5.1 `bfd_section_list_clear'................................*Synopsis*void bfd_section_list_clear (bfd *);*Description*Clears the section list, and also resets the section count and hashtable entries.2.6.5.2 `bfd_get_section_by_name'.................................*Synopsis*asection *bfd_get_section_by_name (bfd *abfd, const char *name);*Description*Return the most recently created section attached to ABFD named NAME.Return NULL if no such section exists.2.6.5.3 `bfd_get_next_section_by_name'......................................*Synopsis*asection *bfd_get_next_section_by_name (asection *sec);*Description*Given SEC is a section returned by `bfd_get_section_by_name', returnthe next most recently created section attached to the same BFD withthe same name. Return NULL if no such section exists.2.6.5.4 `bfd_get_linker_section'................................*Synopsis*asection *bfd_get_linker_section (bfd *abfd, const char *name);*Description*Return the linker created section attached to ABFD named NAME. ReturnNULL if no such section exists.2.6.5.5 `bfd_get_section_by_name_if'....................................*Synopsis*asection *bfd_get_section_by_name_if(bfd *abfd,const char *name,bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),void *obj);*Description*Call the provided function FUNC for each section attached to the BFDABFD whose name matches NAME, passing OBJ as an argument. The functionwill be called as if byfunc (abfd, the_section, obj);It returns the first section for which FUNC returns true, otherwise`NULL'.2.6.5.6 `bfd_get_unique_section_name'.....................................*Synopsis*char *bfd_get_unique_section_name(bfd *abfd, const char *templat, int *count);*Description*Invent a section name that is unique in ABFD by tacking a dot and adigit suffix onto the original TEMPLAT. If COUNT is non-NULL, then itspecifies the first number tried as a suffix to generate a unique name.The value pointed to by COUNT will be incremented in this case.2.6.5.7 `bfd_make_section_old_way'..................................*Synopsis*asection *bfd_make_section_old_way (bfd *abfd, const char *name);*Description*Create a new empty section called NAME and attach it to the end of thechain of sections for the BFD ABFD. An attempt to create a section witha name which is already in use returns its pointer without changing thesection chain.It has the funny name since this is the way it used to be before itwas rewritten....Possible errors are:* `bfd_error_invalid_operation' - If output has already started forthis BFD.* `bfd_error_no_memory' - If memory allocation fails.2.6.5.8 `bfd_make_section_anyway_with_flags'............................................*Synopsis*asection *bfd_make_section_anyway_with_flags(bfd *abfd, const char *name, flagword flags);*Description*Create a new empty section called NAME and attach it to the end of thechain of sections for ABFD. Create a new section even if there isalready a section with that name. Also set the attributes of the newsection to the value FLAGS.Return `NULL' and set `bfd_error' on error; possible errors are:* `bfd_error_invalid_operation' - If output has already started forABFD.* `bfd_error_no_memory' - If memory allocation fails.2.6.5.9 `bfd_make_section_anyway'.................................*Synopsis*asection *bfd_make_section_anyway (bfd *abfd, const char *name);*Description*Create a new empty section called NAME and attach it to the end of thechain of sections for ABFD. Create a new section even if there isalready a section with that name.Return `NULL' and set `bfd_error' on error; possible errors are:* `bfd_error_invalid_operation' - If output has already started forABFD.* `bfd_error_no_memory' - If memory allocation fails.2.6.5.10 `bfd_make_section_with_flags'......................................*Synopsis*asection *bfd_make_section_with_flags(bfd *, const char *name, flagword flags);*Description*Like `bfd_make_section_anyway', but return `NULL' (without callingbfd_set_error ()) without changing the section chain if there isalready a section named NAME. Also set the attributes of the newsection to the value FLAGS. If there is an error, return `NULL' and set`bfd_error'.2.6.5.11 `bfd_make_section'...........................*Synopsis*asection *bfd_make_section (bfd *, const char *name);*Description*Like `bfd_make_section_anyway', but return `NULL' (without callingbfd_set_error ()) without changing the section chain if there isalready a section named NAME. If there is an error, return `NULL' andset `bfd_error'.2.6.5.12 `bfd_set_section_flags'................................*Synopsis*bfd_boolean bfd_set_section_flags(bfd *abfd, asection *sec, flagword flags);*Description*Set the attributes of the section SEC in the BFD ABFD to the valueFLAGS. Return `TRUE' on success, `FALSE' on error. Possible errorreturns are:* `bfd_error_invalid_operation' - The section cannot have one ormore of the attributes requested. For example, a .bss section in`a.out' may not have the `SEC_HAS_CONTENTS' field set.2.6.5.13 `bfd_rename_section'.............................*Synopsis*void bfd_rename_section(bfd *abfd, asection *sec, const char *newname);*Description*Rename section SEC in ABFD to NEWNAME.2.6.5.14 `bfd_map_over_sections'................................*Synopsis*void bfd_map_over_sections(bfd *abfd,void (*func) (bfd *abfd, asection *sect, void *obj),void *obj);*Description*Call the provided function FUNC for each section attached to the BFDABFD, passing OBJ as an argument. The function will be called as if byfunc (abfd, the_section, obj);This is the preferred method for iterating over sections; analternative would be to use a loop:asection *p;for (p = abfd->sections; p != NULL; p = p->next)func (abfd, p, ...)2.6.5.15 `bfd_sections_find_if'...............................*Synopsis*asection *bfd_sections_find_if(bfd *abfd,bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),void *obj);*Description*Call the provided function OPERATION for each section attached to theBFD ABFD, passing OBJ as an argument. The function will be called as ifbyoperation (abfd, the_section, obj);It returns the first section for which OPERATION returns true.2.6.5.16 `bfd_set_section_size'...............................*Synopsis*bfd_boolean bfd_set_section_size(bfd *abfd, asection *sec, bfd_size_type val);*Description*Set SEC to the size VAL. If the operation is ok, then `TRUE' isreturned, else `FALSE'.Possible error returns:* `bfd_error_invalid_operation' - Writing has started to the BFD, sosetting the size is invalid.2.6.5.17 `bfd_set_section_contents'...................................*Synopsis*bfd_boolean bfd_set_section_contents(bfd *abfd, asection *section, const void *data,file_ptr offset, bfd_size_type count);*Description*Sets the contents of the section SECTION in BFD ABFD to the datastarting in memory at DATA. The data is written to the output sectionstarting at offset OFFSET for COUNT octets.Normally `TRUE' is returned, else `FALSE'. Possible error returnsare:* `bfd_error_no_contents' - The output section does not have the`SEC_HAS_CONTENTS' attribute, so nothing can be written to it.* and some more tooThis routine is front end to the back end function`_bfd_set_section_contents'.2.6.5.18 `bfd_get_section_contents'...................................*Synopsis*bfd_boolean bfd_get_section_contents(bfd *abfd, asection *section, void *location, file_ptr offset,bfd_size_type count);*Description*Read data from SECTION in BFD ABFD into memory starting at LOCATION.The data is read at an offset of OFFSET from the start of the inputsection, and is read for COUNT bytes.If the contents of a constructor with the `SEC_CONSTRUCTOR' flag setare requested or if the section does not have the `SEC_HAS_CONTENTS'flag set, then the LOCATION is filled with zeroes. If no errors occur,`TRUE' is returned, else `FALSE'.2.6.5.19 `bfd_malloc_and_get_section'.....................................*Synopsis*bfd_boolean bfd_malloc_and_get_section(bfd *abfd, asection *section, bfd_byte **buf);*Description*Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd bythis function.2.6.5.20 `bfd_copy_private_section_data'........................................*Synopsis*bfd_boolean bfd_copy_private_section_data(bfd *ibfd, asection *isec, bfd *obfd, asection *osec);*Description*Copy private section information from ISEC in the BFD IBFD to thesection OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' onerror. Possible error returns are:* `bfd_error_no_memory' - Not enough memory exists to create privatedata for OSEC.#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \BFD_SEND (obfd, _bfd_copy_private_section_data, \(ibfd, isection, obfd, osection))2.6.5.21 `bfd_generic_is_group_section'.......................................*Synopsis*bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);*Description*Returns TRUE if SEC is a member of a group.2.6.5.22 `bfd_generic_discard_group'....................................*Synopsis*bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);*Description*Remove all members of GROUP from the output.File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end2.7 Symbols===========BFD tries to maintain as much symbol information as it can when itmoves information from file to file. BFD passes information toapplications though the `asymbol' structure. When the applicationrequests the symbol table, BFD reads the table in the native form andtranslates parts of it into the internal format. To maintain more thanthe information passed to applications, some targets keep someinformation "behind the scenes" in a structure only the particular backend knows about. For example, the coff back end keeps the originalsymbol table structure as well as the canonical structure when a BFD isread in. On output, the coff back end can reconstruct the output symboltable so that no information is lost, even information unique to coffwhich BFD doesn't know or understand. If a coff symbol table were read,but were written through an a.out back end, all the coff specificinformation would be lost. The symbol table of a BFD is not necessarilyread in until a canonicalize request is made. Then the BFD back endfills in a table provided by the application with pointers to thecanonical information. To output symbols, the application provides BFDwith a table of pointers to pointers to `asymbol's. This allowsapplications like the linker to output a symbol as it was read, sincethe "behind the scenes" information will be still available.* Menu:* Reading Symbols::* Writing Symbols::* Mini Symbols::* typedef asymbol::* symbol handling functions::File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols2.7.1 Reading symbols---------------------There are two stages to reading a symbol table from a BFD: allocatingstorage, and the actual reading process. This is an excerpt from anapplication which reads the symbol table:long storage_needed;asymbol **symbol_table;long number_of_symbols;long i;storage_needed = bfd_get_symtab_upper_bound (abfd);if (storage_needed < 0)FAILif (storage_needed == 0)return;symbol_table = xmalloc (storage_needed);...number_of_symbols =bfd_canonicalize_symtab (abfd, symbol_table);if (number_of_symbols < 0)FAILfor (i = 0; i < number_of_symbols; i++)process_symbol (symbol_table[i]);All storage for the symbols themselves is in an objalloc connectedto the BFD; it is freed when the BFD is closed.File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols2.7.2 Writing symbols---------------------Writing of a symbol table is automatic when a BFD open for writing isclosed. The application attaches a vector of pointers to pointers tosymbols to the BFD being written, and fills in the symbol count. Theclose and cleanup code reads through the table provided and performsall the necessary operations. The BFD output code must always beprovided with an "owned" symbol: one which has come from another BFD,or one which has been created using `bfd_make_empty_symbol'. Here is anexample showing the creation of a symbol table with only one element:#include "sysdep.h"#include "bfd.h"int main (void){bfd *abfd;asymbol *ptrs[2];asymbol *new;abfd = bfd_openw ("foo","a.out-sunos-big");bfd_set_format (abfd, bfd_object);new = bfd_make_empty_symbol (abfd);new->name = "dummy_symbol";new->section = bfd_make_section_old_way (abfd, ".text");new->flags = BSF_GLOBAL;new->value = 0x12345;ptrs[0] = new;ptrs[1] = 0;bfd_set_symtab (abfd, ptrs, 1);bfd_close (abfd);return 0;}./makesymnm foo00012345 A dummy_symbolMany formats cannot represent arbitrary symbol information; forinstance, the `a.out' object format does not allow an arbitrary numberof sections. A symbol pointing to a section which is not one of`.text', `.data' or `.bss' cannot be described.File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols2.7.3 Mini Symbols------------------Mini symbols provide read-only access to the symbol table. They useless memory space, but require more time to access. They can be usefulfor tools like nm or objdump, which may have to handle symbol tables ofextremely large executables.The `bfd_read_minisymbols' function will read the symbols intomemory in an internal form. It will return a `void *' pointer to ablock of memory, a symbol count, and the size of each symbol. Thepointer is allocated using `malloc', and should be freed by the callerwhen it is no longer needed.The function `bfd_minisymbol_to_symbol' will take a pointer to aminisymbol, and a pointer to a structure returned by`bfd_make_empty_symbol', and return a `asymbol' structure. The returnvalue may or may not be the same as the value from`bfd_make_empty_symbol' which was passed in.File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols2.7.4 typedef asymbol---------------------An `asymbol' has the form:typedef struct bfd_symbol{/* A pointer to the BFD which owns the symbol. This informationis necessary so that a back end can work out what additionalinformation (invisible to the application writer) is carriedwith the symbol.This field is *almost* redundant, since you can use section->ownerinstead, except that some symbols point to the global sectionsbfd_{abs,com,und}_section. This could be fixed by makingthese globals be per-bfd (or per-target-flavor). FIXME. */struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. *//* The text of the symbol. The name is left alone, and not copied; theapplication may not alter it. */const char *name;/* The value of the symbol. This really should be a union of anumeric value with a pointer, since some flags indicate thata pointer to another symbol is stored here. */symvalue value;/* Attributes of a symbol. */#define BSF_NO_FLAGS 0x00/* The symbol has local scope; `static' in `C'. The valueis the offset into the section of the data. */#define BSF_LOCAL (1 << 0)/* The symbol has global scope; initialized data in `C'. Thevalue is the offset into the section of the data. */#define BSF_GLOBAL (1 << 1)/* The symbol has global scope and is exported. The value isthe offset into the section of the data. */#define BSF_EXPORT BSF_GLOBAL /* No real difference. *//* A normal C symbol would be one of:`BSF_LOCAL', `BSF_COMMON', `BSF_UNDEFINED' or`BSF_GLOBAL'. *//* The symbol is a debugging record. The value has an arbitrarymeaning, unless BSF_DEBUGGING_RELOC is also set. */#define BSF_DEBUGGING (1 << 2)/* The symbol denotes a function entry point. Used in ELF,perhaps others someday. */#define BSF_FUNCTION (1 << 3)/* Used by the linker. */#define BSF_KEEP (1 << 5)#define BSF_KEEP_G (1 << 6)/* A weak global symbol, overridable without warnings bya regular global symbol of the same name. */#define BSF_WEAK (1 << 7)/* This symbol was created to point to a section, e.g. ELF'sSTT_SECTION symbols. */#define BSF_SECTION_SYM (1 << 8)/* The symbol used to be a common symbol, but now it isallocated. */#define BSF_OLD_COMMON (1 << 9)/* In some files the type of a symbol sometimes alters itslocation in an output file - ie in coff a `ISFCN' symbolwhich is also `C_EXT' symbol appears where it wasdeclared and not at the end of a section. This bit is setby the target BFD part to convey this information. */#define BSF_NOT_AT_END (1 << 10)/* Signal that the symbol is the label of constructor section. */#define BSF_CONSTRUCTOR (1 << 11)/* Signal that the symbol is a warning symbol. The name is awarning. The name of the next symbol is the one to warn about;if a reference is made to a symbol with the same name as the nextsymbol, a warning is issued by the linker. */#define BSF_WARNING (1 << 12)/* Signal that the symbol is indirect. This symbol is an indirectpointer to the symbol with the same name as the next symbol. */#define BSF_INDIRECT (1 << 13)/* BSF_FILE marks symbols that contain a file name. This is usedfor ELF STT_FILE symbols. */#define BSF_FILE (1 << 14)/* Symbol is from dynamic linking information. */#define BSF_DYNAMIC (1 << 15)/* The symbol denotes a data object. Used in ELF, and perhapsothers someday. */#define BSF_OBJECT (1 << 16)/* This symbol is a debugging symbol. The value is the offsetinto the section of the data. BSF_DEBUGGING should be setas well. */#define BSF_DEBUGGING_RELOC (1 << 17)/* This symbol is thread local. Used in ELF. */#define BSF_THREAD_LOCAL (1 << 18)/* This symbol represents a complex relocation expression,with the expression tree serialized in the symbol name. */#define BSF_RELC (1 << 19)/* This symbol represents a signed complex relocation expression,with the expression tree serialized in the symbol name. */#define BSF_SRELC (1 << 20)/* This symbol was created by bfd_get_synthetic_symtab. */#define BSF_SYNTHETIC (1 << 21)/* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.The dynamic linker will compute the value of this symbol bycalling the function that it points to. BSF_FUNCTION mustalso be also set. */#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)/* This symbol is a globally unique data object. The dynamic linkerwill make sure that in the entire process there is just one symbolwith this name and type in use. BSF_OBJECT must also be set. */#define BSF_GNU_UNIQUE (1 << 23)flagword flags;/* A pointer to the section to which this symbol isrelative. This will always be non NULL, there are specialsections for undefined and absolute symbols. */struct bfd_section *section;/* Back end special data. */union{void *p;bfd_vma i;}udata;}asymbol;File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols2.7.5 Symbol handling functions-------------------------------2.7.5.1 `bfd_get_symtab_upper_bound'....................................*Description*Return the number of bytes required to store a vector of pointers to`asymbols' for all the symbols in the BFD ABFD, including a terminalNULL pointer. If there are no symbols in the BFD, then return 0. If anerror occurs, return -1.#define bfd_get_symtab_upper_bound(abfd) \BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))2.7.5.2 `bfd_is_local_label'............................*Synopsis*bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);*Description*Return TRUE if the given symbol SYM in the BFD ABFD is a compilergenerated local label, else return FALSE.2.7.5.3 `bfd_is_local_label_name'.................................*Synopsis*bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);*Description*Return TRUE if a symbol with the name NAME in the BFD ABFD is acompiler generated local label, else return FALSE. This just checkswhether the name has the form of a local label.#define bfd_is_local_label_name(abfd, name) \BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))2.7.5.4 `bfd_is_target_special_symbol'......................................*Synopsis*bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);*Description*Return TRUE iff a symbol SYM in the BFD ABFD is something special tothe particular target represented by the BFD. Such symbols shouldnormally not be mentioned to the user.#define bfd_is_target_special_symbol(abfd, sym) \BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))2.7.5.5 `bfd_canonicalize_symtab'.................................*Description*Read the symbols from the BFD ABFD, and fills in the vector LOCATIONwith pointers to the symbols and a trailing NULL. Return the actualnumber of symbol pointers, not including the NULL.#define bfd_canonicalize_symtab(abfd, location) \BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))2.7.5.6 `bfd_set_symtab'........................*Synopsis*bfd_boolean bfd_set_symtab(bfd *abfd, asymbol **location, unsigned int count);*Description*Arrange that when the output BFD ABFD is closed, the table LOCATION ofCOUNT pointers to symbols will be written.2.7.5.7 `bfd_print_symbol_vandf'................................*Synopsis*void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);*Description*Print the value and flags of the SYMBOL supplied to the stream FILE.2.7.5.8 `bfd_make_empty_symbol'...............................*Description*Create a new `asymbol' structure for the BFD ABFD and return a pointerto it.This routine is necessary because each back end has privateinformation surrounding the `asymbol'. Building your own `asymbol' andpointing to it will not create the private information, and will causeproblems later on.#define bfd_make_empty_symbol(abfd) \BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))2.7.5.9 `_bfd_generic_make_empty_symbol'........................................*Synopsis*asymbol *_bfd_generic_make_empty_symbol (bfd *);*Description*Create a new `asymbol' structure for the BFD ABFD and return a pointerto it. Used by core file routines, binary back-end and anywhere elsewhere no private info is needed.2.7.5.10 `bfd_make_debug_symbol'................................*Description*Create a new `asymbol' structure for the BFD ABFD, to be used as adebugging symbol. Further details of its use have yet to be worked out.#define bfd_make_debug_symbol(abfd,ptr,size) \BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))2.7.5.11 `bfd_decode_symclass'..............................*Description*Return a character corresponding to the symbol class of SYMBOL, or '?'for an unknown class.*Synopsis*int bfd_decode_symclass (asymbol *symbol);2.7.5.12 `bfd_is_undefined_symclass'....................................*Description*Returns non-zero if the class symbol returned by bfd_decode_symclassrepresents an undefined symbol. Returns zero otherwise.*Synopsis*bfd_boolean bfd_is_undefined_symclass (int symclass);2.7.5.13 `bfd_symbol_info'..........................*Description*Fill in the basic info about symbol that nm needs. Additional info maybe added by the back-ends after calling this function.*Synopsis*void bfd_symbol_info (asymbol *symbol, symbol_info *ret);2.7.5.14 `bfd_copy_private_symbol_data'.......................................*Synopsis*bfd_boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);*Description*Copy private symbol information from ISYM in the BFD IBFD to the symbolOSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error.Possible error returns are:* `bfd_error_no_memory' - Not enough memory exists to create privatedata for OSEC.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \BFD_SEND (obfd, _bfd_copy_private_symbol_data, \(ibfd, isymbol, obfd, osymbol))File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end2.8 Archives============*Description*An archive (or library) is just another BFD. It has a symbol table,although there's not much a user program will do with it.The big difference between an archive BFD and an ordinary BFD isthat the archive doesn't have sections. Instead it has a chain of BFDsthat are considered its contents. These BFDs can be manipulated likeany other. The BFDs contained in an archive opened for reading willall be opened for reading. You may put either input or output BFDsinto an archive opened for output; they will be handled correctly whenthe archive is closed.Use `bfd_openr_next_archived_file' to step through the contents ofan archive opened for input. You don't have to read the entire archiveif you don't want to! Read it until you find what you want.A BFD returned by `bfd_openr_next_archived_file' can be closedmanually with `bfd_close'. If you do not close it, then a seconditeration through the members of an archive may return the same BFD.If you close the archive BFD, then all the member BFDs willautomatically be closed as well.Archive contents of output BFDs are chained through the`archive_next' pointer in a BFD. The first one is findable through the`archive_head' slot of the archive. Set it with `bfd_set_archive_head'(q.v.). A given BFD may be in only one open output archive at a time.As expected, the BFD archive code is more general than the archivecode of any given environment. BFD archives may contain files ofdifferent formats (e.g., a.out and coff) and even differentarchitectures. You may even place archives recursively into archives!This can cause unexpected confusion, since some archive formats aremore expressive than others. For instance, Intel COFF archives canpreserve long filenames; SunOS a.out archives cannot. If you move afile from the first to the second format and back again, the filenamemay be truncated. Likewise, different a.out environments have differentconventions as to how they truncate filenames, whether they preservedirectory names in filenames, etc. When interoperating with nativetools, be sure your files are homogeneous.Beware: most of these formats do not react well to the presence ofspaces in filenames. We do the best we can, but can't always handlethis case due to restrictions in the format of archives. Many Unixutilities are braindead in regards to spaces and such in filenamesanyway, so this shouldn't be much of a restriction.Archives are supported in BFD in `archive.c'.2.8.1 Archive functions-----------------------2.8.1.1 `bfd_get_next_mapent'.............................*Synopsis*symindex bfd_get_next_mapent(bfd *abfd, symindex previous, carsym **sym);*Description*Step through archive ABFD's symbol table (if it has one). Successivelyupdate SYM with the next symbol's information, returning that symbol's(internal) index into the symbol table.Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the firstone; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one.A `carsym' is a canonical archive symbol. The only user-visibleelement is its name, a null-terminated string.2.8.1.2 `bfd_set_archive_head'..............................*Synopsis*bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);*Description*Set the head of the chain of BFDs contained in the archive OUTPUT toNEW_HEAD.2.8.1.3 `bfd_openr_next_archived_file'......................................*Synopsis*bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);*Description*Provided a BFD, ARCHIVE, containing an archive and NULL, open an inputBFD on the first contained element and returns that. Subsequent callsshould pass the archive and the previous return value to return acreated BFD to the next contained element. NULL is returned when thereare no more.File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end2.9 File formats================A format is a BFD concept of high level file contents type. The formatssupported by BFD are:* `bfd_object'The BFD may contain data, symbols, relocations and debug info.* `bfd_archive'The BFD contains other BFDs and an optional index.* `bfd_core'The BFD contains the result of an executable core dump.2.9.1 File format functions---------------------------2.9.1.1 `bfd_check_format'..........................*Synopsis*bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);*Description*Verify if the file attached to the BFD ABFD is compatible with theformat FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core').If the BFD has been set to a specific target before the call, onlythe named target and format combination is checked. If the target hasnot been set, or has been set to `default', then all the known targetbackends is interrogated to determine a match. If the default targetmatches, it is used. If not, exactly one target must recognize thefile, or an error results.The function returns `TRUE' on success, otherwise `FALSE' with oneof the following error codes:* `bfd_error_invalid_operation' - if `format' is not one of`bfd_object', `bfd_archive' or `bfd_core'.* `bfd_error_system_call' - if an error occured during a read - evensome file mismatches can cause bfd_error_system_calls.* `file_not_recognised' - none of the backends recognised the fileformat.* `bfd_error_file_ambiguously_recognized' - more than one backendrecognised the file format.2.9.1.2 `bfd_check_format_matches'..................................*Synopsis*bfd_boolean bfd_check_format_matches(bfd *abfd, bfd_format format, char ***matching);*Description*Like `bfd_check_format', except when it returns FALSE with `bfd_errno'set to `bfd_error_file_ambiguously_recognized'. In that case, ifMATCHING is not NULL, it will be filled in with a NULL-terminated listof the names of the formats that matched, allocated with `malloc'.Then the user may choose a format and try again.When done with the list that MATCHING points to, the caller shouldfree it.2.9.1.3 `bfd_set_format'........................*Synopsis*bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);*Description*This function sets the file format of the BFD ABFD to the formatFORMAT. If the target set in the BFD does not support the formatrequested, the format is invalid, or the BFD is not open for writing,then an error occurs.2.9.1.4 `bfd_format_string'...........................*Synopsis*const char *bfd_format_string (bfd_format format);*Description*Return a pointer to a const string `invalid', `object', `archive',`core', or `unknown', depending upon the value of FORMAT.File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end2.10 Relocations================BFD maintains relocations in much the same way it maintains symbols:they are left alone until required, then read in en-masse andtranslated into an internal form. A common routine`bfd_perform_relocation' acts upon the canonical form to do the fixup.Relocations are maintained on a per section basis, while symbols aremaintained on a per BFD basis.All that a back end has to do to fit the BFD interface is to createa `struct reloc_cache_entry' for each relocation in a particularsection, and fill in the right bits of the structures.* Menu:* typedef arelent::* howto manager::File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations2.10.1 typedef arelent----------------------This is the structure of a relocation entry:typedef enum bfd_reloc_status{/* No errors detected. */bfd_reloc_ok,/* The relocation was performed, but there was an overflow. */bfd_reloc_overflow,/* The address to relocate was not within the section supplied. */bfd_reloc_outofrange,/* Used by special functions. */bfd_reloc_continue,/* Unsupported relocation size requested. */bfd_reloc_notsupported,/* Unused. */bfd_reloc_other,/* The symbol to relocate against was undefined. */bfd_reloc_undefined,/* The relocation was performed, but may not be ok - presentlygenerated only when linking i960 coff files with i960 b.outsymbols. If this type is returned, the error_message argumentto bfd_perform_relocation will be set. */bfd_reloc_dangerous}bfd_reloc_status_type;typedef struct reloc_cache_entry{/* A pointer into the canonical table of pointers. */struct bfd_symbol **sym_ptr_ptr;/* offset in section. */bfd_size_type address;/* addend for relocation value. */bfd_vma addend;/* Pointer to how to perform the required relocation. */reloc_howto_type *howto;}arelent;*Description*Here is a description of each of the fields within an `arelent':* `sym_ptr_ptr'The symbol table pointer points to a pointer to the symbolassociated with the relocation request. It is the pointer into thetable returned by the back end's `canonicalize_symtab' action. *NoteSymbols::. The symbol is referenced through a pointer to a pointer sothat tools like the linker can fix up all the symbols of the same nameby modifying only one pointer. The relocation routine looks in thesymbol and uses the base of the section the symbol is attached to andthe value of the symbol as the initial relocation offset. If the symbolpointer is zero, then the section provided is looked up.* `address'The `address' field gives the offset in bytes from the base of thesection data which owns the relocation record to the first byte ofrelocatable information. The actual data relocated will be relative tothis point; for example, a relocation type which modifies the bottomtwo bytes of a four byte word would not touch the first byte pointed toin a big endian world.* `addend'The `addend' is a value provided by the back end to be added (!) tothe relocation offset. Its interpretation is dependent upon the howto.For example, on the 68k the code:char foo[];main(){return foo[0x12345678];}Could be compiled into:linkw fp,#-4moveb @#12345678,d0extbl d0unlk fprtsThis could create a reloc pointing to `foo', but leave the offset inthe data, something like:RELOCATION RECORDS FOR [.text]:offset type value00000006 32 _foo00000000 4e56 fffc ; linkw fp,#-400000004 1039 1234 5678 ; moveb @#12345678,d00000000a 49c0 ; extbl d00000000c 4e5e ; unlk fp0000000e 4e75 ; rtsUsing coff and an 88k, some instructions don't have enough space inthem to represent the full address range, and pointers have to beloaded in two parts. So you'd get something like:or.u r13,r0,hi16(_foo+0x12345678)ld.b r2,r13,lo16(_foo+0x12345678)jmp r1This should create two relocs, both pointing to `_foo', and with0x12340000 in their addend field. The data would consist of:RELOCATION RECORDS FOR [.text]:offset type value00000002 HVRT16 _foo+0x1234000000000006 LVRT16 _foo+0x1234000000000000 5da05678 ; or.u r13,r0,0x567800000004 1c4d5678 ; ld.b r2,r13,0x567800000008 f400c001 ; jmp r1The relocation routine digs out the value from the data, adds it tothe addend to get the original offset, and then adds the value of`_foo'. Note that all 32 bits have to be kept around somewhere, to copewith carry from bit 15 to bit 16.One further example is the sparc and the a.out format. The sparc hasa similar problem to the 88k, in that some instructions don't have roomfor an entire offset, but on the sparc the parts are created in oddsized lumps. The designers of the a.out format chose to not use thedata within the section for storing part of the offset; all the offsetis kept within the reloc. Anything in the data should be ignored.save %sp,-112,%spsethi %hi(_foo+0x12345678),%g2ldsb [%g2+%lo(_foo+0x12345678)],%i0retrestoreBoth relocs contain a pointer to `foo', and the offsets contain junk.RELOCATION RECORDS FOR [.text]:offset type value00000004 HI22 _foo+0x1234567800000008 LO10 _foo+0x1234567800000000 9de3bf90 ; save %sp,-112,%sp00000004 05000000 ; sethi %hi(_foo+0),%g200000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i00000000c 81c7e008 ; ret00000010 81e80000 ; restore* `howto'The `howto' field can be imagined as a relocation instruction. It isa pointer to a structure which contains information on what to do withall of the other information in the reloc record and data section. Aback end would normally have a relocation instruction set and turnrelocations into pointers to the correct structure on input - but itwould be possible to create each howto field on demand.2.10.1.1 `enum complain_overflow'.................................Indicates what sort of overflow checking should be done when performinga relocation.enum complain_overflow{/* Do not complain on overflow. */complain_overflow_dont,/* Complain if the value overflows when considered as a signednumber one bit larger than the field. ie. A bitfield of N bitsis allowed to represent -2**n to 2**n-1. */complain_overflow_bitfield,/* Complain if the value overflows when considered as a signednumber. */complain_overflow_signed,/* Complain if the value overflows when considered as anunsigned number. */complain_overflow_unsigned};2.10.1.2 `reloc_howto_type'...........................The `reloc_howto_type' is a structure which contains all theinformation that libbfd needs to know to tie up a back end's data.struct bfd_symbol; /* Forward declaration. */struct reloc_howto_struct{/* The type field has mainly a documentary use - the back end cando what it wants with it, though normally the back end'sexternal idea of what a reloc number is storedin this field. For example, a PC relative word relocationin a coff environment has the type 023 - because that'swhat the outside world calls a R_PCRWORD reloc. */unsigned int type;/* The value the final relocation is shifted right by. This dropsunwanted data from the relocation. */unsigned int rightshift;/* The size of the item to be relocated. This is *not* apower-of-two measure. To get the number of bytes operatedon by a type of relocation, use bfd_get_reloc_size. */int size;/* The number of bits in the item to be relocated. This is usedwhen doing overflow checking. */unsigned int bitsize;/* The relocation is relative to the field being relocated. */bfd_boolean pc_relative;/* The bit position of the reloc value in the destination.The relocated value is left shifted by this amount. */unsigned int bitpos;/* What type of overflow error should be checked for whenrelocating. */enum complain_overflow complain_on_overflow;/* If this field is non null, then the supplied function iscalled rather than the normal function. This allows reallystrange relocation methods to be accommodated (e.g., i960 calljinstructions). */bfd_reloc_status_type (*special_function)(bfd *, arelent *, struct bfd_symbol *, void *, asection *,bfd *, char **);/* The textual name of the relocation type. */char *name;/* Some formats record a relocation addend in the section contentsrather than with the relocation. For ELF formats this is thedistinction between USE_REL and USE_RELA (though the code checksfor USE_REL == 1/0). The value of this field is TRUE if theaddend is recorded with the section contents; when performing apartial link (ld -r) the section contents (the data) will bemodified. The value of this field is FALSE if addends arerecorded with the relocation (in arelent.addend); when performinga partial link the relocation will be modified.All relocations for all ELF USE_RELA targets should set this fieldto FALSE (values of TRUE should be looked on with suspicion).However, the converse is not true: not all relocations of all ELFUSE_REL targets set this field to TRUE. Why this is so is peculiarto each particular target. For relocs that aren't used in partiallinks (e.g. GOT stuff) it doesn't matter what this is set to. */bfd_boolean partial_inplace;/* src_mask selects the part of the instruction (or data) to be usedin the relocation sum. If the target relocations don't have anaddend in the reloc, eg. ELF USE_REL, src_mask will normally equaldst_mask to extract the addend from the section contents. Ifrelocations do have an addend in the reloc, eg. ELF USE_RELA, thisfield should be zero. Non-zero values for ELF USE_RELA targets arebogus as in those cases the value in the dst_mask part of thesection contents should be treated as garbage. */bfd_vma src_mask;/* dst_mask selects which parts of the instruction (or data) arereplaced with a relocated value. */bfd_vma dst_mask;/* When some formats create PC relative instructions, they leavethe value of the pc of the place being relocated in the offsetslot of the instruction, so that a PC relative relocation canbe made just by adding in an ordinary offset (e.g., sun3 a.out).Some formats leave the displacement part of an instructionempty (e.g., m88k bcs); this flag signals the fact. */bfd_boolean pcrel_offset;};2.10.1.3 `The HOWTO Macro'..........................*Description*The HOWTO define is horrible and will go away.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \{ (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }*Description*And will be replaced with the totally magic way. But for the moment, weare compatible, so do it this way.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \NAME, FALSE, 0, 0, IN)*Description*This is used to fill in an empty howto entry in an array.#define EMPTY_HOWTO(C) \HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \NULL, FALSE, 0, 0, FALSE)*Description*Helper routine to turn a symbol into a relocation value.#define HOWTO_PREPARE(relocation, symbol) \{ \if (symbol != NULL) \{ \if (bfd_is_com_section (symbol->section)) \{ \relocation = 0; \} \else \{ \relocation = symbol->value; \} \} \}2.10.1.4 `bfd_get_reloc_size'.............................*Synopsis*unsigned int bfd_get_reloc_size (reloc_howto_type *);*Description*For a reloc_howto_type that operates on a fixed number of bytes, thisreturns the number of bytes operated on.2.10.1.5 `arelent_chain'........................*Description*How relocs are tied together in an `asection':typedef struct relent_chain{arelent relent;struct relent_chain *next;}arelent_chain;2.10.1.6 `bfd_check_overflow'.............................*Synopsis*bfd_reloc_status_type bfd_check_overflow(enum complain_overflow how,unsigned int bitsize,unsigned int rightshift,unsigned int addrsize,bfd_vma relocation);*Description*Perform overflow checking on RELOCATION which has BITSIZE significantbits and will be shifted right by RIGHTSHIFT bits, on a machine withaddresses containing ADDRSIZE significant bits. The result is either of`bfd_reloc_ok' or `bfd_reloc_overflow'.2.10.1.7 `bfd_perform_relocation'.................................*Synopsis*bfd_reloc_status_type bfd_perform_relocation(bfd *abfd,arelent *reloc_entry,void *data,asection *input_section,bfd *output_bfd,char **error_message);*Description*If OUTPUT_BFD is supplied to this function, the generated image will berelocatable; the relocations are copied to the output file after theyhave been changed to reflect the new state of the world. There are twoways of reflecting the results of partial linkage in an output file: bymodifying the output data in place, and by modifying the relocationrecord. Some native formats (e.g., basic a.out and basic coff) have noway of specifying an addend in the relocation type, so the addend hasto go in the output data. This is no big deal since in these formatsthe output data slot will always be big enough for the addend. Complexreloc types with addends were invented to solve just this problem. TheERROR_MESSAGE argument is set to an error message if this return`bfd_reloc_dangerous'.2.10.1.8 `bfd_install_relocation'.................................*Synopsis*bfd_reloc_status_type bfd_install_relocation(bfd *abfd,arelent *reloc_entry,void *data, bfd_vma data_start,asection *input_section,char **error_message);*Description*This looks remarkably like `bfd_perform_relocation', except it does notexpect that the section contents have been filled in. I.e., it'ssuitable for use when creating, rather than applying a relocation.For now, this function should be considered reserved for theassembler.File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations2.10.2 The howto manager------------------------When an application wants to create a relocation, but doesn't know whatthe target machine might call it, it can find out by using this bit ofcode.2.10.2.1 `bfd_reloc_code_type'..............................*Description*The insides of a reloc code. The idea is that, eventually, there willbe one enumerator for every type of relocation we ever do. Pass one ofthese values to `bfd_reloc_type_lookup', and it'll return a howtopointer.This does mean that the application must determine the correctenumerator value; you can't get a howto pointer from a random set ofattributes.Here are the possible values for `enum bfd_reloc_code_real':-- : BFD_RELOC_64-- : BFD_RELOC_32-- : BFD_RELOC_26-- : BFD_RELOC_24-- : BFD_RELOC_16-- : BFD_RELOC_14-- : BFD_RELOC_8Basic absolute relocations of N bits.-- : BFD_RELOC_64_PCREL-- : BFD_RELOC_32_PCREL-- : BFD_RELOC_24_PCREL-- : BFD_RELOC_16_PCREL-- : BFD_RELOC_12_PCREL-- : BFD_RELOC_8_PCRELPC-relative relocations. Sometimes these are relative to theaddress of the relocation itself; sometimes they are relative tothe start of the section containing the relocation. It depends onthe specific target.The 24-bit relocation is used in some Intel 960 configurations.-- : BFD_RELOC_32_SECRELSection relative relocations. Some targets need this for DWARF2.-- : BFD_RELOC_32_GOT_PCREL-- : BFD_RELOC_16_GOT_PCREL-- : BFD_RELOC_8_GOT_PCREL-- : BFD_RELOC_32_GOTOFF-- : BFD_RELOC_16_GOTOFF-- : BFD_RELOC_LO16_GOTOFF-- : BFD_RELOC_HI16_GOTOFF-- : BFD_RELOC_HI16_S_GOTOFF-- : BFD_RELOC_8_GOTOFF-- : BFD_RELOC_64_PLT_PCREL-- : BFD_RELOC_32_PLT_PCREL-- : BFD_RELOC_24_PLT_PCREL-- : BFD_RELOC_16_PLT_PCREL-- : BFD_RELOC_8_PLT_PCREL-- : BFD_RELOC_64_PLTOFF-- : BFD_RELOC_32_PLTOFF-- : BFD_RELOC_16_PLTOFF-- : BFD_RELOC_LO16_PLTOFF-- : BFD_RELOC_HI16_PLTOFF-- : BFD_RELOC_HI16_S_PLTOFF-- : BFD_RELOC_8_PLTOFFFor ELF.-- : BFD_RELOC_SIZE32-- : BFD_RELOC_SIZE64Size relocations.-- : BFD_RELOC_68K_GLOB_DAT-- : BFD_RELOC_68K_JMP_SLOT-- : BFD_RELOC_68K_RELATIVE-- : BFD_RELOC_68K_TLS_GD32-- : BFD_RELOC_68K_TLS_GD16-- : BFD_RELOC_68K_TLS_GD8-- : BFD_RELOC_68K_TLS_LDM32-- : BFD_RELOC_68K_TLS_LDM16-- : BFD_RELOC_68K_TLS_LDM8-- : BFD_RELOC_68K_TLS_LDO32-- : BFD_RELOC_68K_TLS_LDO16-- : BFD_RELOC_68K_TLS_LDO8-- : BFD_RELOC_68K_TLS_IE32-- : BFD_RELOC_68K_TLS_IE16-- : BFD_RELOC_68K_TLS_IE8-- : BFD_RELOC_68K_TLS_LE32-- : BFD_RELOC_68K_TLS_LE16-- : BFD_RELOC_68K_TLS_LE8Relocations used by 68K ELF.-- : BFD_RELOC_32_BASEREL-- : BFD_RELOC_16_BASEREL-- : BFD_RELOC_LO16_BASEREL-- : BFD_RELOC_HI16_BASEREL-- : BFD_RELOC_HI16_S_BASEREL-- : BFD_RELOC_8_BASEREL-- : BFD_RELOC_RVALinkage-table relative.-- : BFD_RELOC_8_FFnnAbsolute 8-bit relocation, but used to form an address like 0xFFnn.-- : BFD_RELOC_32_PCREL_S2-- : BFD_RELOC_16_PCREL_S2-- : BFD_RELOC_23_PCREL_S2These PC-relative relocations are stored as word displacements -i.e., byte displacements shifted right two bits. The 30-bit worddisplacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on theSPARC. (SPARC tools generally refer to this as <<WDISP30>>.) Thesigned 16-bit displacement is used on the MIPS, and the 23-bitdisplacement is used on the Alpha.-- : BFD_RELOC_HI22-- : BFD_RELOC_LO10High 22 bits and low 10 bits of 32-bit value, placed into lowerbits of the target word. These are used on the SPARC.-- : BFD_RELOC_GPREL16-- : BFD_RELOC_GPREL32For systems that allocate a Global Pointer register, these aredisplacements off that register. These relocation types arehandled specially, because the value the register will have isdecided relatively late.-- : BFD_RELOC_I960_CALLJReloc types used for i960/b.out.-- : BFD_RELOC_NONE-- : BFD_RELOC_SPARC_WDISP22-- : BFD_RELOC_SPARC22-- : BFD_RELOC_SPARC13-- : BFD_RELOC_SPARC_GOT10-- : BFD_RELOC_SPARC_GOT13-- : BFD_RELOC_SPARC_GOT22-- : BFD_RELOC_SPARC_PC10-- : BFD_RELOC_SPARC_PC22-- : BFD_RELOC_SPARC_WPLT30-- : BFD_RELOC_SPARC_COPY-- : BFD_RELOC_SPARC_GLOB_DAT-- : BFD_RELOC_SPARC_JMP_SLOT-- : BFD_RELOC_SPARC_RELATIVE-- : BFD_RELOC_SPARC_UA16-- : BFD_RELOC_SPARC_UA32-- : BFD_RELOC_SPARC_UA64-- : BFD_RELOC_SPARC_GOTDATA_HIX22-- : BFD_RELOC_SPARC_GOTDATA_LOX10-- : BFD_RELOC_SPARC_GOTDATA_OP_HIX22-- : BFD_RELOC_SPARC_GOTDATA_OP_LOX10-- : BFD_RELOC_SPARC_GOTDATA_OP-- : BFD_RELOC_SPARC_JMP_IREL-- : BFD_RELOC_SPARC_IRELATIVESPARC ELF relocations. There is probably some overlap with otherrelocation types already defined.-- : BFD_RELOC_SPARC_BASE13-- : BFD_RELOC_SPARC_BASE22I think these are specific to SPARC a.out (e.g., Sun 4).-- : BFD_RELOC_SPARC_64-- : BFD_RELOC_SPARC_10-- : BFD_RELOC_SPARC_11-- : BFD_RELOC_SPARC_OLO10-- : BFD_RELOC_SPARC_HH22-- : BFD_RELOC_SPARC_HM10-- : BFD_RELOC_SPARC_LM22-- : BFD_RELOC_SPARC_PC_HH22-- : BFD_RELOC_SPARC_PC_HM10-- : BFD_RELOC_SPARC_PC_LM22-- : BFD_RELOC_SPARC_WDISP16-- : BFD_RELOC_SPARC_WDISP19-- : BFD_RELOC_SPARC_7-- : BFD_RELOC_SPARC_6-- : BFD_RELOC_SPARC_5-- : BFD_RELOC_SPARC_DISP64-- : BFD_RELOC_SPARC_PLT32-- : BFD_RELOC_SPARC_PLT64-- : BFD_RELOC_SPARC_HIX22-- : BFD_RELOC_SPARC_LOX10-- : BFD_RELOC_SPARC_H44-- : BFD_RELOC_SPARC_M44-- : BFD_RELOC_SPARC_L44-- : BFD_RELOC_SPARC_REGISTER-- : BFD_RELOC_SPARC_H34-- : BFD_RELOC_SPARC_SIZE32-- : BFD_RELOC_SPARC_SIZE64-- : BFD_RELOC_SPARC_WDISP10SPARC64 relocations-- : BFD_RELOC_SPARC_REV32SPARC little endian relocation-- : BFD_RELOC_SPARC_TLS_GD_HI22-- : BFD_RELOC_SPARC_TLS_GD_LO10-- : BFD_RELOC_SPARC_TLS_GD_ADD-- : BFD_RELOC_SPARC_TLS_GD_CALL-- : BFD_RELOC_SPARC_TLS_LDM_HI22-- : BFD_RELOC_SPARC_TLS_LDM_LO10-- : BFD_RELOC_SPARC_TLS_LDM_ADD-- : BFD_RELOC_SPARC_TLS_LDM_CALL-- : BFD_RELOC_SPARC_TLS_LDO_HIX22-- : BFD_RELOC_SPARC_TLS_LDO_LOX10-- : BFD_RELOC_SPARC_TLS_LDO_ADD-- : BFD_RELOC_SPARC_TLS_IE_HI22-- : BFD_RELOC_SPARC_TLS_IE_LO10-- : BFD_RELOC_SPARC_TLS_IE_LD-- : BFD_RELOC_SPARC_TLS_IE_LDX-- : BFD_RELOC_SPARC_TLS_IE_ADD-- : BFD_RELOC_SPARC_TLS_LE_HIX22-- : BFD_RELOC_SPARC_TLS_LE_LOX10-- : BFD_RELOC_SPARC_TLS_DTPMOD32-- : BFD_RELOC_SPARC_TLS_DTPMOD64-- : BFD_RELOC_SPARC_TLS_DTPOFF32-- : BFD_RELOC_SPARC_TLS_DTPOFF64-- : BFD_RELOC_SPARC_TLS_TPOFF32-- : BFD_RELOC_SPARC_TLS_TPOFF64SPARC TLS relocations-- : BFD_RELOC_SPU_IMM7-- : BFD_RELOC_SPU_IMM8-- : BFD_RELOC_SPU_IMM10-- : BFD_RELOC_SPU_IMM10W-- : BFD_RELOC_SPU_IMM16-- : BFD_RELOC_SPU_IMM16W-- : BFD_RELOC_SPU_IMM18-- : BFD_RELOC_SPU_PCREL9a-- : BFD_RELOC_SPU_PCREL9b-- : BFD_RELOC_SPU_PCREL16-- : BFD_RELOC_SPU_LO16-- : BFD_RELOC_SPU_HI16-- : BFD_RELOC_SPU_PPU32-- : BFD_RELOC_SPU_PPU64-- : BFD_RELOC_SPU_ADD_PICSPU Relocations.-- : BFD_RELOC_ALPHA_GPDISP_HI16Alpha ECOFF and ELF relocations. Some of these treat the symbol or"addend" in some special way. For GPDISP_HI16 ("gpdisp")relocations, the symbol is ignored when writing; when reading, itwill be the absolute section symbol. The addend is thedisplacement in bytes of the "lda" instruction from the "ldah"instruction (which is at the address of this reloc).-- : BFD_RELOC_ALPHA_GPDISP_LO16For GPDISP_LO16 ("ignore") relocations, the symbol is handled aswith GPDISP_HI16 relocs. The addend is ignored when writing therelocations out, and is filled in with the file's GP value onreading, for convenience.-- : BFD_RELOC_ALPHA_GPDISPThe ELF GPDISP relocation is exactly the same as the GPDISP_HI16relocation except that there is no accompanying GPDISP_LO16relocation.-- : BFD_RELOC_ALPHA_LITERAL-- : BFD_RELOC_ALPHA_ELF_LITERAL-- : BFD_RELOC_ALPHA_LITUSEThe Alpha LITERAL/LITUSE relocs are produced by a symbol reference;the assembler turns it into a LDQ instruction to load the addressof the symbol, and then fills in a register in the realinstruction.The LITERAL reloc, at the LDQ instruction, refers to the .litasection symbol. The addend is ignored when writing, but is filledin with the file's GP value on reading, for convenience, as withthe GPDISP_LO16 reloc.The ELF_LITERAL reloc is somewhere between 16_GOTOFF andGPDISP_LO16. It should refer to the symbol to be referenced, aswith 16_GOTOFF, but it generates output not based on the positionwithin the .got section, but relative to the GP value chosen forthe file during the final link stage.The LITUSE reloc, on the instruction using the loaded address,gives information to the linker that it might be able to use tooptimize away some literal section references. The symbol isignored (read as the absolute section symbol), and the "addend"indicates the type of instruction using the register: 1 - "memory"fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (targetof branch)-- : BFD_RELOC_ALPHA_HINTThe HINT relocation indicates a value that should be filled intothe "hint" field of a jmp/jsr/ret instruction, for possible branch-prediction logic which may be provided on some processors.-- : BFD_RELOC_ALPHA_LINKAGEThe LINKAGE relocation outputs a linkage pair in the object file,which is filled by the linker.-- : BFD_RELOC_ALPHA_CODEADDRThe CODEADDR relocation outputs a STO_CA in the object file, whichis filled by the linker.-- : BFD_RELOC_ALPHA_GPREL_HI16-- : BFD_RELOC_ALPHA_GPREL_LO16The GPREL_HI/LO relocations together form a 32-bit offset from theGP register.-- : BFD_RELOC_ALPHA_BRSGPLike BFD_RELOC_23_PCREL_S2, except that the source and target mustshare a common GP, and the target address is adjusted forSTO_ALPHA_STD_GPLOAD.-- : BFD_RELOC_ALPHA_NOPThe NOP relocation outputs a NOP if the longword displacementbetween two procedure entry points is < 2^21.-- : BFD_RELOC_ALPHA_BSRThe BSR relocation outputs a BSR if the longword displacementbetween two procedure entry points is < 2^21.-- : BFD_RELOC_ALPHA_LDAThe LDA relocation outputs a LDA if the longword displacementbetween two procedure entry points is < 2^16.-- : BFD_RELOC_ALPHA_BOHThe BOH relocation outputs a BSR if the longword displacementbetween two procedure entry points is < 2^21, or else a hint.-- : BFD_RELOC_ALPHA_TLSGD-- : BFD_RELOC_ALPHA_TLSLDM-- : BFD_RELOC_ALPHA_DTPMOD64-- : BFD_RELOC_ALPHA_GOTDTPREL16-- : BFD_RELOC_ALPHA_DTPREL64-- : BFD_RELOC_ALPHA_DTPREL_HI16-- : BFD_RELOC_ALPHA_DTPREL_LO16-- : BFD_RELOC_ALPHA_DTPREL16-- : BFD_RELOC_ALPHA_GOTTPREL16-- : BFD_RELOC_ALPHA_TPREL64-- : BFD_RELOC_ALPHA_TPREL_HI16-- : BFD_RELOC_ALPHA_TPREL_LO16-- : BFD_RELOC_ALPHA_TPREL16Alpha thread-local storage relocations.-- : BFD_RELOC_MIPS_JMP-- : BFD_RELOC_MICROMIPS_JMPThe MIPS jump instruction.-- : BFD_RELOC_MIPS16_JMPThe MIPS16 jump instruction.-- : BFD_RELOC_MIPS16_GPRELMIPS16 GP relative reloc.-- : BFD_RELOC_HI16High 16 bits of 32-bit value; simple reloc.-- : BFD_RELOC_HI16_SHigh 16 bits of 32-bit value but the low 16 bits will be signextended and added to form the final result. If the low 16 bitsform a negative number, we need to add one to the high value tocompensate for the borrow when the low bits are added.-- : BFD_RELOC_LO16Low 16 bits.-- : BFD_RELOC_HI16_PCRELHigh 16 bits of 32-bit pc-relative value-- : BFD_RELOC_HI16_S_PCRELHigh 16 bits of 32-bit pc-relative value, adjusted-- : BFD_RELOC_LO16_PCRELLow 16 bits of pc-relative value-- : BFD_RELOC_MIPS16_GOT16-- : BFD_RELOC_MIPS16_CALL16Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of16-bit immediate fields-- : BFD_RELOC_MIPS16_HI16MIPS16 high 16 bits of 32-bit value.-- : BFD_RELOC_MIPS16_HI16_SMIPS16 high 16 bits of 32-bit value but the low 16 bits will besign extended and added to form the final result. If the low 16bits form a negative number, we need to add one to the high valueto compensate for the borrow when the low bits are added.-- : BFD_RELOC_MIPS16_LO16MIPS16 low 16 bits.-- : BFD_RELOC_MIPS16_TLS_GD-- : BFD_RELOC_MIPS16_TLS_LDM-- : BFD_RELOC_MIPS16_TLS_DTPREL_HI16-- : BFD_RELOC_MIPS16_TLS_DTPREL_LO16-- : BFD_RELOC_MIPS16_TLS_GOTTPREL-- : BFD_RELOC_MIPS16_TLS_TPREL_HI16-- : BFD_RELOC_MIPS16_TLS_TPREL_LO16MIPS16 TLS relocations-- : BFD_RELOC_MIPS_LITERAL-- : BFD_RELOC_MICROMIPS_LITERALRelocation against a MIPS literal section.-- : BFD_RELOC_MICROMIPS_7_PCREL_S1-- : BFD_RELOC_MICROMIPS_10_PCREL_S1-- : BFD_RELOC_MICROMIPS_16_PCREL_S1microMIPS PC-relative relocations.-- : BFD_RELOC_MIPS_21_PCREL_S2-- : BFD_RELOC_MIPS_26_PCREL_S2-- : BFD_RELOC_MIPS_18_PCREL_S3-- : BFD_RELOC_MIPS_19_PCREL_S2MIPS PC-relative relocations.-- : BFD_RELOC_MICROMIPS_GPREL16-- : BFD_RELOC_MICROMIPS_HI16-- : BFD_RELOC_MICROMIPS_HI16_S-- : BFD_RELOC_MICROMIPS_LO16microMIPS versions of generic BFD relocs.-- : BFD_RELOC_MIPS_GOT16-- : BFD_RELOC_MICROMIPS_GOT16-- : BFD_RELOC_MIPS_CALL16-- : BFD_RELOC_MICROMIPS_CALL16-- : BFD_RELOC_MIPS_GOT_HI16-- : BFD_RELOC_MICROMIPS_GOT_HI16-- : BFD_RELOC_MIPS_GOT_LO16-- : BFD_RELOC_MICROMIPS_GOT_LO16-- : BFD_RELOC_MIPS_CALL_HI16-- : BFD_RELOC_MICROMIPS_CALL_HI16-- : BFD_RELOC_MIPS_CALL_LO16-- : BFD_RELOC_MICROMIPS_CALL_LO16-- : BFD_RELOC_MIPS_SUB-- : BFD_RELOC_MICROMIPS_SUB-- : BFD_RELOC_MIPS_GOT_PAGE-- : BFD_RELOC_MICROMIPS_GOT_PAGE-- : BFD_RELOC_MIPS_GOT_OFST-- : BFD_RELOC_MICROMIPS_GOT_OFST-- : BFD_RELOC_MIPS_GOT_DISP-- : BFD_RELOC_MICROMIPS_GOT_DISP-- : BFD_RELOC_MIPS_SHIFT5-- : BFD_RELOC_MIPS_SHIFT6-- : BFD_RELOC_MIPS_INSERT_A-- : BFD_RELOC_MIPS_INSERT_B-- : BFD_RELOC_MIPS_DELETE-- : BFD_RELOC_MIPS_HIGHEST-- : BFD_RELOC_MICROMIPS_HIGHEST-- : BFD_RELOC_MIPS_HIGHER-- : BFD_RELOC_MICROMIPS_HIGHER-- : BFD_RELOC_MIPS_SCN_DISP-- : BFD_RELOC_MICROMIPS_SCN_DISP-- : BFD_RELOC_MIPS_REL16-- : BFD_RELOC_MIPS_RELGOT-- : BFD_RELOC_MIPS_JALR-- : BFD_RELOC_MICROMIPS_JALR-- : BFD_RELOC_MIPS_TLS_DTPMOD32-- : BFD_RELOC_MIPS_TLS_DTPREL32-- : BFD_RELOC_MIPS_TLS_DTPMOD64-- : BFD_RELOC_MIPS_TLS_DTPREL64-- : BFD_RELOC_MIPS_TLS_GD-- : BFD_RELOC_MICROMIPS_TLS_GD-- : BFD_RELOC_MIPS_TLS_LDM-- : BFD_RELOC_MICROMIPS_TLS_LDM-- : BFD_RELOC_MIPS_TLS_DTPREL_HI16-- : BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16-- : BFD_RELOC_MIPS_TLS_DTPREL_LO16-- : BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16-- : BFD_RELOC_MIPS_TLS_GOTTPREL-- : BFD_RELOC_MICROMIPS_TLS_GOTTPREL-- : BFD_RELOC_MIPS_TLS_TPREL32-- : BFD_RELOC_MIPS_TLS_TPREL64-- : BFD_RELOC_MIPS_TLS_TPREL_HI16-- : BFD_RELOC_MICROMIPS_TLS_TPREL_HI16-- : BFD_RELOC_MIPS_TLS_TPREL_LO16-- : BFD_RELOC_MICROMIPS_TLS_TPREL_LO16-- : BFD_RELOC_MIPS_EHMIPS ELF relocations.-- : BFD_RELOC_MIPS_COPY-- : BFD_RELOC_MIPS_JUMP_SLOTMIPS ELF relocations (VxWorks and PLT extensions).-- : BFD_RELOC_MOXIE_10_PCRELMoxie ELF relocations.-- : BFD_RELOC_FRV_LABEL16-- : BFD_RELOC_FRV_LABEL24-- : BFD_RELOC_FRV_LO16-- : BFD_RELOC_FRV_HI16-- : BFD_RELOC_FRV_GPREL12-- : BFD_RELOC_FRV_GPRELU12-- : BFD_RELOC_FRV_GPREL32-- : BFD_RELOC_FRV_GPRELHI-- : BFD_RELOC_FRV_GPRELLO-- : BFD_RELOC_FRV_GOT12-- : BFD_RELOC_FRV_GOTHI-- : BFD_RELOC_FRV_GOTLO-- : BFD_RELOC_FRV_FUNCDESC-- : BFD_RELOC_FRV_FUNCDESC_GOT12-- : BFD_RELOC_FRV_FUNCDESC_GOTHI-- : BFD_RELOC_FRV_FUNCDESC_GOTLO-- : BFD_RELOC_FRV_FUNCDESC_VALUE-- : BFD_RELOC_FRV_FUNCDESC_GOTOFF12-- : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI-- : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO-- : BFD_RELOC_FRV_GOTOFF12-- : BFD_RELOC_FRV_GOTOFFHI-- : BFD_RELOC_FRV_GOTOFFLO-- : BFD_RELOC_FRV_GETTLSOFF-- : BFD_RELOC_FRV_TLSDESC_VALUE-- : BFD_RELOC_FRV_GOTTLSDESC12-- : BFD_RELOC_FRV_GOTTLSDESCHI-- : BFD_RELOC_FRV_GOTTLSDESCLO-- : BFD_RELOC_FRV_TLSMOFF12-- : BFD_RELOC_FRV_TLSMOFFHI-- : BFD_RELOC_FRV_TLSMOFFLO-- : BFD_RELOC_FRV_GOTTLSOFF12-- : BFD_RELOC_FRV_GOTTLSOFFHI-- : BFD_RELOC_FRV_GOTTLSOFFLO-- : BFD_RELOC_FRV_TLSOFF-- : BFD_RELOC_FRV_TLSDESC_RELAX-- : BFD_RELOC_FRV_GETTLSOFF_RELAX-- : BFD_RELOC_FRV_TLSOFF_RELAX-- : BFD_RELOC_FRV_TLSMOFFFujitsu Frv Relocations.-- : BFD_RELOC_MN10300_GOTOFF24This is a 24bit GOT-relative reloc for the mn10300.-- : BFD_RELOC_MN10300_GOT32This is a 32bit GOT-relative reloc for the mn10300, offset by twobytes in the instruction.-- : BFD_RELOC_MN10300_GOT24This is a 24bit GOT-relative reloc for the mn10300, offset by twobytes in the instruction.-- : BFD_RELOC_MN10300_GOT16This is a 16bit GOT-relative reloc for the mn10300, offset by twobytes in the instruction.-- : BFD_RELOC_MN10300_COPYCopy symbol at runtime.-- : BFD_RELOC_MN10300_GLOB_DATCreate GOT entry.-- : BFD_RELOC_MN10300_JMP_SLOTCreate PLT entry.-- : BFD_RELOC_MN10300_RELATIVEAdjust by program base.-- : BFD_RELOC_MN10300_SYM_DIFFTogether with another reloc targeted at the same location, allowsfor a value that is the difference of two symbols in the samesection.-- : BFD_RELOC_MN10300_ALIGNThe addend of this reloc is an alignment power that must behonoured at the offset's location, regardless of linker relaxation.-- : BFD_RELOC_MN10300_TLS_GD-- : BFD_RELOC_MN10300_TLS_LD-- : BFD_RELOC_MN10300_TLS_LDO-- : BFD_RELOC_MN10300_TLS_GOTIE-- : BFD_RELOC_MN10300_TLS_IE-- : BFD_RELOC_MN10300_TLS_LE-- : BFD_RELOC_MN10300_TLS_DTPMOD-- : BFD_RELOC_MN10300_TLS_DTPOFF-- : BFD_RELOC_MN10300_TLS_TPOFFVarious TLS-related relocations.-- : BFD_RELOC_MN10300_32_PCRELThis is a 32bit pcrel reloc for the mn10300, offset by two bytesin the instruction.-- : BFD_RELOC_MN10300_16_PCRELThis is a 16bit pcrel reloc for the mn10300, offset by two bytesin the instruction.-- : BFD_RELOC_386_GOT32-- : BFD_RELOC_386_PLT32-- : BFD_RELOC_386_COPY-- : BFD_RELOC_386_GLOB_DAT-- : BFD_RELOC_386_JUMP_SLOT-- : BFD_RELOC_386_RELATIVE-- : BFD_RELOC_386_GOTOFF-- : BFD_RELOC_386_GOTPC-- : BFD_RELOC_386_TLS_TPOFF-- : BFD_RELOC_386_TLS_IE-- : BFD_RELOC_386_TLS_GOTIE-- : BFD_RELOC_386_TLS_LE-- : BFD_RELOC_386_TLS_GD-- : BFD_RELOC_386_TLS_LDM-- : BFD_RELOC_386_TLS_LDO_32-- : BFD_RELOC_386_TLS_IE_32-- : BFD_RELOC_386_TLS_LE_32-- : BFD_RELOC_386_TLS_DTPMOD32-- : BFD_RELOC_386_TLS_DTPOFF32-- : BFD_RELOC_386_TLS_TPOFF32-- : BFD_RELOC_386_TLS_GOTDESC-- : BFD_RELOC_386_TLS_DESC_CALL-- : BFD_RELOC_386_TLS_DESC-- : BFD_RELOC_386_IRELATIVEi386/elf relocations-- : BFD_RELOC_X86_64_GOT32-- : BFD_RELOC_X86_64_PLT32-- : BFD_RELOC_X86_64_COPY-- : BFD_RELOC_X86_64_GLOB_DAT-- : BFD_RELOC_X86_64_JUMP_SLOT-- : BFD_RELOC_X86_64_RELATIVE-- : BFD_RELOC_X86_64_GOTPCREL-- : BFD_RELOC_X86_64_32S-- : BFD_RELOC_X86_64_DTPMOD64-- : BFD_RELOC_X86_64_DTPOFF64-- : BFD_RELOC_X86_64_TPOFF64-- : BFD_RELOC_X86_64_TLSGD-- : BFD_RELOC_X86_64_TLSLD-- : BFD_RELOC_X86_64_DTPOFF32-- : BFD_RELOC_X86_64_GOTTPOFF-- : BFD_RELOC_X86_64_TPOFF32-- : BFD_RELOC_X86_64_GOTOFF64-- : BFD_RELOC_X86_64_GOTPC32-- : BFD_RELOC_X86_64_GOT64-- : BFD_RELOC_X86_64_GOTPCREL64-- : BFD_RELOC_X86_64_GOTPC64-- : BFD_RELOC_X86_64_GOTPLT64-- : BFD_RELOC_X86_64_PLTOFF64-- : BFD_RELOC_X86_64_GOTPC32_TLSDESC-- : BFD_RELOC_X86_64_TLSDESC_CALL-- : BFD_RELOC_X86_64_TLSDESC-- : BFD_RELOC_X86_64_IRELATIVE-- : BFD_RELOC_X86_64_PC32_BND-- : BFD_RELOC_X86_64_PLT32_BNDx86-64/elf relocations-- : BFD_RELOC_NS32K_IMM_8-- : BFD_RELOC_NS32K_IMM_16-- : BFD_RELOC_NS32K_IMM_32-- : BFD_RELOC_NS32K_IMM_8_PCREL-- : BFD_RELOC_NS32K_IMM_16_PCREL-- : BFD_RELOC_NS32K_IMM_32_PCREL-- : BFD_RELOC_NS32K_DISP_8-- : BFD_RELOC_NS32K_DISP_16-- : BFD_RELOC_NS32K_DISP_32-- : BFD_RELOC_NS32K_DISP_8_PCREL-- : BFD_RELOC_NS32K_DISP_16_PCREL-- : BFD_RELOC_NS32K_DISP_32_PCRELns32k relocations-- : BFD_RELOC_PDP11_DISP_8_PCREL-- : BFD_RELOC_PDP11_DISP_6_PCRELPDP11 relocations-- : BFD_RELOC_PJ_CODE_HI16-- : BFD_RELOC_PJ_CODE_LO16-- : BFD_RELOC_PJ_CODE_DIR16-- : BFD_RELOC_PJ_CODE_DIR32-- : BFD_RELOC_PJ_CODE_REL16-- : BFD_RELOC_PJ_CODE_REL32Picojava relocs. Not all of these appear in object files.-- : BFD_RELOC_PPC_B26-- : BFD_RELOC_PPC_BA26-- : BFD_RELOC_PPC_TOC16-- : BFD_RELOC_PPC_B16-- : BFD_RELOC_PPC_B16_BRTAKEN-- : BFD_RELOC_PPC_B16_BRNTAKEN-- : BFD_RELOC_PPC_BA16-- : BFD_RELOC_PPC_BA16_BRTAKEN-- : BFD_RELOC_PPC_BA16_BRNTAKEN-- : BFD_RELOC_PPC_COPY-- : BFD_RELOC_PPC_GLOB_DAT-- : BFD_RELOC_PPC_JMP_SLOT-- : BFD_RELOC_PPC_RELATIVE-- : BFD_RELOC_PPC_LOCAL24PC-- : BFD_RELOC_PPC_EMB_NADDR32-- : BFD_RELOC_PPC_EMB_NADDR16-- : BFD_RELOC_PPC_EMB_NADDR16_LO-- : BFD_RELOC_PPC_EMB_NADDR16_HI-- : BFD_RELOC_PPC_EMB_NADDR16_HA-- : BFD_RELOC_PPC_EMB_SDAI16-- : BFD_RELOC_PPC_EMB_SDA2I16-- : BFD_RELOC_PPC_EMB_SDA2REL-- : BFD_RELOC_PPC_EMB_SDA21-- : BFD_RELOC_PPC_EMB_MRKREF-- : BFD_RELOC_PPC_EMB_RELSEC16-- : BFD_RELOC_PPC_EMB_RELST_LO-- : BFD_RELOC_PPC_EMB_RELST_HI-- : BFD_RELOC_PPC_EMB_RELST_HA-- : BFD_RELOC_PPC_EMB_BIT_FLD-- : BFD_RELOC_PPC_EMB_RELSDA-- : BFD_RELOC_PPC_VLE_REL8-- : BFD_RELOC_PPC_VLE_REL15-- : BFD_RELOC_PPC_VLE_REL24-- : BFD_RELOC_PPC_VLE_LO16A-- : BFD_RELOC_PPC_VLE_LO16D-- : BFD_RELOC_PPC_VLE_HI16A-- : BFD_RELOC_PPC_VLE_HI16D-- : BFD_RELOC_PPC_VLE_HA16A-- : BFD_RELOC_PPC_VLE_HA16D-- : BFD_RELOC_PPC_VLE_SDA21-- : BFD_RELOC_PPC_VLE_SDA21_LO-- : BFD_RELOC_PPC_VLE_SDAREL_LO16A-- : BFD_RELOC_PPC_VLE_SDAREL_LO16D-- : BFD_RELOC_PPC_VLE_SDAREL_HI16A-- : BFD_RELOC_PPC_VLE_SDAREL_HI16D-- : BFD_RELOC_PPC_VLE_SDAREL_HA16A-- : BFD_RELOC_PPC_VLE_SDAREL_HA16D-- : BFD_RELOC_PPC64_HIGHER-- : BFD_RELOC_PPC64_HIGHER_S-- : BFD_RELOC_PPC64_HIGHEST-- : BFD_RELOC_PPC64_HIGHEST_S-- : BFD_RELOC_PPC64_TOC16_LO-- : BFD_RELOC_PPC64_TOC16_HI-- : BFD_RELOC_PPC64_TOC16_HA-- : BFD_RELOC_PPC64_TOC-- : BFD_RELOC_PPC64_PLTGOT16-- : BFD_RELOC_PPC64_PLTGOT16_LO-- : BFD_RELOC_PPC64_PLTGOT16_HI-- : BFD_RELOC_PPC64_PLTGOT16_HA-- : BFD_RELOC_PPC64_ADDR16_DS-- : BFD_RELOC_PPC64_ADDR16_LO_DS-- : BFD_RELOC_PPC64_GOT16_DS-- : BFD_RELOC_PPC64_GOT16_LO_DS-- : BFD_RELOC_PPC64_PLT16_LO_DS-- : BFD_RELOC_PPC64_SECTOFF_DS-- : BFD_RELOC_PPC64_SECTOFF_LO_DS-- : BFD_RELOC_PPC64_TOC16_DS-- : BFD_RELOC_PPC64_TOC16_LO_DS-- : BFD_RELOC_PPC64_PLTGOT16_DS-- : BFD_RELOC_PPC64_PLTGOT16_LO_DS-- : BFD_RELOC_PPC64_ADDR16_HIGH-- : BFD_RELOC_PPC64_ADDR16_HIGHA-- : BFD_RELOC_PPC64_ADDR64_LOCALPower(rs6000) and PowerPC relocations.-- : BFD_RELOC_PPC_TLS-- : BFD_RELOC_PPC_TLSGD-- : BFD_RELOC_PPC_TLSLD-- : BFD_RELOC_PPC_DTPMOD-- : BFD_RELOC_PPC_TPREL16-- : BFD_RELOC_PPC_TPREL16_LO-- : BFD_RELOC_PPC_TPREL16_HI-- : BFD_RELOC_PPC_TPREL16_HA-- : BFD_RELOC_PPC_TPREL-- : BFD_RELOC_PPC_DTPREL16-- : BFD_RELOC_PPC_DTPREL16_LO-- : BFD_RELOC_PPC_DTPREL16_HI-- : BFD_RELOC_PPC_DTPREL16_HA-- : BFD_RELOC_PPC_DTPREL-- : BFD_RELOC_PPC_GOT_TLSGD16-- : BFD_RELOC_PPC_GOT_TLSGD16_LO-- : BFD_RELOC_PPC_GOT_TLSGD16_HI-- : BFD_RELOC_PPC_GOT_TLSGD16_HA-- : BFD_RELOC_PPC_GOT_TLSLD16-- : BFD_RELOC_PPC_GOT_TLSLD16_LO-- : BFD_RELOC_PPC_GOT_TLSLD16_HI-- : BFD_RELOC_PPC_GOT_TLSLD16_HA-- : BFD_RELOC_PPC_GOT_TPREL16-- : BFD_RELOC_PPC_GOT_TPREL16_LO-- : BFD_RELOC_PPC_GOT_TPREL16_HI-- : BFD_RELOC_PPC_GOT_TPREL16_HA-- : BFD_RELOC_PPC_GOT_DTPREL16-- : BFD_RELOC_PPC_GOT_DTPREL16_LO-- : BFD_RELOC_PPC_GOT_DTPREL16_HI-- : BFD_RELOC_PPC_GOT_DTPREL16_HA-- : BFD_RELOC_PPC64_TPREL16_DS-- : BFD_RELOC_PPC64_TPREL16_LO_DS-- : BFD_RELOC_PPC64_TPREL16_HIGHER-- : BFD_RELOC_PPC64_TPREL16_HIGHERA-- : BFD_RELOC_PPC64_TPREL16_HIGHEST-- : BFD_RELOC_PPC64_TPREL16_HIGHESTA-- : BFD_RELOC_PPC64_DTPREL16_DS-- : BFD_RELOC_PPC64_DTPREL16_LO_DS-- : BFD_RELOC_PPC64_DTPREL16_HIGHER-- : BFD_RELOC_PPC64_DTPREL16_HIGHERA-- : BFD_RELOC_PPC64_DTPREL16_HIGHEST-- : BFD_RELOC_PPC64_DTPREL16_HIGHESTA-- : BFD_RELOC_PPC64_TPREL16_HIGH-- : BFD_RELOC_PPC64_TPREL16_HIGHA-- : BFD_RELOC_PPC64_DTPREL16_HIGH-- : BFD_RELOC_PPC64_DTPREL16_HIGHAPowerPC and PowerPC64 thread-local storage relocations.-- : BFD_RELOC_I370_D12IBM 370/390 relocations-- : BFD_RELOC_CTORThe type of reloc used to build a constructor table - at the momentprobably a 32 bit wide absolute relocation, but the target canchoose. It generally does map to one of the other relocationtypes.-- : BFD_RELOC_ARM_PCREL_BRANCHARM 26 bit pc-relative branch. The lowest two bits must be zeroand are not stored in the instruction.-- : BFD_RELOC_ARM_PCREL_BLXARM 26 bit pc-relative branch. The lowest bit must be zero and isnot stored in the instruction. The 2nd lowest bit comes from a 1bit field in the instruction.-- : BFD_RELOC_THUMB_PCREL_BLXThumb 22 bit pc-relative branch. The lowest bit must be zero andis not stored in the instruction. The 2nd lowest bit comes from a1 bit field in the instruction.-- : BFD_RELOC_ARM_PCREL_CALLARM 26-bit pc-relative branch for an unconditional BL or BLXinstruction.-- : BFD_RELOC_ARM_PCREL_JUMPARM 26-bit pc-relative branch for B or conditional BL instruction.-- : BFD_RELOC_THUMB_PCREL_BRANCH7-- : BFD_RELOC_THUMB_PCREL_BRANCH9-- : BFD_RELOC_THUMB_PCREL_BRANCH12-- : BFD_RELOC_THUMB_PCREL_BRANCH20-- : BFD_RELOC_THUMB_PCREL_BRANCH23-- : BFD_RELOC_THUMB_PCREL_BRANCH25Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. Thelowest bit must be zero and is not stored in the instruction.Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an"nn" one smaller in all cases. Note further that BRANCH23corresponds to R_ARM_THM_CALL.-- : BFD_RELOC_ARM_OFFSET_IMM12-bit immediate offset, used in ARM-format ldr and strinstructions.-- : BFD_RELOC_ARM_THUMB_OFFSET5-bit immediate offset, used in Thumb-format ldr and strinstructions.-- : BFD_RELOC_ARM_TARGET1Pc-relative or absolute relocation depending on target. Used forentries in .init_array sections.-- : BFD_RELOC_ARM_ROSEGREL32Read-only segment base relative address.-- : BFD_RELOC_ARM_SBREL32Data segment base relative address.-- : BFD_RELOC_ARM_TARGET2This reloc is used for references to RTTI data from exceptionhandling tables. The actual definition depends on the target. Itmay be a pc-relative or some form of GOT-indirect relocation.-- : BFD_RELOC_ARM_PREL3131-bit PC relative address.-- : BFD_RELOC_ARM_MOVW-- : BFD_RELOC_ARM_MOVT-- : BFD_RELOC_ARM_MOVW_PCREL-- : BFD_RELOC_ARM_MOVT_PCREL-- : BFD_RELOC_ARM_THUMB_MOVW-- : BFD_RELOC_ARM_THUMB_MOVT-- : BFD_RELOC_ARM_THUMB_MOVW_PCREL-- : BFD_RELOC_ARM_THUMB_MOVT_PCRELLow and High halfword relocations for MOVW and MOVT instructions.-- : BFD_RELOC_ARM_JUMP_SLOT-- : BFD_RELOC_ARM_GLOB_DAT-- : BFD_RELOC_ARM_GOT32-- : BFD_RELOC_ARM_PLT32-- : BFD_RELOC_ARM_RELATIVE-- : BFD_RELOC_ARM_GOTOFF-- : BFD_RELOC_ARM_GOTPC-- : BFD_RELOC_ARM_GOT_PRELRelocations for setting up GOTs and PLTs for shared libraries.-- : BFD_RELOC_ARM_TLS_GD32-- : BFD_RELOC_ARM_TLS_LDO32-- : BFD_RELOC_ARM_TLS_LDM32-- : BFD_RELOC_ARM_TLS_DTPOFF32-- : BFD_RELOC_ARM_TLS_DTPMOD32-- : BFD_RELOC_ARM_TLS_TPOFF32-- : BFD_RELOC_ARM_TLS_IE32-- : BFD_RELOC_ARM_TLS_LE32-- : BFD_RELOC_ARM_TLS_GOTDESC-- : BFD_RELOC_ARM_TLS_CALL-- : BFD_RELOC_ARM_THM_TLS_CALL-- : BFD_RELOC_ARM_TLS_DESCSEQ-- : BFD_RELOC_ARM_THM_TLS_DESCSEQ-- : BFD_RELOC_ARM_TLS_DESCARM thread-local storage relocations.-- : BFD_RELOC_ARM_ALU_PC_G0_NC-- : BFD_RELOC_ARM_ALU_PC_G0-- : BFD_RELOC_ARM_ALU_PC_G1_NC-- : BFD_RELOC_ARM_ALU_PC_G1-- : BFD_RELOC_ARM_ALU_PC_G2-- : BFD_RELOC_ARM_LDR_PC_G0-- : BFD_RELOC_ARM_LDR_PC_G1-- : BFD_RELOC_ARM_LDR_PC_G2-- : BFD_RELOC_ARM_LDRS_PC_G0-- : BFD_RELOC_ARM_LDRS_PC_G1-- : BFD_RELOC_ARM_LDRS_PC_G2-- : BFD_RELOC_ARM_LDC_PC_G0-- : BFD_RELOC_ARM_LDC_PC_G1-- : BFD_RELOC_ARM_LDC_PC_G2-- : BFD_RELOC_ARM_ALU_SB_G0_NC-- : BFD_RELOC_ARM_ALU_SB_G0-- : BFD_RELOC_ARM_ALU_SB_G1_NC-- : BFD_RELOC_ARM_ALU_SB_G1-- : BFD_RELOC_ARM_ALU_SB_G2-- : BFD_RELOC_ARM_LDR_SB_G0-- : BFD_RELOC_ARM_LDR_SB_G1-- : BFD_RELOC_ARM_LDR_SB_G2-- : BFD_RELOC_ARM_LDRS_SB_G0-- : BFD_RELOC_ARM_LDRS_SB_G1-- : BFD_RELOC_ARM_LDRS_SB_G2-- : BFD_RELOC_ARM_LDC_SB_G0-- : BFD_RELOC_ARM_LDC_SB_G1-- : BFD_RELOC_ARM_LDC_SB_G2ARM group relocations.-- : BFD_RELOC_ARM_V4BXAnnotation of BX instructions.-- : BFD_RELOC_ARM_IRELATIVEARM support for STT_GNU_IFUNC.-- : BFD_RELOC_ARM_IMMEDIATE-- : BFD_RELOC_ARM_ADRL_IMMEDIATE-- : BFD_RELOC_ARM_T32_IMMEDIATE-- : BFD_RELOC_ARM_T32_ADD_IMM-- : BFD_RELOC_ARM_T32_IMM12-- : BFD_RELOC_ARM_T32_ADD_PC12-- : BFD_RELOC_ARM_SHIFT_IMM-- : BFD_RELOC_ARM_SMC-- : BFD_RELOC_ARM_HVC-- : BFD_RELOC_ARM_SWI-- : BFD_RELOC_ARM_MULTI-- : BFD_RELOC_ARM_CP_OFF_IMM-- : BFD_RELOC_ARM_CP_OFF_IMM_S2-- : BFD_RELOC_ARM_T32_CP_OFF_IMM-- : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2-- : BFD_RELOC_ARM_ADR_IMM-- : BFD_RELOC_ARM_LDR_IMM-- : BFD_RELOC_ARM_LITERAL-- : BFD_RELOC_ARM_IN_POOL-- : BFD_RELOC_ARM_OFFSET_IMM8-- : BFD_RELOC_ARM_T32_OFFSET_U8-- : BFD_RELOC_ARM_T32_OFFSET_IMM-- : BFD_RELOC_ARM_HWLITERAL-- : BFD_RELOC_ARM_THUMB_ADD-- : BFD_RELOC_ARM_THUMB_IMM-- : BFD_RELOC_ARM_THUMB_SHIFTThese relocs are only used within the ARM assembler. They are not(at present) written to any object files.-- : BFD_RELOC_SH_PCDISP8BY2-- : BFD_RELOC_SH_PCDISP12BY2-- : BFD_RELOC_SH_IMM3-- : BFD_RELOC_SH_IMM3U-- : BFD_RELOC_SH_DISP12-- : BFD_RELOC_SH_DISP12BY2-- : BFD_RELOC_SH_DISP12BY4-- : BFD_RELOC_SH_DISP12BY8-- : BFD_RELOC_SH_DISP20-- : BFD_RELOC_SH_DISP20BY8-- : BFD_RELOC_SH_IMM4-- : BFD_RELOC_SH_IMM4BY2-- : BFD_RELOC_SH_IMM4BY4-- : BFD_RELOC_SH_IMM8-- : BFD_RELOC_SH_IMM8BY2-- : BFD_RELOC_SH_IMM8BY4-- : BFD_RELOC_SH_PCRELIMM8BY2-- : BFD_RELOC_SH_PCRELIMM8BY4-- : BFD_RELOC_SH_SWITCH16-- : BFD_RELOC_SH_SWITCH32-- : BFD_RELOC_SH_USES-- : BFD_RELOC_SH_COUNT-- : BFD_RELOC_SH_ALIGN-- : BFD_RELOC_SH_CODE-- : BFD_RELOC_SH_DATA-- : BFD_RELOC_SH_LABEL-- : BFD_RELOC_SH_LOOP_START-- : BFD_RELOC_SH_LOOP_END-- : BFD_RELOC_SH_COPY-- : BFD_RELOC_SH_GLOB_DAT-- : BFD_RELOC_SH_JMP_SLOT-- : BFD_RELOC_SH_RELATIVE-- : BFD_RELOC_SH_GOTPC-- : BFD_RELOC_SH_GOT_LOW16-- : BFD_RELOC_SH_GOT_MEDLOW16-- : BFD_RELOC_SH_GOT_MEDHI16-- : BFD_RELOC_SH_GOT_HI16-- : BFD_RELOC_SH_GOTPLT_LOW16-- : BFD_RELOC_SH_GOTPLT_MEDLOW16-- : BFD_RELOC_SH_GOTPLT_MEDHI16-- : BFD_RELOC_SH_GOTPLT_HI16-- : BFD_RELOC_SH_PLT_LOW16-- : BFD_RELOC_SH_PLT_MEDLOW16-- : BFD_RELOC_SH_PLT_MEDHI16-- : BFD_RELOC_SH_PLT_HI16-- : BFD_RELOC_SH_GOTOFF_LOW16-- : BFD_RELOC_SH_GOTOFF_MEDLOW16-- : BFD_RELOC_SH_GOTOFF_MEDHI16-- : BFD_RELOC_SH_GOTOFF_HI16-- : BFD_RELOC_SH_GOTPC_LOW16-- : BFD_RELOC_SH_GOTPC_MEDLOW16-- : BFD_RELOC_SH_GOTPC_MEDHI16-- : BFD_RELOC_SH_GOTPC_HI16-- : BFD_RELOC_SH_COPY64-- : BFD_RELOC_SH_GLOB_DAT64-- : BFD_RELOC_SH_JMP_SLOT64-- : BFD_RELOC_SH_RELATIVE64-- : BFD_RELOC_SH_GOT10BY4-- : BFD_RELOC_SH_GOT10BY8-- : BFD_RELOC_SH_GOTPLT10BY4-- : BFD_RELOC_SH_GOTPLT10BY8-- : BFD_RELOC_SH_GOTPLT32-- : BFD_RELOC_SH_SHMEDIA_CODE-- : BFD_RELOC_SH_IMMU5-- : BFD_RELOC_SH_IMMS6-- : BFD_RELOC_SH_IMMS6BY32-- : BFD_RELOC_SH_IMMU6-- : BFD_RELOC_SH_IMMS10-- : BFD_RELOC_SH_IMMS10BY2-- : BFD_RELOC_SH_IMMS10BY4-- : BFD_RELOC_SH_IMMS10BY8-- : BFD_RELOC_SH_IMMS16-- : BFD_RELOC_SH_IMMU16-- : BFD_RELOC_SH_IMM_LOW16-- : BFD_RELOC_SH_IMM_LOW16_PCREL-- : BFD_RELOC_SH_IMM_MEDLOW16-- : BFD_RELOC_SH_IMM_MEDLOW16_PCREL-- : BFD_RELOC_SH_IMM_MEDHI16-- : BFD_RELOC_SH_IMM_MEDHI16_PCREL-- : BFD_RELOC_SH_IMM_HI16-- : BFD_RELOC_SH_IMM_HI16_PCREL-- : BFD_RELOC_SH_PT_16-- : BFD_RELOC_SH_TLS_GD_32-- : BFD_RELOC_SH_TLS_LD_32-- : BFD_RELOC_SH_TLS_LDO_32-- : BFD_RELOC_SH_TLS_IE_32-- : BFD_RELOC_SH_TLS_LE_32-- : BFD_RELOC_SH_TLS_DTPMOD32-- : BFD_RELOC_SH_TLS_DTPOFF32-- : BFD_RELOC_SH_TLS_TPOFF32-- : BFD_RELOC_SH_GOT20-- : BFD_RELOC_SH_GOTOFF20-- : BFD_RELOC_SH_GOTFUNCDESC-- : BFD_RELOC_SH_GOTFUNCDESC20-- : BFD_RELOC_SH_GOTOFFFUNCDESC-- : BFD_RELOC_SH_GOTOFFFUNCDESC20-- : BFD_RELOC_SH_FUNCDESCRenesas / SuperH SH relocs. Not all of these appear in objectfiles.-- : BFD_RELOC_ARC_B22_PCRELARC Cores relocs. ARC 22 bit pc-relative branch. The lowest twobits must be zero and are not stored in the instruction. The high20 bits are installed in bits 26 through 7 of the instruction.-- : BFD_RELOC_ARC_B26ARC 26 bit absolute branch. The lowest two bits must be zero andare not stored in the instruction. The high 24 bits are installedin bits 23 through 0.-- : BFD_RELOC_BFIN_16_IMMADI Blackfin 16 bit immediate absolute reloc.-- : BFD_RELOC_BFIN_16_HIGHADI Blackfin 16 bit immediate absolute reloc higher 16 bits.-- : BFD_RELOC_BFIN_4_PCRELADI Blackfin 'a' part of LSETUP.-- : BFD_RELOC_BFIN_5_PCRELADI Blackfin.-- : BFD_RELOC_BFIN_16_LOWADI Blackfin 16 bit immediate absolute reloc lower 16 bits.-- : BFD_RELOC_BFIN_10_PCRELADI Blackfin.-- : BFD_RELOC_BFIN_11_PCRELADI Blackfin 'b' part of LSETUP.-- : BFD_RELOC_BFIN_12_PCREL_JUMPADI Blackfin.-- : BFD_RELOC_BFIN_12_PCREL_JUMP_SADI Blackfin Short jump, pcrel.-- : BFD_RELOC_BFIN_24_PCREL_CALL_XADI Blackfin Call.x not implemented.-- : BFD_RELOC_BFIN_24_PCREL_JUMP_LADI Blackfin Long Jump pcrel.-- : BFD_RELOC_BFIN_GOT17M4-- : BFD_RELOC_BFIN_GOTHI-- : BFD_RELOC_BFIN_GOTLO-- : BFD_RELOC_BFIN_FUNCDESC-- : BFD_RELOC_BFIN_FUNCDESC_GOT17M4-- : BFD_RELOC_BFIN_FUNCDESC_GOTHI-- : BFD_RELOC_BFIN_FUNCDESC_GOTLO-- : BFD_RELOC_BFIN_FUNCDESC_VALUE-- : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4-- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI-- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO-- : BFD_RELOC_BFIN_GOTOFF17M4-- : BFD_RELOC_BFIN_GOTOFFHI-- : BFD_RELOC_BFIN_GOTOFFLOADI Blackfin FD-PIC relocations.-- : BFD_RELOC_BFIN_GOTADI Blackfin GOT relocation.-- : BFD_RELOC_BFIN_PLTPCADI Blackfin PLTPC relocation.-- : BFD_ARELOC_BFIN_PUSHADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_CONSTADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_ADDADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_SUBADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_MULTADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_DIVADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_MODADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_LSHIFTADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_RSHIFTADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_ANDADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_ORADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_XORADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_LANDADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_LORADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_LENADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_NEGADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_COMPADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_PAGEADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_HWPAGEADI Blackfin arithmetic relocation.-- : BFD_ARELOC_BFIN_ADDRADI Blackfin arithmetic relocation.-- : BFD_RELOC_D10V_10_PCREL_RMitsubishi D10V relocs. This is a 10-bit reloc with the right 2bits assumed to be 0.-- : BFD_RELOC_D10V_10_PCREL_LMitsubishi D10V relocs. This is a 10-bit reloc with the right 2bits assumed to be 0. This is the same as the previous relocexcept it is in the left container, i.e., shifted left 15 bits.-- : BFD_RELOC_D10V_18This is an 18-bit reloc with the right 2 bits assumed to be 0.-- : BFD_RELOC_D10V_18_PCRELThis is an 18-bit reloc with the right 2 bits assumed to be 0.-- : BFD_RELOC_D30V_6Mitsubishi D30V relocs. This is a 6-bit absolute reloc.-- : BFD_RELOC_D30V_9_PCRELThis is a 6-bit pc-relative reloc with the right 3 bits assumed tobe 0.-- : BFD_RELOC_D30V_9_PCREL_RThis is a 6-bit pc-relative reloc with the right 3 bits assumed tobe 0. Same as the previous reloc but on the right side of thecontainer.-- : BFD_RELOC_D30V_15This is a 12-bit absolute reloc with the right 3 bitsassumed to be0.-- : BFD_RELOC_D30V_15_PCRELThis is a 12-bit pc-relative reloc with the right 3 bits assumedto be 0.-- : BFD_RELOC_D30V_15_PCREL_RThis is a 12-bit pc-relative reloc with the right 3 bits assumedto be 0. Same as the previous reloc but on the right side of thecontainer.-- : BFD_RELOC_D30V_21This is an 18-bit absolute reloc with the right 3 bits assumed tobe 0.-- : BFD_RELOC_D30V_21_PCRELThis is an 18-bit pc-relative reloc with the right 3 bits assumedto be 0.-- : BFD_RELOC_D30V_21_PCREL_RThis is an 18-bit pc-relative reloc with the right 3 bits assumedto be 0. Same as the previous reloc but on the right side of thecontainer.-- : BFD_RELOC_D30V_32This is a 32-bit absolute reloc.-- : BFD_RELOC_D30V_32_PCRELThis is a 32-bit pc-relative reloc.-- : BFD_RELOC_DLX_HI16_SDLX relocs-- : BFD_RELOC_DLX_LO16DLX relocs-- : BFD_RELOC_DLX_JMP26DLX relocs-- : BFD_RELOC_M32C_HI8-- : BFD_RELOC_M32C_RL_JUMP-- : BFD_RELOC_M32C_RL_1ADDR-- : BFD_RELOC_M32C_RL_2ADDRRenesas M16C/M32C Relocations.-- : BFD_RELOC_M32R_24Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bitabsolute address.-- : BFD_RELOC_M32R_10_PCRELThis is a 10-bit pc-relative reloc with the right 2 bits assumedto be 0.-- : BFD_RELOC_M32R_18_PCRELThis is an 18-bit reloc with the right 2 bits assumed to be 0.-- : BFD_RELOC_M32R_26_PCRELThis is a 26-bit reloc with the right 2 bits assumed to be 0.-- : BFD_RELOC_M32R_HI16_ULOThis is a 16-bit reloc containing the high 16 bits of an addressused when the lower 16 bits are treated as unsigned.-- : BFD_RELOC_M32R_HI16_SLOThis is a 16-bit reloc containing the high 16 bits of an addressused when the lower 16 bits are treated as signed.-- : BFD_RELOC_M32R_LO16This is a 16-bit reloc containing the lower 16 bits of an address.-- : BFD_RELOC_M32R_SDA16This is a 16-bit reloc containing the small data area offset foruse in add3, load, and store instructions.-- : BFD_RELOC_M32R_GOT24-- : BFD_RELOC_M32R_26_PLTREL-- : BFD_RELOC_M32R_COPY-- : BFD_RELOC_M32R_GLOB_DAT-- : BFD_RELOC_M32R_JMP_SLOT-- : BFD_RELOC_M32R_RELATIVE-- : BFD_RELOC_M32R_GOTOFF-- : BFD_RELOC_M32R_GOTOFF_HI_ULO-- : BFD_RELOC_M32R_GOTOFF_HI_SLO-- : BFD_RELOC_M32R_GOTOFF_LO-- : BFD_RELOC_M32R_GOTPC24-- : BFD_RELOC_M32R_GOT16_HI_ULO-- : BFD_RELOC_M32R_GOT16_HI_SLO-- : BFD_RELOC_M32R_GOT16_LO-- : BFD_RELOC_M32R_GOTPC_HI_ULO-- : BFD_RELOC_M32R_GOTPC_HI_SLO-- : BFD_RELOC_M32R_GOTPC_LOFor PIC.-- : BFD_RELOC_NDS32_20NDS32 relocs. This is a 20 bit absolute address.-- : BFD_RELOC_NDS32_9_PCRELThis is a 9-bit pc-relative reloc with the right 1 bit assumed tobe 0.-- : BFD_RELOC_NDS32_WORD_9_PCRELThis is a 9-bit pc-relative reloc with the right 1 bit assumed tobe 0.-- : BFD_RELOC_NDS32_15_PCRELThis is an 15-bit reloc with the right 1 bit assumed to be 0.-- : BFD_RELOC_NDS32_17_PCRELThis is an 17-bit reloc with the right 1 bit assumed to be 0.-- : BFD_RELOC_NDS32_25_PCRELThis is a 25-bit reloc with the right 1 bit assumed to be 0.-- : BFD_RELOC_NDS32_HI20This is a 20-bit reloc containing the high 20 bits of an addressused with the lower 12 bits-- : BFD_RELOC_NDS32_LO12S3This is a 12-bit reloc containing the lower 12 bits of an addressthen shift right by 3. This is used with ldi,sdi...-- : BFD_RELOC_NDS32_LO12S2This is a 12-bit reloc containing the lower 12 bits of an addressthen shift left by 2. This is used with lwi,swi...-- : BFD_RELOC_NDS32_LO12S1This is a 12-bit reloc containing the lower 12 bits of an addressthen shift left by 1. This is used with lhi,shi...-- : BFD_RELOC_NDS32_LO12S0This is a 12-bit reloc containing the lower 12 bits of an addressthen shift left by 0. This is used with lbisbi...-- : BFD_RELOC_NDS32_LO12S0_ORIThis is a 12-bit reloc containing the lower 12 bits of an addressthen shift left by 0. This is only used with branch relaxations-- : BFD_RELOC_NDS32_SDA15S3This is a 15-bit reloc containing the small data area 18-bitsigned offset and shift left by 3 for use in ldi, sdi...-- : BFD_RELOC_NDS32_SDA15S2This is a 15-bit reloc containing the small data area 17-bitsigned offset and shift left by 2 for use in lwi, swi...-- : BFD_RELOC_NDS32_SDA15S1This is a 15-bit reloc containing the small data area 16-bitsigned offset and shift left by 1 for use in lhi, shi...-- : BFD_RELOC_NDS32_SDA15S0This is a 15-bit reloc containing the small data area 15-bitsigned offset and shift left by 0 for use in lbi, sbi...-- : BFD_RELOC_NDS32_SDA16S3This is a 16-bit reloc containing the small data area 16-bitsigned offset and shift left by 3-- : BFD_RELOC_NDS32_SDA17S2This is a 17-bit reloc containing the small data area 17-bitsigned offset and shift left by 2 for use in lwi.gp, swi.gp...-- : BFD_RELOC_NDS32_SDA18S1This is a 18-bit reloc containing the small data area 18-bitsigned offset and shift left by 1 for use in lhi.gp, shi.gp...-- : BFD_RELOC_NDS32_SDA19S0This is a 19-bit reloc containing the small data area 19-bitsigned offset and shift left by 0 for use in lbi.gp, sbi.gp...-- : BFD_RELOC_NDS32_GOT20-- : BFD_RELOC_NDS32_9_PLTREL-- : BFD_RELOC_NDS32_25_PLTREL-- : BFD_RELOC_NDS32_COPY-- : BFD_RELOC_NDS32_GLOB_DAT-- : BFD_RELOC_NDS32_JMP_SLOT-- : BFD_RELOC_NDS32_RELATIVE-- : BFD_RELOC_NDS32_GOTOFF-- : BFD_RELOC_NDS32_GOTOFF_HI20-- : BFD_RELOC_NDS32_GOTOFF_LO12-- : BFD_RELOC_NDS32_GOTPC20-- : BFD_RELOC_NDS32_GOT_HI20-- : BFD_RELOC_NDS32_GOT_LO12-- : BFD_RELOC_NDS32_GOTPC_HI20-- : BFD_RELOC_NDS32_GOTPC_LO12for PIC-- : BFD_RELOC_NDS32_INSN16-- : BFD_RELOC_NDS32_LABEL-- : BFD_RELOC_NDS32_LONGCALL1-- : BFD_RELOC_NDS32_LONGCALL2-- : BFD_RELOC_NDS32_LONGCALL3-- : BFD_RELOC_NDS32_LONGJUMP1-- : BFD_RELOC_NDS32_LONGJUMP2-- : BFD_RELOC_NDS32_LONGJUMP3-- : BFD_RELOC_NDS32_LOADSTORE-- : BFD_RELOC_NDS32_9_FIXED-- : BFD_RELOC_NDS32_15_FIXED-- : BFD_RELOC_NDS32_17_FIXED-- : BFD_RELOC_NDS32_25_FIXED-- : BFD_RELOC_NDS32_LONGCALL4-- : BFD_RELOC_NDS32_LONGCALL5-- : BFD_RELOC_NDS32_LONGCALL6-- : BFD_RELOC_NDS32_LONGJUMP4-- : BFD_RELOC_NDS32_LONGJUMP5-- : BFD_RELOC_NDS32_LONGJUMP6-- : BFD_RELOC_NDS32_LONGJUMP7for relax-- : BFD_RELOC_NDS32_PLTREL_HI20-- : BFD_RELOC_NDS32_PLTREL_LO12-- : BFD_RELOC_NDS32_PLT_GOTREL_HI20-- : BFD_RELOC_NDS32_PLT_GOTREL_LO12for PIC-- : BFD_RELOC_NDS32_SDA12S2_DP-- : BFD_RELOC_NDS32_SDA12S2_SP-- : BFD_RELOC_NDS32_LO12S2_DP-- : BFD_RELOC_NDS32_LO12S2_SPfor floating point-- : BFD_RELOC_NDS32_DWARF2_OP1-- : BFD_RELOC_NDS32_DWARF2_OP2-- : BFD_RELOC_NDS32_DWARF2_LEBfor dwarf2 debug_line.-- : BFD_RELOC_NDS32_UPDATE_TAfor eliminate 16-bit instructions-- : BFD_RELOC_NDS32_PLT_GOTREL_LO20-- : BFD_RELOC_NDS32_PLT_GOTREL_LO15-- : BFD_RELOC_NDS32_PLT_GOTREL_LO19-- : BFD_RELOC_NDS32_GOT_LO15-- : BFD_RELOC_NDS32_GOT_LO19-- : BFD_RELOC_NDS32_GOTOFF_LO15-- : BFD_RELOC_NDS32_GOTOFF_LO19-- : BFD_RELOC_NDS32_GOT15S2-- : BFD_RELOC_NDS32_GOT17S2for PIC object relaxation-- : BFD_RELOC_NDS32_5NDS32 relocs. This is a 5 bit absolute address.-- : BFD_RELOC_NDS32_10_UPCRELThis is a 10-bit unsigned pc-relative reloc with the right 1 bitassumed to be 0.-- : BFD_RELOC_NDS32_SDA_FP7U2_RELAIf fp were omitted, fp can used as another gp.-- : BFD_RELOC_NDS32_RELAX_ENTRY-- : BFD_RELOC_NDS32_GOT_SUFF-- : BFD_RELOC_NDS32_GOTOFF_SUFF-- : BFD_RELOC_NDS32_PLT_GOT_SUFF-- : BFD_RELOC_NDS32_MULCALL_SUFF-- : BFD_RELOC_NDS32_PTR-- : BFD_RELOC_NDS32_PTR_COUNT-- : BFD_RELOC_NDS32_PTR_RESOLVED-- : BFD_RELOC_NDS32_PLTBLOCK-- : BFD_RELOC_NDS32_RELAX_REGION_BEGIN-- : BFD_RELOC_NDS32_RELAX_REGION_END-- : BFD_RELOC_NDS32_MINUEND-- : BFD_RELOC_NDS32_SUBTRAHEND-- : BFD_RELOC_NDS32_DIFF8-- : BFD_RELOC_NDS32_DIFF16-- : BFD_RELOC_NDS32_DIFF32-- : BFD_RELOC_NDS32_DIFF_ULEB128-- : BFD_RELOC_NDS32_EMPTYrelaxation relative relocation types-- : BFD_RELOC_NDS32_25_ABSThis is a 25 bit absolute address.-- : BFD_RELOC_NDS32_DATA-- : BFD_RELOC_NDS32_TRAN-- : BFD_RELOC_NDS32_17IFC_PCREL-- : BFD_RELOC_NDS32_10IFCU_PCRELFor ex9 and ifc using.-- : BFD_RELOC_NDS32_TPOFF-- : BFD_RELOC_NDS32_TLS_LE_HI20-- : BFD_RELOC_NDS32_TLS_LE_LO12-- : BFD_RELOC_NDS32_TLS_LE_ADD-- : BFD_RELOC_NDS32_TLS_LE_LS-- : BFD_RELOC_NDS32_GOTTPOFF-- : BFD_RELOC_NDS32_TLS_IE_HI20-- : BFD_RELOC_NDS32_TLS_IE_LO12S2-- : BFD_RELOC_NDS32_TLS_TPOFF-- : BFD_RELOC_NDS32_TLS_LE_20-- : BFD_RELOC_NDS32_TLS_LE_15S0-- : BFD_RELOC_NDS32_TLS_LE_15S1-- : BFD_RELOC_NDS32_TLS_LE_15S2For TLS.-- : BFD_RELOC_V850_9_PCRELThis is a 9-bit reloc-- : BFD_RELOC_V850_22_PCRELThis is a 22-bit reloc-- : BFD_RELOC_V850_SDA_16_16_OFFSETThis is a 16 bit offset from the short data area pointer.-- : BFD_RELOC_V850_SDA_15_16_OFFSETThis is a 16 bit offset (of which only 15 bits are used) from theshort data area pointer.-- : BFD_RELOC_V850_ZDA_16_16_OFFSETThis is a 16 bit offset from the zero data area pointer.-- : BFD_RELOC_V850_ZDA_15_16_OFFSETThis is a 16 bit offset (of which only 15 bits are used) from thezero data area pointer.-- : BFD_RELOC_V850_TDA_6_8_OFFSETThis is an 8 bit offset (of which only 6 bits are used) from thetiny data area pointer.-- : BFD_RELOC_V850_TDA_7_8_OFFSETThis is an 8bit offset (of which only 7 bits are used) from thetiny data area pointer.-- : BFD_RELOC_V850_TDA_7_7_OFFSETThis is a 7 bit offset from the tiny data area pointer.-- : BFD_RELOC_V850_TDA_16_16_OFFSETThis is a 16 bit offset from the tiny data area pointer.-- : BFD_RELOC_V850_TDA_4_5_OFFSETThis is a 5 bit offset (of which only 4 bits are used) from thetiny data area pointer.-- : BFD_RELOC_V850_TDA_4_4_OFFSETThis is a 4 bit offset from the tiny data area pointer.-- : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSETThis is a 16 bit offset from the short data area pointer, with thebits placed non-contiguously in the instruction.-- : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSETThis is a 16 bit offset from the zero data area pointer, with thebits placed non-contiguously in the instruction.-- : BFD_RELOC_V850_CALLT_6_7_OFFSETThis is a 6 bit offset from the call table base pointer.-- : BFD_RELOC_V850_CALLT_16_16_OFFSETThis is a 16 bit offset from the call table base pointer.-- : BFD_RELOC_V850_LONGCALLUsed for relaxing indirect function calls.-- : BFD_RELOC_V850_LONGJUMPUsed for relaxing indirect jumps.-- : BFD_RELOC_V850_ALIGNUsed to maintain alignment whilst relaxing.-- : BFD_RELOC_V850_LO16_SPLIT_OFFSETThis is a variation of BFD_RELOC_LO16 that can be used in v850eld.bu instructions.-- : BFD_RELOC_V850_16_PCRELThis is a 16-bit reloc.-- : BFD_RELOC_V850_17_PCRELThis is a 17-bit reloc.-- : BFD_RELOC_V850_23This is a 23-bit reloc.-- : BFD_RELOC_V850_32_PCRELThis is a 32-bit reloc.-- : BFD_RELOC_V850_32_ABSThis is a 32-bit reloc.-- : BFD_RELOC_V850_16_SPLIT_OFFSETThis is a 16-bit reloc.-- : BFD_RELOC_V850_16_S1This is a 16-bit reloc.-- : BFD_RELOC_V850_LO16_S1Low 16 bits. 16 bit shifted by 1.-- : BFD_RELOC_V850_CALLT_15_16_OFFSETThis is a 16 bit offset from the call table base pointer.-- : BFD_RELOC_V850_32_GOTPCRELDSO relocations.-- : BFD_RELOC_V850_16_GOTDSO relocations.-- : BFD_RELOC_V850_32_GOTDSO relocations.-- : BFD_RELOC_V850_22_PLT_PCRELDSO relocations.-- : BFD_RELOC_V850_32_PLT_PCRELDSO relocations.-- : BFD_RELOC_V850_COPYDSO relocations.-- : BFD_RELOC_V850_GLOB_DATDSO relocations.-- : BFD_RELOC_V850_JMP_SLOTDSO relocations.-- : BFD_RELOC_V850_RELATIVEDSO relocations.-- : BFD_RELOC_V850_16_GOTOFFDSO relocations.-- : BFD_RELOC_V850_32_GOTOFFDSO relocations.-- : BFD_RELOC_V850_CODEstart code.-- : BFD_RELOC_V850_DATAstart data in text.-- : BFD_RELOC_TIC30_LDPThis is a 8bit DP reloc for the tms320c30, where the mostsignificant 8 bits of a 24 bit word are placed into the leastsignificant 8 bits of the opcode.-- : BFD_RELOC_TIC54X_PARTLS7This is a 7bit reloc for the tms320c54x, where the leastsignificant 7 bits of a 16 bit word are placed into the leastsignificant 7 bits of the opcode.-- : BFD_RELOC_TIC54X_PARTMS9This is a 9bit DP reloc for the tms320c54x, where the mostsignificant 9 bits of a 16 bit word are placed into the leastsignificant 9 bits of the opcode.-- : BFD_RELOC_TIC54X_23This is an extended address 23-bit reloc for the tms320c54x.-- : BFD_RELOC_TIC54X_16_OF_23This is a 16-bit reloc for the tms320c54x, where the leastsignificant 16 bits of a 23-bit extended address are placed intothe opcode.-- : BFD_RELOC_TIC54X_MS7_OF_23This is a reloc for the tms320c54x, where the most significant 7bits of a 23-bit extended address are placed into the opcode.-- : BFD_RELOC_C6000_PCR_S21-- : BFD_RELOC_C6000_PCR_S12-- : BFD_RELOC_C6000_PCR_S10-- : BFD_RELOC_C6000_PCR_S7-- : BFD_RELOC_C6000_ABS_S16-- : BFD_RELOC_C6000_ABS_L16-- : BFD_RELOC_C6000_ABS_H16-- : BFD_RELOC_C6000_SBR_U15_B-- : BFD_RELOC_C6000_SBR_U15_H-- : BFD_RELOC_C6000_SBR_U15_W-- : BFD_RELOC_C6000_SBR_S16-- : BFD_RELOC_C6000_SBR_L16_B-- : BFD_RELOC_C6000_SBR_L16_H-- : BFD_RELOC_C6000_SBR_L16_W-- : BFD_RELOC_C6000_SBR_H16_B-- : BFD_RELOC_C6000_SBR_H16_H-- : BFD_RELOC_C6000_SBR_H16_W-- : BFD_RELOC_C6000_SBR_GOT_U15_W-- : BFD_RELOC_C6000_SBR_GOT_L16_W-- : BFD_RELOC_C6000_SBR_GOT_H16_W-- : BFD_RELOC_C6000_DSBT_INDEX-- : BFD_RELOC_C6000_PREL31-- : BFD_RELOC_C6000_COPY-- : BFD_RELOC_C6000_JUMP_SLOT-- : BFD_RELOC_C6000_EHTYPE-- : BFD_RELOC_C6000_PCR_H16-- : BFD_RELOC_C6000_PCR_L16-- : BFD_RELOC_C6000_ALIGN-- : BFD_RELOC_C6000_FPHEAD-- : BFD_RELOC_C6000_NOCMPTMS320C6000 relocations.-- : BFD_RELOC_FR30_48This is a 48 bit reloc for the FR30 that stores 32 bits.-- : BFD_RELOC_FR30_20This is a 32 bit reloc for the FR30 that stores 20 bits split upinto two sections.-- : BFD_RELOC_FR30_6_IN_4This is a 16 bit reloc for the FR30 that stores a 6 bit wordoffset in 4 bits.-- : BFD_RELOC_FR30_8_IN_8This is a 16 bit reloc for the FR30 that stores an 8 bit byteoffset into 8 bits.-- : BFD_RELOC_FR30_9_IN_8This is a 16 bit reloc for the FR30 that stores a 9 bit shortoffset into 8 bits.-- : BFD_RELOC_FR30_10_IN_8This is a 16 bit reloc for the FR30 that stores a 10 bit wordoffset into 8 bits.-- : BFD_RELOC_FR30_9_PCRELThis is a 16 bit reloc for the FR30 that stores a 9 bit pc relativeshort offset into 8 bits.-- : BFD_RELOC_FR30_12_PCRELThis is a 16 bit reloc for the FR30 that stores a 12 bit pcrelative short offset into 11 bits.-- : BFD_RELOC_MCORE_PCREL_IMM8BY4-- : BFD_RELOC_MCORE_PCREL_IMM11BY2-- : BFD_RELOC_MCORE_PCREL_IMM4BY2-- : BFD_RELOC_MCORE_PCREL_32-- : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2-- : BFD_RELOC_MCORE_RVAMotorola Mcore relocations.-- : BFD_RELOC_MEP_8-- : BFD_RELOC_MEP_16-- : BFD_RELOC_MEP_32-- : BFD_RELOC_MEP_PCREL8A2-- : BFD_RELOC_MEP_PCREL12A2-- : BFD_RELOC_MEP_PCREL17A2-- : BFD_RELOC_MEP_PCREL24A2-- : BFD_RELOC_MEP_PCABS24A2-- : BFD_RELOC_MEP_LOW16-- : BFD_RELOC_MEP_HI16U-- : BFD_RELOC_MEP_HI16S-- : BFD_RELOC_MEP_GPREL-- : BFD_RELOC_MEP_TPREL-- : BFD_RELOC_MEP_TPREL7-- : BFD_RELOC_MEP_TPREL7A2-- : BFD_RELOC_MEP_TPREL7A4-- : BFD_RELOC_MEP_UIMM24-- : BFD_RELOC_MEP_ADDR24A4-- : BFD_RELOC_MEP_GNU_VTINHERIT-- : BFD_RELOC_MEP_GNU_VTENTRYToshiba Media Processor Relocations.-- : BFD_RELOC_METAG_HIADDR16-- : BFD_RELOC_METAG_LOADDR16-- : BFD_RELOC_METAG_RELBRANCH-- : BFD_RELOC_METAG_GETSETOFF-- : BFD_RELOC_METAG_HIOG-- : BFD_RELOC_METAG_LOOG-- : BFD_RELOC_METAG_REL8-- : BFD_RELOC_METAG_REL16-- : BFD_RELOC_METAG_HI16_GOTOFF-- : BFD_RELOC_METAG_LO16_GOTOFF-- : BFD_RELOC_METAG_GETSET_GOTOFF-- : BFD_RELOC_METAG_GETSET_GOT-- : BFD_RELOC_METAG_HI16_GOTPC-- : BFD_RELOC_METAG_LO16_GOTPC-- : BFD_RELOC_METAG_HI16_PLT-- : BFD_RELOC_METAG_LO16_PLT-- : BFD_RELOC_METAG_RELBRANCH_PLT-- : BFD_RELOC_METAG_GOTOFF-- : BFD_RELOC_METAG_PLT-- : BFD_RELOC_METAG_COPY-- : BFD_RELOC_METAG_JMP_SLOT-- : BFD_RELOC_METAG_RELATIVE-- : BFD_RELOC_METAG_GLOB_DAT-- : BFD_RELOC_METAG_TLS_GD-- : BFD_RELOC_METAG_TLS_LDM-- : BFD_RELOC_METAG_TLS_LDO_HI16-- : BFD_RELOC_METAG_TLS_LDO_LO16-- : BFD_RELOC_METAG_TLS_LDO-- : BFD_RELOC_METAG_TLS_IE-- : BFD_RELOC_METAG_TLS_IENONPIC-- : BFD_RELOC_METAG_TLS_IENONPIC_HI16-- : BFD_RELOC_METAG_TLS_IENONPIC_LO16-- : BFD_RELOC_METAG_TLS_TPOFF-- : BFD_RELOC_METAG_TLS_DTPMOD-- : BFD_RELOC_METAG_TLS_DTPOFF-- : BFD_RELOC_METAG_TLS_LE-- : BFD_RELOC_METAG_TLS_LE_HI16-- : BFD_RELOC_METAG_TLS_LE_LO16Imagination Technologies Meta relocations.-- : BFD_RELOC_MMIX_GETA-- : BFD_RELOC_MMIX_GETA_1-- : BFD_RELOC_MMIX_GETA_2-- : BFD_RELOC_MMIX_GETA_3These are relocations for the GETA instruction.-- : BFD_RELOC_MMIX_CBRANCH-- : BFD_RELOC_MMIX_CBRANCH_J-- : BFD_RELOC_MMIX_CBRANCH_1-- : BFD_RELOC_MMIX_CBRANCH_2-- : BFD_RELOC_MMIX_CBRANCH_3These are relocations for a conditional branch instruction.-- : BFD_RELOC_MMIX_PUSHJ-- : BFD_RELOC_MMIX_PUSHJ_1-- : BFD_RELOC_MMIX_PUSHJ_2-- : BFD_RELOC_MMIX_PUSHJ_3-- : BFD_RELOC_MMIX_PUSHJ_STUBBABLEThese are relocations for the PUSHJ instruction.-- : BFD_RELOC_MMIX_JMP-- : BFD_RELOC_MMIX_JMP_1-- : BFD_RELOC_MMIX_JMP_2-- : BFD_RELOC_MMIX_JMP_3These are relocations for the JMP instruction.-- : BFD_RELOC_MMIX_ADDR19This is a relocation for a relative address as in a GETAinstruction or a branch.-- : BFD_RELOC_MMIX_ADDR27This is a relocation for a relative address as in a JMPinstruction.-- : BFD_RELOC_MMIX_REG_OR_BYTEThis is a relocation for an instruction field that may be a generalregister or a value 0..255.-- : BFD_RELOC_MMIX_REGThis is a relocation for an instruction field that may be a generalregister.-- : BFD_RELOC_MMIX_BASE_PLUS_OFFSETThis is a relocation for two instruction fields holding a registerand an offset, the equivalent of the relocation.-- : BFD_RELOC_MMIX_LOCALThis relocation is an assertion that the expression is notallocated as a global register. It does not modify contents.-- : BFD_RELOC_AVR_7_PCRELThis is a 16 bit reloc for the AVR that stores 8 bit pc relativeshort offset into 7 bits.-- : BFD_RELOC_AVR_13_PCRELThis is a 16 bit reloc for the AVR that stores 13 bit pc relativeshort offset into 12 bits.-- : BFD_RELOC_AVR_16_PMThis is a 16 bit reloc for the AVR that stores 17 bit value(usually program memory address) into 16 bits.-- : BFD_RELOC_AVR_LO8_LDIThis is a 16 bit reloc for the AVR that stores 8 bit value (usuallydata memory address) into 8 bit immediate value of LDI insn.-- : BFD_RELOC_AVR_HI8_LDIThis is a 16 bit reloc for the AVR that stores 8 bit value (high 8bit of data memory address) into 8 bit immediate value of LDI insn.-- : BFD_RELOC_AVR_HH8_LDIThis is a 16 bit reloc for the AVR that stores 8 bit value (mosthigh 8 bit of program memory address) into 8 bit immediate valueof LDI insn.-- : BFD_RELOC_AVR_MS8_LDIThis is a 16 bit reloc for the AVR that stores 8 bit value (mosthigh 8 bit of 32 bit value) into 8 bit immediate value of LDI insn.-- : BFD_RELOC_AVR_LO8_LDI_NEGThis is a 16 bit reloc for the AVR that stores negated 8 bit value(usually data memory address) into 8 bit immediate value of SUBIinsn.-- : BFD_RELOC_AVR_HI8_LDI_NEGThis is a 16 bit reloc for the AVR that stores negated 8 bit value(high 8 bit of data memory address) into 8 bit immediate value ofSUBI insn.-- : BFD_RELOC_AVR_HH8_LDI_NEGThis is a 16 bit reloc for the AVR that stores negated 8 bit value(most high 8 bit of program memory address) into 8 bit immediatevalue of LDI or SUBI insn.-- : BFD_RELOC_AVR_MS8_LDI_NEGThis is a 16 bit reloc for the AVR that stores negated 8 bit value(msb of 32 bit value) into 8 bit immediate value of LDI insn.-- : BFD_RELOC_AVR_LO8_LDI_PMThis is a 16 bit reloc for the AVR that stores 8 bit value (usuallycommand address) into 8 bit immediate value of LDI insn.-- : BFD_RELOC_AVR_LO8_LDI_GSThis is a 16 bit reloc for the AVR that stores 8 bit value(command address) into 8 bit immediate value of LDI insn. If theaddress is beyond the 128k boundary, the linker inserts a jumpstub for this reloc in the lower 128k.-- : BFD_RELOC_AVR_HI8_LDI_PMThis is a 16 bit reloc for the AVR that stores 8 bit value (high 8bit of command address) into 8 bit immediate value of LDI insn.-- : BFD_RELOC_AVR_HI8_LDI_GSThis is a 16 bit reloc for the AVR that stores 8 bit value (high 8bit of command address) into 8 bit immediate value of LDI insn.If the address is beyond the 128k boundary, the linker inserts ajump stub for this reloc below 128k.-- : BFD_RELOC_AVR_HH8_LDI_PMThis is a 16 bit reloc for the AVR that stores 8 bit value (mosthigh 8 bit of command address) into 8 bit immediate value of LDIinsn.-- : BFD_RELOC_AVR_LO8_LDI_PM_NEGThis is a 16 bit reloc for the AVR that stores negated 8 bit value(usually command address) into 8 bit immediate value of SUBI insn.-- : BFD_RELOC_AVR_HI8_LDI_PM_NEGThis is a 16 bit reloc for the AVR that stores negated 8 bit value(high 8 bit of 16 bit command address) into 8 bit immediate valueof SUBI insn.-- : BFD_RELOC_AVR_HH8_LDI_PM_NEGThis is a 16 bit reloc for the AVR that stores negated 8 bit value(high 6 bit of 22 bit command address) into 8 bit immediate valueof SUBI insn.-- : BFD_RELOC_AVR_CALLThis is a 32 bit reloc for the AVR that stores 23 bit value into22 bits.-- : BFD_RELOC_AVR_LDIThis is a 16 bit reloc for the AVR that stores all needed bits forabsolute addressing with ldi with overflow check to linktime-- : BFD_RELOC_AVR_6This is a 6 bit reloc for the AVR that stores offset for ldd/stdinstructions-- : BFD_RELOC_AVR_6_ADIWThis is a 6 bit reloc for the AVR that stores offset for adiw/sbiwinstructions-- : BFD_RELOC_AVR_8_LOThis is a 8 bit reloc for the AVR that stores bits 0..7 of a symbolin .byte lo8(symbol)-- : BFD_RELOC_AVR_8_HIThis is a 8 bit reloc for the AVR that stores bits 8..15 of asymbol in .byte hi8(symbol)-- : BFD_RELOC_AVR_8_HLOThis is a 8 bit reloc for the AVR that stores bits 16..23 of asymbol in .byte hlo8(symbol)-- : BFD_RELOC_AVR_DIFF8-- : BFD_RELOC_AVR_DIFF16-- : BFD_RELOC_AVR_DIFF32AVR relocations to mark the difference of two local symbols.These are only needed to support linker relaxation and can beignored when not relaxing. The field is set to the value of thedifference assuming no relaxation. The relocation encodes theposition of the second symbol so the linker can determine whetherto adjust the field value.-- : BFD_RELOC_AVR_LDS_STS_16This is a 7 bit reloc for the AVR that stores SRAM address for16bit lds and sts instructions supported only tiny core.-- : BFD_RELOC_AVR_PORT6This is a 6 bit reloc for the AVR that stores an I/O registernumber for the IN and OUT instructions-- : BFD_RELOC_AVR_PORT5This is a 5 bit reloc for the AVR that stores an I/O registernumber for the SBIC, SBIS, SBI and CBI instructions-- : BFD_RELOC_RL78_NEG8-- : BFD_RELOC_RL78_NEG16-- : BFD_RELOC_RL78_NEG24-- : BFD_RELOC_RL78_NEG32-- : BFD_RELOC_RL78_16_OP-- : BFD_RELOC_RL78_24_OP-- : BFD_RELOC_RL78_32_OP-- : BFD_RELOC_RL78_8U-- : BFD_RELOC_RL78_16U-- : BFD_RELOC_RL78_24U-- : BFD_RELOC_RL78_DIR3U_PCREL-- : BFD_RELOC_RL78_DIFF-- : BFD_RELOC_RL78_GPRELB-- : BFD_RELOC_RL78_GPRELW-- : BFD_RELOC_RL78_GPRELL-- : BFD_RELOC_RL78_SYM-- : BFD_RELOC_RL78_OP_SUBTRACT-- : BFD_RELOC_RL78_OP_NEG-- : BFD_RELOC_RL78_OP_AND-- : BFD_RELOC_RL78_OP_SHRA-- : BFD_RELOC_RL78_ABS8-- : BFD_RELOC_RL78_ABS16-- : BFD_RELOC_RL78_ABS16_REV-- : BFD_RELOC_RL78_ABS32-- : BFD_RELOC_RL78_ABS32_REV-- : BFD_RELOC_RL78_ABS16U-- : BFD_RELOC_RL78_ABS16UW-- : BFD_RELOC_RL78_ABS16UL-- : BFD_RELOC_RL78_RELAX-- : BFD_RELOC_RL78_HI16-- : BFD_RELOC_RL78_HI8-- : BFD_RELOC_RL78_LO16-- : BFD_RELOC_RL78_CODERenesas RL78 Relocations.-- : BFD_RELOC_RX_NEG8-- : BFD_RELOC_RX_NEG16-- : BFD_RELOC_RX_NEG24-- : BFD_RELOC_RX_NEG32-- : BFD_RELOC_RX_16_OP-- : BFD_RELOC_RX_24_OP-- : BFD_RELOC_RX_32_OP-- : BFD_RELOC_RX_8U-- : BFD_RELOC_RX_16U-- : BFD_RELOC_RX_24U-- : BFD_RELOC_RX_DIR3U_PCREL-- : BFD_RELOC_RX_DIFF-- : BFD_RELOC_RX_GPRELB-- : BFD_RELOC_RX_GPRELW-- : BFD_RELOC_RX_GPRELL-- : BFD_RELOC_RX_SYM-- : BFD_RELOC_RX_OP_SUBTRACT-- : BFD_RELOC_RX_OP_NEG-- : BFD_RELOC_RX_ABS8-- : BFD_RELOC_RX_ABS16-- : BFD_RELOC_RX_ABS16_REV-- : BFD_RELOC_RX_ABS32-- : BFD_RELOC_RX_ABS32_REV-- : BFD_RELOC_RX_ABS16U-- : BFD_RELOC_RX_ABS16UW-- : BFD_RELOC_RX_ABS16UL-- : BFD_RELOC_RX_RELAXRenesas RX Relocations.-- : BFD_RELOC_390_12Direct 12 bit.-- : BFD_RELOC_390_GOT1212 bit GOT offset.-- : BFD_RELOC_390_PLT3232 bit PC relative PLT address.-- : BFD_RELOC_390_COPYCopy symbol at runtime.-- : BFD_RELOC_390_GLOB_DATCreate GOT entry.-- : BFD_RELOC_390_JMP_SLOTCreate PLT entry.-- : BFD_RELOC_390_RELATIVEAdjust by program base.-- : BFD_RELOC_390_GOTPC32 bit PC relative offset to GOT.-- : BFD_RELOC_390_GOT1616 bit GOT offset.-- : BFD_RELOC_390_PC12DBLPC relative 12 bit shifted by 1.-- : BFD_RELOC_390_PLT12DBL12 bit PC rel. PLT shifted by 1.-- : BFD_RELOC_390_PC16DBLPC relative 16 bit shifted by 1.-- : BFD_RELOC_390_PLT16DBL16 bit PC rel. PLT shifted by 1.-- : BFD_RELOC_390_PC24DBLPC relative 24 bit shifted by 1.-- : BFD_RELOC_390_PLT24DBL24 bit PC rel. PLT shifted by 1.-- : BFD_RELOC_390_PC32DBLPC relative 32 bit shifted by 1.-- : BFD_RELOC_390_PLT32DBL32 bit PC rel. PLT shifted by 1.-- : BFD_RELOC_390_GOTPCDBL32 bit PC rel. GOT shifted by 1.-- : BFD_RELOC_390_GOT6464 bit GOT offset.-- : BFD_RELOC_390_PLT6464 bit PC relative PLT address.-- : BFD_RELOC_390_GOTENT32 bit rel. offset to GOT entry.-- : BFD_RELOC_390_GOTOFF6464 bit offset to GOT.-- : BFD_RELOC_390_GOTPLT1212-bit offset to symbol-entry within GOT, with PLT handling.-- : BFD_RELOC_390_GOTPLT1616-bit offset to symbol-entry within GOT, with PLT handling.-- : BFD_RELOC_390_GOTPLT3232-bit offset to symbol-entry within GOT, with PLT handling.-- : BFD_RELOC_390_GOTPLT6464-bit offset to symbol-entry within GOT, with PLT handling.-- : BFD_RELOC_390_GOTPLTENT32-bit rel. offset to symbol-entry within GOT, with PLT handling.-- : BFD_RELOC_390_PLTOFF1616-bit rel. offset from the GOT to a PLT entry.-- : BFD_RELOC_390_PLTOFF3232-bit rel. offset from the GOT to a PLT entry.-- : BFD_RELOC_390_PLTOFF6464-bit rel. offset from the GOT to a PLT entry.-- : BFD_RELOC_390_TLS_LOAD-- : BFD_RELOC_390_TLS_GDCALL-- : BFD_RELOC_390_TLS_LDCALL-- : BFD_RELOC_390_TLS_GD32-- : BFD_RELOC_390_TLS_GD64-- : BFD_RELOC_390_TLS_GOTIE12-- : BFD_RELOC_390_TLS_GOTIE32-- : BFD_RELOC_390_TLS_GOTIE64-- : BFD_RELOC_390_TLS_LDM32-- : BFD_RELOC_390_TLS_LDM64-- : BFD_RELOC_390_TLS_IE32-- : BFD_RELOC_390_TLS_IE64-- : BFD_RELOC_390_TLS_IEENT-- : BFD_RELOC_390_TLS_LE32-- : BFD_RELOC_390_TLS_LE64-- : BFD_RELOC_390_TLS_LDO32-- : BFD_RELOC_390_TLS_LDO64-- : BFD_RELOC_390_TLS_DTPMOD-- : BFD_RELOC_390_TLS_DTPOFF-- : BFD_RELOC_390_TLS_TPOFFs390 tls relocations.-- : BFD_RELOC_390_20-- : BFD_RELOC_390_GOT20-- : BFD_RELOC_390_GOTPLT20-- : BFD_RELOC_390_TLS_GOTIE20Long displacement extension.-- : BFD_RELOC_390_IRELATIVESTT_GNU_IFUNC relocation.-- : BFD_RELOC_SCORE_GPREL15Score relocations Low 16 bit for load/store-- : BFD_RELOC_SCORE_DUMMY2-- : BFD_RELOC_SCORE_JMPThis is a 24-bit reloc with the right 1 bit assumed to be 0-- : BFD_RELOC_SCORE_BRANCHThis is a 19-bit reloc with the right 1 bit assumed to be 0-- : BFD_RELOC_SCORE_IMM30This is a 32-bit reloc for 48-bit instructions.-- : BFD_RELOC_SCORE_IMM32This is a 32-bit reloc for 48-bit instructions.-- : BFD_RELOC_SCORE16_JMPThis is a 11-bit reloc with the right 1 bit assumed to be 0-- : BFD_RELOC_SCORE16_BRANCHThis is a 8-bit reloc with the right 1 bit assumed to be 0-- : BFD_RELOC_SCORE_BCMPThis is a 9-bit reloc with the right 1 bit assumed to be 0-- : BFD_RELOC_SCORE_GOT15-- : BFD_RELOC_SCORE_GOT_LO16-- : BFD_RELOC_SCORE_CALL15-- : BFD_RELOC_SCORE_DUMMY_HI16Undocumented Score relocs-- : BFD_RELOC_IP2K_FR9Scenix IP2K - 9-bit register number / data address-- : BFD_RELOC_IP2K_BANKScenix IP2K - 4-bit register/data bank number-- : BFD_RELOC_IP2K_ADDR16CJPScenix IP2K - low 13 bits of instruction word address-- : BFD_RELOC_IP2K_PAGE3Scenix IP2K - high 3 bits of instruction word address-- : BFD_RELOC_IP2K_LO8DATA-- : BFD_RELOC_IP2K_HI8DATA-- : BFD_RELOC_IP2K_EX8DATAScenix IP2K - ext/low/high 8 bits of data address-- : BFD_RELOC_IP2K_LO8INSN-- : BFD_RELOC_IP2K_HI8INSNScenix IP2K - low/high 8 bits of instruction word address-- : BFD_RELOC_IP2K_PC_SKIPScenix IP2K - even/odd PC modifier to modify snb pcl.0-- : BFD_RELOC_IP2K_TEXTScenix IP2K - 16 bit word address in text section.-- : BFD_RELOC_IP2K_FR_OFFSETScenix IP2K - 7-bit sp or dp offset-- : BFD_RELOC_VPE4KMATH_DATA-- : BFD_RELOC_VPE4KMATH_INSNScenix VPE4K coprocessor - data/insn-space addressing-- : BFD_RELOC_VTABLE_INHERIT-- : BFD_RELOC_VTABLE_ENTRYThese two relocations are used by the linker to determine which ofthe entries in a C++ virtual function table are actually used.When the -gc-sections option is given, the linker will zero outthe entries that are not used, so that the code for thosefunctions need not be included in the output.VTABLE_INHERIT is a zero-space relocation used to describe to thelinker the inheritance tree of a C++ virtual function table. Therelocation's symbol should be the parent class' vtable, and therelocation should be located at the child vtable.VTABLE_ENTRY is a zero-space relocation that describes the use of avirtual function table entry. The reloc's symbol should refer tothe table of the class mentioned in the code. Off of that base,an offset describes the entry that is being used. For Rela hosts,this offset is stored in the reloc's addend. For Rel hosts, weare forced to put this offset in the reloc's section offset.-- : BFD_RELOC_IA64_IMM14-- : BFD_RELOC_IA64_IMM22-- : BFD_RELOC_IA64_IMM64-- : BFD_RELOC_IA64_DIR32MSB-- : BFD_RELOC_IA64_DIR32LSB-- : BFD_RELOC_IA64_DIR64MSB-- : BFD_RELOC_IA64_DIR64LSB-- : BFD_RELOC_IA64_GPREL22-- : BFD_RELOC_IA64_GPREL64I-- : BFD_RELOC_IA64_GPREL32MSB-- : BFD_RELOC_IA64_GPREL32LSB-- : BFD_RELOC_IA64_GPREL64MSB-- : BFD_RELOC_IA64_GPREL64LSB-- : BFD_RELOC_IA64_LTOFF22-- : BFD_RELOC_IA64_LTOFF64I-- : BFD_RELOC_IA64_PLTOFF22-- : BFD_RELOC_IA64_PLTOFF64I-- : BFD_RELOC_IA64_PLTOFF64MSB-- : BFD_RELOC_IA64_PLTOFF64LSB-- : BFD_RELOC_IA64_FPTR64I-- : BFD_RELOC_IA64_FPTR32MSB-- : BFD_RELOC_IA64_FPTR32LSB-- : BFD_RELOC_IA64_FPTR64MSB-- : BFD_RELOC_IA64_FPTR64LSB-- : BFD_RELOC_IA64_PCREL21B-- : BFD_RELOC_IA64_PCREL21BI-- : BFD_RELOC_IA64_PCREL21M-- : BFD_RELOC_IA64_PCREL21F-- : BFD_RELOC_IA64_PCREL22-- : BFD_RELOC_IA64_PCREL60B-- : BFD_RELOC_IA64_PCREL64I-- : BFD_RELOC_IA64_PCREL32MSB-- : BFD_RELOC_IA64_PCREL32LSB-- : BFD_RELOC_IA64_PCREL64MSB-- : BFD_RELOC_IA64_PCREL64LSB-- : BFD_RELOC_IA64_LTOFF_FPTR22-- : BFD_RELOC_IA64_LTOFF_FPTR64I-- : BFD_RELOC_IA64_LTOFF_FPTR32MSB-- : BFD_RELOC_IA64_LTOFF_FPTR32LSB-- : BFD_RELOC_IA64_LTOFF_FPTR64MSB-- : BFD_RELOC_IA64_LTOFF_FPTR64LSB-- : BFD_RELOC_IA64_SEGREL32MSB-- : BFD_RELOC_IA64_SEGREL32LSB-- : BFD_RELOC_IA64_SEGREL64MSB-- : BFD_RELOC_IA64_SEGREL64LSB-- : BFD_RELOC_IA64_SECREL32MSB-- : BFD_RELOC_IA64_SECREL32LSB-- : BFD_RELOC_IA64_SECREL64MSB-- : BFD_RELOC_IA64_SECREL64LSB-- : BFD_RELOC_IA64_REL32MSB-- : BFD_RELOC_IA64_REL32LSB-- : BFD_RELOC_IA64_REL64MSB-- : BFD_RELOC_IA64_REL64LSB-- : BFD_RELOC_IA64_LTV32MSB-- : BFD_RELOC_IA64_LTV32LSB-- : BFD_RELOC_IA64_LTV64MSB-- : BFD_RELOC_IA64_LTV64LSB-- : BFD_RELOC_IA64_IPLTMSB-- : BFD_RELOC_IA64_IPLTLSB-- : BFD_RELOC_IA64_COPY-- : BFD_RELOC_IA64_LTOFF22X-- : BFD_RELOC_IA64_LDXMOV-- : BFD_RELOC_IA64_TPREL14-- : BFD_RELOC_IA64_TPREL22-- : BFD_RELOC_IA64_TPREL64I-- : BFD_RELOC_IA64_TPREL64MSB-- : BFD_RELOC_IA64_TPREL64LSB-- : BFD_RELOC_IA64_LTOFF_TPREL22-- : BFD_RELOC_IA64_DTPMOD64MSB-- : BFD_RELOC_IA64_DTPMOD64LSB-- : BFD_RELOC_IA64_LTOFF_DTPMOD22-- : BFD_RELOC_IA64_DTPREL14-- : BFD_RELOC_IA64_DTPREL22-- : BFD_RELOC_IA64_DTPREL64I-- : BFD_RELOC_IA64_DTPREL32MSB-- : BFD_RELOC_IA64_DTPREL32LSB-- : BFD_RELOC_IA64_DTPREL64MSB-- : BFD_RELOC_IA64_DTPREL64LSB-- : BFD_RELOC_IA64_LTOFF_DTPREL22Intel IA64 Relocations.-- : BFD_RELOC_M68HC11_HI8Motorola 68HC11 reloc. This is the 8 bit high part of an absoluteaddress.-- : BFD_RELOC_M68HC11_LO8Motorola 68HC11 reloc. This is the 8 bit low part of an absoluteaddress.-- : BFD_RELOC_M68HC11_3BMotorola 68HC11 reloc. This is the 3 bit of a value.-- : BFD_RELOC_M68HC11_RL_JUMPMotorola 68HC11 reloc. This reloc marks the beginning of ajump/call instruction. It is used for linker relaxation tocorrectly identify beginning of instruction and change somebranches to use PC-relative addressing mode.-- : BFD_RELOC_M68HC11_RL_GROUPMotorola 68HC11 reloc. This reloc marks a group of severalinstructions that gcc generates and for which the linkerrelaxation pass can modify and/or remove some of them.-- : BFD_RELOC_M68HC11_LO16Motorola 68HC11 reloc. This is the 16-bit lower part of anaddress. It is used for 'call' instruction to specify the symboladdress without any special transformation (due to memory bankwindow).-- : BFD_RELOC_M68HC11_PAGEMotorola 68HC11 reloc. This is a 8-bit reloc that specifies thepage number of an address. It is used by 'call' instruction tospecify the page number of the symbol.-- : BFD_RELOC_M68HC11_24Motorola 68HC11 reloc. This is a 24-bit reloc that represents theaddress with a 16-bit value and a 8-bit page number. The symboladdress is transformed to follow the 16K memory bank of 68HC12(seen as mapped in the window).-- : BFD_RELOC_M68HC12_5BMotorola 68HC12 reloc. This is the 5 bits of a value.-- : BFD_RELOC_XGATE_RL_JUMPFreescale XGATE reloc. This reloc marks the beginning of abra/jal instruction.-- : BFD_RELOC_XGATE_RL_GROUPFreescale XGATE reloc. This reloc marks a group of severalinstructions that gcc generates and for which the linkerrelaxation pass can modify and/or remove some of them.-- : BFD_RELOC_XGATE_LO16Freescale XGATE reloc. This is the 16-bit lower part of anaddress. It is used for the '16-bit' instructions.-- : BFD_RELOC_XGATE_GPAGEFreescale XGATE reloc.-- : BFD_RELOC_XGATE_24Freescale XGATE reloc.-- : BFD_RELOC_XGATE_PCREL_9Freescale XGATE reloc. This is a 9-bit pc-relative reloc.-- : BFD_RELOC_XGATE_PCREL_10Freescale XGATE reloc. This is a 10-bit pc-relative reloc.-- : BFD_RELOC_XGATE_IMM8_LOFreescale XGATE reloc. This is the 16-bit lower part of anaddress. It is used for the '16-bit' instructions.-- : BFD_RELOC_XGATE_IMM8_HIFreescale XGATE reloc. This is the 16-bit higher part of anaddress. It is used for the '16-bit' instructions.-- : BFD_RELOC_XGATE_IMM3Freescale XGATE reloc. This is a 3-bit pc-relative reloc.-- : BFD_RELOC_XGATE_IMM4Freescale XGATE reloc. This is a 4-bit pc-relative reloc.-- : BFD_RELOC_XGATE_IMM5Freescale XGATE reloc. This is a 5-bit pc-relative reloc.-- : BFD_RELOC_M68HC12_9BMotorola 68HC12 reloc. This is the 9 bits of a value.-- : BFD_RELOC_M68HC12_16BMotorola 68HC12 reloc. This is the 16 bits of a value.-- : BFD_RELOC_M68HC12_9_PCRELMotorola 68HC12/XGATE reloc. This is a PCREL9 branch.-- : BFD_RELOC_M68HC12_10_PCRELMotorola 68HC12/XGATE reloc. This is a PCREL10 branch.-- : BFD_RELOC_M68HC12_LO8XGMotorola 68HC12/XGATE reloc. This is the 8 bit low part of anabsolute address and immediately precedes a matching HI8XG part.-- : BFD_RELOC_M68HC12_HI8XGMotorola 68HC12/XGATE reloc. This is the 8 bit high part of anabsolute address and immediately follows a matching LO8XG part.-- : BFD_RELOC_16C_NUM08-- : BFD_RELOC_16C_NUM08_C-- : BFD_RELOC_16C_NUM16-- : BFD_RELOC_16C_NUM16_C-- : BFD_RELOC_16C_NUM32-- : BFD_RELOC_16C_NUM32_C-- : BFD_RELOC_16C_DISP04-- : BFD_RELOC_16C_DISP04_C-- : BFD_RELOC_16C_DISP08-- : BFD_RELOC_16C_DISP08_C-- : BFD_RELOC_16C_DISP16-- : BFD_RELOC_16C_DISP16_C-- : BFD_RELOC_16C_DISP24-- : BFD_RELOC_16C_DISP24_C-- : BFD_RELOC_16C_DISP24a-- : BFD_RELOC_16C_DISP24a_C-- : BFD_RELOC_16C_REG04-- : BFD_RELOC_16C_REG04_C-- : BFD_RELOC_16C_REG04a-- : BFD_RELOC_16C_REG04a_C-- : BFD_RELOC_16C_REG14-- : BFD_RELOC_16C_REG14_C-- : BFD_RELOC_16C_REG16-- : BFD_RELOC_16C_REG16_C-- : BFD_RELOC_16C_REG20-- : BFD_RELOC_16C_REG20_C-- : BFD_RELOC_16C_ABS20-- : BFD_RELOC_16C_ABS20_C-- : BFD_RELOC_16C_ABS24-- : BFD_RELOC_16C_ABS24_C-- : BFD_RELOC_16C_IMM04-- : BFD_RELOC_16C_IMM04_C-- : BFD_RELOC_16C_IMM16-- : BFD_RELOC_16C_IMM16_C-- : BFD_RELOC_16C_IMM20-- : BFD_RELOC_16C_IMM20_C-- : BFD_RELOC_16C_IMM24-- : BFD_RELOC_16C_IMM24_C-- : BFD_RELOC_16C_IMM32-- : BFD_RELOC_16C_IMM32_CNS CR16C Relocations.-- : BFD_RELOC_CR16_NUM8-- : BFD_RELOC_CR16_NUM16-- : BFD_RELOC_CR16_NUM32-- : BFD_RELOC_CR16_NUM32a-- : BFD_RELOC_CR16_REGREL0-- : BFD_RELOC_CR16_REGREL4-- : BFD_RELOC_CR16_REGREL4a-- : BFD_RELOC_CR16_REGREL14-- : BFD_RELOC_CR16_REGREL14a-- : BFD_RELOC_CR16_REGREL16-- : BFD_RELOC_CR16_REGREL20-- : BFD_RELOC_CR16_REGREL20a-- : BFD_RELOC_CR16_ABS20-- : BFD_RELOC_CR16_ABS24-- : BFD_RELOC_CR16_IMM4-- : BFD_RELOC_CR16_IMM8-- : BFD_RELOC_CR16_IMM16-- : BFD_RELOC_CR16_IMM20-- : BFD_RELOC_CR16_IMM24-- : BFD_RELOC_CR16_IMM32-- : BFD_RELOC_CR16_IMM32a-- : BFD_RELOC_CR16_DISP4-- : BFD_RELOC_CR16_DISP8-- : BFD_RELOC_CR16_DISP16-- : BFD_RELOC_CR16_DISP20-- : BFD_RELOC_CR16_DISP24-- : BFD_RELOC_CR16_DISP24a-- : BFD_RELOC_CR16_SWITCH8-- : BFD_RELOC_CR16_SWITCH16-- : BFD_RELOC_CR16_SWITCH32-- : BFD_RELOC_CR16_GOT_REGREL20-- : BFD_RELOC_CR16_GOTC_REGREL20-- : BFD_RELOC_CR16_GLOB_DATNS CR16 Relocations.-- : BFD_RELOC_CRX_REL4-- : BFD_RELOC_CRX_REL8-- : BFD_RELOC_CRX_REL8_CMP-- : BFD_RELOC_CRX_REL16-- : BFD_RELOC_CRX_REL24-- : BFD_RELOC_CRX_REL32-- : BFD_RELOC_CRX_REGREL12-- : BFD_RELOC_CRX_REGREL22-- : BFD_RELOC_CRX_REGREL28-- : BFD_RELOC_CRX_REGREL32-- : BFD_RELOC_CRX_ABS16-- : BFD_RELOC_CRX_ABS32-- : BFD_RELOC_CRX_NUM8-- : BFD_RELOC_CRX_NUM16-- : BFD_RELOC_CRX_NUM32-- : BFD_RELOC_CRX_IMM16-- : BFD_RELOC_CRX_IMM32-- : BFD_RELOC_CRX_SWITCH8-- : BFD_RELOC_CRX_SWITCH16-- : BFD_RELOC_CRX_SWITCH32NS CRX Relocations.-- : BFD_RELOC_CRIS_BDISP8-- : BFD_RELOC_CRIS_UNSIGNED_5-- : BFD_RELOC_CRIS_SIGNED_6-- : BFD_RELOC_CRIS_UNSIGNED_6-- : BFD_RELOC_CRIS_SIGNED_8-- : BFD_RELOC_CRIS_UNSIGNED_8-- : BFD_RELOC_CRIS_SIGNED_16-- : BFD_RELOC_CRIS_UNSIGNED_16-- : BFD_RELOC_CRIS_LAPCQ_OFFSET-- : BFD_RELOC_CRIS_UNSIGNED_4These relocs are only used within the CRIS assembler. They are not(at present) written to any object files.-- : BFD_RELOC_CRIS_COPY-- : BFD_RELOC_CRIS_GLOB_DAT-- : BFD_RELOC_CRIS_JUMP_SLOT-- : BFD_RELOC_CRIS_RELATIVERelocs used in ELF shared libraries for CRIS.-- : BFD_RELOC_CRIS_32_GOT32-bit offset to symbol-entry within GOT.-- : BFD_RELOC_CRIS_16_GOT16-bit offset to symbol-entry within GOT.-- : BFD_RELOC_CRIS_32_GOTPLT32-bit offset to symbol-entry within GOT, with PLT handling.-- : BFD_RELOC_CRIS_16_GOTPLT16-bit offset to symbol-entry within GOT, with PLT handling.-- : BFD_RELOC_CRIS_32_GOTREL32-bit offset to symbol, relative to GOT.-- : BFD_RELOC_CRIS_32_PLT_GOTREL32-bit offset to symbol with PLT entry, relative to GOT.-- : BFD_RELOC_CRIS_32_PLT_PCREL32-bit offset to symbol with PLT entry, relative to thisrelocation.-- : BFD_RELOC_CRIS_32_GOT_GD-- : BFD_RELOC_CRIS_16_GOT_GD-- : BFD_RELOC_CRIS_32_GD-- : BFD_RELOC_CRIS_DTP-- : BFD_RELOC_CRIS_32_DTPREL-- : BFD_RELOC_CRIS_16_DTPREL-- : BFD_RELOC_CRIS_32_GOT_TPREL-- : BFD_RELOC_CRIS_16_GOT_TPREL-- : BFD_RELOC_CRIS_32_TPREL-- : BFD_RELOC_CRIS_16_TPREL-- : BFD_RELOC_CRIS_DTPMOD-- : BFD_RELOC_CRIS_32_IERelocs used in TLS code for CRIS.-- : BFD_RELOC_860_COPY-- : BFD_RELOC_860_GLOB_DAT-- : BFD_RELOC_860_JUMP_SLOT-- : BFD_RELOC_860_RELATIVE-- : BFD_RELOC_860_PC26-- : BFD_RELOC_860_PLT26-- : BFD_RELOC_860_PC16-- : BFD_RELOC_860_LOW0-- : BFD_RELOC_860_SPLIT0-- : BFD_RELOC_860_LOW1-- : BFD_RELOC_860_SPLIT1-- : BFD_RELOC_860_LOW2-- : BFD_RELOC_860_SPLIT2-- : BFD_RELOC_860_LOW3-- : BFD_RELOC_860_LOGOT0-- : BFD_RELOC_860_SPGOT0-- : BFD_RELOC_860_LOGOT1-- : BFD_RELOC_860_SPGOT1-- : BFD_RELOC_860_LOGOTOFF0-- : BFD_RELOC_860_SPGOTOFF0-- : BFD_RELOC_860_LOGOTOFF1-- : BFD_RELOC_860_SPGOTOFF1-- : BFD_RELOC_860_LOGOTOFF2-- : BFD_RELOC_860_LOGOTOFF3-- : BFD_RELOC_860_LOPC-- : BFD_RELOC_860_HIGHADJ-- : BFD_RELOC_860_HAGOT-- : BFD_RELOC_860_HAGOTOFF-- : BFD_RELOC_860_HAPC-- : BFD_RELOC_860_HIGH-- : BFD_RELOC_860_HIGOT-- : BFD_RELOC_860_HIGOTOFFIntel i860 Relocations.-- : BFD_RELOC_OR1K_REL_26-- : BFD_RELOC_OR1K_GOTPC_HI16-- : BFD_RELOC_OR1K_GOTPC_LO16-- : BFD_RELOC_OR1K_GOT16-- : BFD_RELOC_OR1K_PLT26-- : BFD_RELOC_OR1K_GOTOFF_HI16-- : BFD_RELOC_OR1K_GOTOFF_LO16-- : BFD_RELOC_OR1K_COPY-- : BFD_RELOC_OR1K_GLOB_DAT-- : BFD_RELOC_OR1K_JMP_SLOT-- : BFD_RELOC_OR1K_RELATIVE-- : BFD_RELOC_OR1K_TLS_GD_HI16-- : BFD_RELOC_OR1K_TLS_GD_LO16-- : BFD_RELOC_OR1K_TLS_LDM_HI16-- : BFD_RELOC_OR1K_TLS_LDM_LO16-- : BFD_RELOC_OR1K_TLS_LDO_HI16-- : BFD_RELOC_OR1K_TLS_LDO_LO16-- : BFD_RELOC_OR1K_TLS_IE_HI16-- : BFD_RELOC_OR1K_TLS_IE_LO16-- : BFD_RELOC_OR1K_TLS_LE_HI16-- : BFD_RELOC_OR1K_TLS_LE_LO16-- : BFD_RELOC_OR1K_TLS_TPOFF-- : BFD_RELOC_OR1K_TLS_DTPOFF-- : BFD_RELOC_OR1K_TLS_DTPMODOpenRISC 1000 Relocations.-- : BFD_RELOC_H8_DIR16A8-- : BFD_RELOC_H8_DIR16R8-- : BFD_RELOC_H8_DIR24A8-- : BFD_RELOC_H8_DIR24R8-- : BFD_RELOC_H8_DIR32A16-- : BFD_RELOC_H8_DISP32A16H8 elf Relocations.-- : BFD_RELOC_XSTORMY16_REL_12-- : BFD_RELOC_XSTORMY16_12-- : BFD_RELOC_XSTORMY16_24-- : BFD_RELOC_XSTORMY16_FPTR16Sony Xstormy16 Relocations.-- : BFD_RELOC_RELCSelf-describing complex relocations.-- : BFD_RELOC_XC16X_PAG-- : BFD_RELOC_XC16X_POF-- : BFD_RELOC_XC16X_SEG-- : BFD_RELOC_XC16X_SOFInfineon Relocations.-- : BFD_RELOC_VAX_GLOB_DAT-- : BFD_RELOC_VAX_JMP_SLOT-- : BFD_RELOC_VAX_RELATIVERelocations used by VAX ELF.-- : BFD_RELOC_MT_PC16Morpho MT - 16 bit immediate relocation.-- : BFD_RELOC_MT_HI16Morpho MT - Hi 16 bits of an address.-- : BFD_RELOC_MT_LO16Morpho MT - Low 16 bits of an address.-- : BFD_RELOC_MT_GNU_VTINHERITMorpho MT - Used to tell the linker which vtable entries are used.-- : BFD_RELOC_MT_GNU_VTENTRYMorpho MT - Used to tell the linker which vtable entries are used.-- : BFD_RELOC_MT_PCINSN8Morpho MT - 8 bit immediate relocation.-- : BFD_RELOC_MSP430_10_PCREL-- : BFD_RELOC_MSP430_16_PCREL-- : BFD_RELOC_MSP430_16-- : BFD_RELOC_MSP430_16_PCREL_BYTE-- : BFD_RELOC_MSP430_16_BYTE-- : BFD_RELOC_MSP430_2X_PCREL-- : BFD_RELOC_MSP430_RL_PCREL-- : BFD_RELOC_MSP430_ABS8-- : BFD_RELOC_MSP430X_PCR20_EXT_SRC-- : BFD_RELOC_MSP430X_PCR20_EXT_DST-- : BFD_RELOC_MSP430X_PCR20_EXT_ODST-- : BFD_RELOC_MSP430X_ABS20_EXT_SRC-- : BFD_RELOC_MSP430X_ABS20_EXT_DST-- : BFD_RELOC_MSP430X_ABS20_EXT_ODST-- : BFD_RELOC_MSP430X_ABS20_ADR_SRC-- : BFD_RELOC_MSP430X_ABS20_ADR_DST-- : BFD_RELOC_MSP430X_PCR16-- : BFD_RELOC_MSP430X_PCR20_CALL-- : BFD_RELOC_MSP430X_ABS16-- : BFD_RELOC_MSP430_ABS_HI16-- : BFD_RELOC_MSP430_PREL31-- : BFD_RELOC_MSP430_SYM_DIFFmsp430 specific relocation codes-- : BFD_RELOC_NIOS2_S16-- : BFD_RELOC_NIOS2_U16-- : BFD_RELOC_NIOS2_CALL26-- : BFD_RELOC_NIOS2_IMM5-- : BFD_RELOC_NIOS2_CACHE_OPX-- : BFD_RELOC_NIOS2_IMM6-- : BFD_RELOC_NIOS2_IMM8-- : BFD_RELOC_NIOS2_HI16-- : BFD_RELOC_NIOS2_LO16-- : BFD_RELOC_NIOS2_HIADJ16-- : BFD_RELOC_NIOS2_GPREL-- : BFD_RELOC_NIOS2_UJMP-- : BFD_RELOC_NIOS2_CJMP-- : BFD_RELOC_NIOS2_CALLR-- : BFD_RELOC_NIOS2_ALIGN-- : BFD_RELOC_NIOS2_GOT16-- : BFD_RELOC_NIOS2_CALL16-- : BFD_RELOC_NIOS2_GOTOFF_LO-- : BFD_RELOC_NIOS2_GOTOFF_HA-- : BFD_RELOC_NIOS2_PCREL_LO-- : BFD_RELOC_NIOS2_PCREL_HA-- : BFD_RELOC_NIOS2_TLS_GD16-- : BFD_RELOC_NIOS2_TLS_LDM16-- : BFD_RELOC_NIOS2_TLS_LDO16-- : BFD_RELOC_NIOS2_TLS_IE16-- : BFD_RELOC_NIOS2_TLS_LE16-- : BFD_RELOC_NIOS2_TLS_DTPMOD-- : BFD_RELOC_NIOS2_TLS_DTPREL-- : BFD_RELOC_NIOS2_TLS_TPREL-- : BFD_RELOC_NIOS2_COPY-- : BFD_RELOC_NIOS2_GLOB_DAT-- : BFD_RELOC_NIOS2_JUMP_SLOT-- : BFD_RELOC_NIOS2_RELATIVE-- : BFD_RELOC_NIOS2_GOTOFF-- : BFD_RELOC_NIOS2_CALL26_NOAT-- : BFD_RELOC_NIOS2_GOT_LO-- : BFD_RELOC_NIOS2_GOT_HA-- : BFD_RELOC_NIOS2_CALL_LO-- : BFD_RELOC_NIOS2_CALL_HARelocations used by the Altera Nios II core.-- : BFD_RELOC_IQ2000_OFFSET_16-- : BFD_RELOC_IQ2000_OFFSET_21-- : BFD_RELOC_IQ2000_UHI16IQ2000 Relocations.-- : BFD_RELOC_XTENSA_RTLDSpecial Xtensa relocation used only by PLT entries in ELF sharedobjects to indicate that the runtime linker should set the valueto one of its own internal functions or data structures.-- : BFD_RELOC_XTENSA_GLOB_DAT-- : BFD_RELOC_XTENSA_JMP_SLOT-- : BFD_RELOC_XTENSA_RELATIVEXtensa relocations for ELF shared objects.-- : BFD_RELOC_XTENSA_PLTXtensa relocation used in ELF object files for symbols that mayrequire PLT entries. Otherwise, this is just a generic 32-bitrelocation.-- : BFD_RELOC_XTENSA_DIFF8-- : BFD_RELOC_XTENSA_DIFF16-- : BFD_RELOC_XTENSA_DIFF32Xtensa relocations to mark the difference of two local symbols.These are only needed to support linker relaxation and can beignored when not relaxing. The field is set to the value of thedifference assuming no relaxation. The relocation encodes theposition of the first symbol so the linker can determine whetherto adjust the field value.-- : BFD_RELOC_XTENSA_SLOT0_OP-- : BFD_RELOC_XTENSA_SLOT1_OP-- : BFD_RELOC_XTENSA_SLOT2_OP-- : BFD_RELOC_XTENSA_SLOT3_OP-- : BFD_RELOC_XTENSA_SLOT4_OP-- : BFD_RELOC_XTENSA_SLOT5_OP-- : BFD_RELOC_XTENSA_SLOT6_OP-- : BFD_RELOC_XTENSA_SLOT7_OP-- : BFD_RELOC_XTENSA_SLOT8_OP-- : BFD_RELOC_XTENSA_SLOT9_OP-- : BFD_RELOC_XTENSA_SLOT10_OP-- : BFD_RELOC_XTENSA_SLOT11_OP-- : BFD_RELOC_XTENSA_SLOT12_OP-- : BFD_RELOC_XTENSA_SLOT13_OP-- : BFD_RELOC_XTENSA_SLOT14_OPGeneric Xtensa relocations for instruction operands. Only the slotnumber is encoded in the relocation. The relocation applies to thelast PC-relative immediate operand, or if there are no PC-relativeimmediates, to the last immediate operand.-- : BFD_RELOC_XTENSA_SLOT0_ALT-- : BFD_RELOC_XTENSA_SLOT1_ALT-- : BFD_RELOC_XTENSA_SLOT2_ALT-- : BFD_RELOC_XTENSA_SLOT3_ALT-- : BFD_RELOC_XTENSA_SLOT4_ALT-- : BFD_RELOC_XTENSA_SLOT5_ALT-- : BFD_RELOC_XTENSA_SLOT6_ALT-- : BFD_RELOC_XTENSA_SLOT7_ALT-- : BFD_RELOC_XTENSA_SLOT8_ALT-- : BFD_RELOC_XTENSA_SLOT9_ALT-- : BFD_RELOC_XTENSA_SLOT10_ALT-- : BFD_RELOC_XTENSA_SLOT11_ALT-- : BFD_RELOC_XTENSA_SLOT12_ALT-- : BFD_RELOC_XTENSA_SLOT13_ALT-- : BFD_RELOC_XTENSA_SLOT14_ALTAlternate Xtensa relocations. Only the slot is encoded in therelocation. The meaning of these relocations is opcode-specific.-- : BFD_RELOC_XTENSA_OP0-- : BFD_RELOC_XTENSA_OP1-- : BFD_RELOC_XTENSA_OP2Xtensa relocations for backward compatibility. These have all beenreplaced by BFD_RELOC_XTENSA_SLOT0_OP.-- : BFD_RELOC_XTENSA_ASM_EXPANDXtensa relocation to mark that the assembler expanded theinstructions from an original target. The expansion size isencoded in the reloc size.-- : BFD_RELOC_XTENSA_ASM_SIMPLIFYXtensa relocation to mark that the linker should simplifyassembler-expanded instructions. This is commonly used internallyby the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.-- : BFD_RELOC_XTENSA_TLSDESC_FN-- : BFD_RELOC_XTENSA_TLSDESC_ARG-- : BFD_RELOC_XTENSA_TLS_DTPOFF-- : BFD_RELOC_XTENSA_TLS_TPOFF-- : BFD_RELOC_XTENSA_TLS_FUNC-- : BFD_RELOC_XTENSA_TLS_ARG-- : BFD_RELOC_XTENSA_TLS_CALLXtensa TLS relocations.-- : BFD_RELOC_Z80_DISP88 bit signed offset in (ix+d) or (iy+d).-- : BFD_RELOC_Z8K_DISP7DJNZ offset.-- : BFD_RELOC_Z8K_CALLRCALR offset.-- : BFD_RELOC_Z8K_IMM4L4 bit value.-- : BFD_RELOC_LM32_CALL-- : BFD_RELOC_LM32_BRANCH-- : BFD_RELOC_LM32_16_GOT-- : BFD_RELOC_LM32_GOTOFF_HI16-- : BFD_RELOC_LM32_GOTOFF_LO16-- : BFD_RELOC_LM32_COPY-- : BFD_RELOC_LM32_GLOB_DAT-- : BFD_RELOC_LM32_JMP_SLOT-- : BFD_RELOC_LM32_RELATIVELattice Mico32 relocations.-- : BFD_RELOC_MACH_O_SECTDIFFDifference between two section addreses. Must be followed by aBFD_RELOC_MACH_O_PAIR.-- : BFD_RELOC_MACH_O_LOCAL_SECTDIFFLike BFD_RELOC_MACH_O_SECTDIFF but with a local symbol.-- : BFD_RELOC_MACH_O_PAIRPair of relocation. Contains the first symbol.-- : BFD_RELOC_MACH_O_X86_64_BRANCH32-- : BFD_RELOC_MACH_O_X86_64_BRANCH8PCREL relocations. They are marked as branch to create PLT entryif required.-- : BFD_RELOC_MACH_O_X86_64_GOTUsed when referencing a GOT entry.-- : BFD_RELOC_MACH_O_X86_64_GOT_LOADUsed when loading a GOT entry with movq. It is specially markedso that the linker could optimize the movq to a leaq if possible.-- : BFD_RELOC_MACH_O_X86_64_SUBTRACTOR32Symbol will be substracted. Must be followed by a BFD_RELOC_64.-- : BFD_RELOC_MACH_O_X86_64_SUBTRACTOR64Symbol will be substracted. Must be followed by a BFD_RELOC_64.-- : BFD_RELOC_MACH_O_X86_64_PCREL32_1Same as BFD_RELOC_32_PCREL but with an implicit -1 addend.-- : BFD_RELOC_MACH_O_X86_64_PCREL32_2Same as BFD_RELOC_32_PCREL but with an implicit -2 addend.-- : BFD_RELOC_MACH_O_X86_64_PCREL32_4Same as BFD_RELOC_32_PCREL but with an implicit -4 addend.-- : BFD_RELOC_MICROBLAZE_32_LOThis is a 32 bit reloc for the microblaze that stores the low 16bits of a value-- : BFD_RELOC_MICROBLAZE_32_LO_PCRELThis is a 32 bit pc-relative reloc for the microblaze that storesthe low 16 bits of a value-- : BFD_RELOC_MICROBLAZE_32_ROSDAThis is a 32 bit reloc for the microblaze that stores a valuerelative to the read-only small data area anchor-- : BFD_RELOC_MICROBLAZE_32_RWSDAThis is a 32 bit reloc for the microblaze that stores a valuerelative to the read-write small data area anchor-- : BFD_RELOC_MICROBLAZE_32_SYM_OP_SYMThis is a 32 bit reloc for the microblaze to handle expressions ofthe form "Symbol Op Symbol"-- : BFD_RELOC_MICROBLAZE_64_NONEThis is a 64 bit reloc that stores the 32 bit pc relative value intwo words (with an imm instruction). No relocation is done here -only used for relaxing-- : BFD_RELOC_MICROBLAZE_64_GOTPCThis is a 64 bit reloc that stores the 32 bit pc relative value intwo words (with an imm instruction). The relocation isPC-relative GOT offset-- : BFD_RELOC_MICROBLAZE_64_GOTThis is a 64 bit reloc that stores the 32 bit pc relative value intwo words (with an imm instruction). The relocation is GOT offset-- : BFD_RELOC_MICROBLAZE_64_PLTThis is a 64 bit reloc that stores the 32 bit pc relative value intwo words (with an imm instruction). The relocation isPC-relative offset into PLT-- : BFD_RELOC_MICROBLAZE_64_GOTOFFThis is a 64 bit reloc that stores the 32 bit GOT relative valuein two words (with an imm instruction). The relocation isrelative offset from _GLOBAL_OFFSET_TABLE_-- : BFD_RELOC_MICROBLAZE_32_GOTOFFThis is a 32 bit reloc that stores the 32 bit GOT relative valuein a word. The relocation is relative offset from-- : BFD_RELOC_MICROBLAZE_COPYThis is used to tell the dynamic linker to copy the value out ofthe dynamic object into the runtime process image.-- : BFD_RELOC_MICROBLAZE_64_TLSUnused Reloc-- : BFD_RELOC_MICROBLAZE_64_TLSGDThis is a 64 bit reloc that stores the 32 bit GOT relative valueof the GOT TLS GD info entry in two words (with an imminstruction). The relocation is GOT offset.-- : BFD_RELOC_MICROBLAZE_64_TLSLDThis is a 64 bit reloc that stores the 32 bit GOT relative valueof the GOT TLS LD info entry in two words (with an imminstruction). The relocation is GOT offset.-- : BFD_RELOC_MICROBLAZE_32_TLSDTPMODThis is a 32 bit reloc that stores the Module ID to GOT(n).-- : BFD_RELOC_MICROBLAZE_32_TLSDTPRELThis is a 32 bit reloc that stores TLS offset to GOT(n+1).-- : BFD_RELOC_MICROBLAZE_64_TLSDTPRELThis is a 32 bit reloc for storing TLS offset to two words (usesimm instruction)-- : BFD_RELOC_MICROBLAZE_64_TLSGOTTPRELThis is a 64 bit reloc that stores 32-bit thread pointer relativeoffset to two words (uses imm instruction).-- : BFD_RELOC_MICROBLAZE_64_TLSTPRELThis is a 64 bit reloc that stores 32-bit thread pointer relativeoffset to two words (uses imm instruction).-- : BFD_RELOC_AARCH64_RELOC_STARTAArch64 pseudo relocation code to mark the start of the AArch64relocation enumerators. N.B. the order of the enumerators isimportant as several tables in the AArch64 bfd backend are indexedby these enumerators; make sure they are all synced.-- : BFD_RELOC_AARCH64_NONEAArch64 null relocation code.-- : BFD_RELOC_AARCH64_64-- : BFD_RELOC_AARCH64_32-- : BFD_RELOC_AARCH64_16Basic absolute relocations of N bits. These are equivalent toBFD_RELOC_N and they were added to assist the indexing of the howtotable.-- : BFD_RELOC_AARCH64_64_PCREL-- : BFD_RELOC_AARCH64_32_PCREL-- : BFD_RELOC_AARCH64_16_PCRELPC-relative relocations. These are equivalent to BFD_RELOC_N_PCRELand they were added to assist the indexing of the howto table.-- : BFD_RELOC_AARCH64_MOVW_G0AArch64 MOV[NZK] instruction with most significant bits 0 to 15 ofan unsigned address/value.-- : BFD_RELOC_AARCH64_MOVW_G0_NCAArch64 MOV[NZK] instruction with less significant bits 0 to 15 ofan address/value. No overflow checking.-- : BFD_RELOC_AARCH64_MOVW_G1AArch64 MOV[NZK] instruction with most significant bits 16 to 31of an unsigned address/value.-- : BFD_RELOC_AARCH64_MOVW_G1_NCAArch64 MOV[NZK] instruction with less significant bits 16 to 31of an address/value. No overflow checking.-- : BFD_RELOC_AARCH64_MOVW_G2AArch64 MOV[NZK] instruction with most significant bits 32 to 47of an unsigned address/value.-- : BFD_RELOC_AARCH64_MOVW_G2_NCAArch64 MOV[NZK] instruction with less significant bits 32 to 47of an address/value. No overflow checking.-- : BFD_RELOC_AARCH64_MOVW_G3AArch64 MOV[NZK] instruction with most signficant bits 48 to 64 ofa signed or unsigned address/value.-- : BFD_RELOC_AARCH64_MOVW_G0_SAArch64 MOV[NZ] instruction with most significant bits 0 to 15 ofa signed value. Changes instruction to MOVZ or MOVN depending onthe value's sign.-- : BFD_RELOC_AARCH64_MOVW_G1_SAArch64 MOV[NZ] instruction with most significant bits 16 to 31 ofa signed value. Changes instruction to MOVZ or MOVN depending onthe value's sign.-- : BFD_RELOC_AARCH64_MOVW_G2_SAArch64 MOV[NZ] instruction with most significant bits 32 to 47 ofa signed value. Changes instruction to MOVZ or MOVN depending onthe value's sign.-- : BFD_RELOC_AARCH64_LD_LO19_PCRELAArch64 Load Literal instruction, holding a 19 bit pc-relative wordoffset. The lowest two bits must be zero and are not stored in theinstruction, giving a 21 bit signed byte offset.-- : BFD_RELOC_AARCH64_ADR_LO21_PCRELAArch64 ADR instruction, holding a simple 21 bit pc-relative byteoffset.-- : BFD_RELOC_AARCH64_ADR_HI21_PCRELAArch64 ADRP instruction, with bits 12 to 32 of a pc-relative pageoffset, giving a 4KB aligned page base address.-- : BFD_RELOC_AARCH64_ADR_HI21_NC_PCRELAArch64 ADRP instruction, with bits 12 to 32 of a pc-relative pageoffset, giving a 4KB aligned page base address, but with nooverflow checking.-- : BFD_RELOC_AARCH64_ADD_LO12AArch64 ADD immediate instruction, holding bits 0 to 11 of theaddress. Used in conjunction withBFD_RELOC_AARCH64_ADR_HI21_PCREL.-- : BFD_RELOC_AARCH64_LDST8_LO12AArch64 8-bit load/store instruction, holding bits 0 to 11 of theaddress. Used in conjunction withBFD_RELOC_AARCH64_ADR_HI21_PCREL.-- : BFD_RELOC_AARCH64_TSTBR14AArch64 14 bit pc-relative test bit and branch. The lowest twobits must be zero and are not stored in the instruction, giving a16 bit signed byte offset.-- : BFD_RELOC_AARCH64_BRANCH19AArch64 19 bit pc-relative conditional branch and compare & branch.The lowest two bits must be zero and are not stored in theinstruction, giving a 21 bit signed byte offset.-- : BFD_RELOC_AARCH64_JUMP26AArch64 26 bit pc-relative unconditional branch. The lowest twobits must be zero and are not stored in the instruction, giving a28 bit signed byte offset.-- : BFD_RELOC_AARCH64_CALL26AArch64 26 bit pc-relative unconditional branch and link. Thelowest two bits must be zero and are not stored in the instruction,giving a 28 bit signed byte offset.-- : BFD_RELOC_AARCH64_LDST16_LO12AArch64 16-bit load/store instruction, holding bits 0 to 11 of theaddress. Used in conjunction withBFD_RELOC_AARCH64_ADR_HI21_PCREL.-- : BFD_RELOC_AARCH64_LDST32_LO12AArch64 32-bit load/store instruction, holding bits 0 to 11 of theaddress. Used in conjunction withBFD_RELOC_AARCH64_ADR_HI21_PCREL.-- : BFD_RELOC_AARCH64_LDST64_LO12AArch64 64-bit load/store instruction, holding bits 0 to 11 of theaddress. Used in conjunction withBFD_RELOC_AARCH64_ADR_HI21_PCREL.-- : BFD_RELOC_AARCH64_LDST128_LO12AArch64 128-bit load/store instruction, holding bits 0 to 11 of theaddress. Used in conjunction withBFD_RELOC_AARCH64_ADR_HI21_PCREL.-- : BFD_RELOC_AARCH64_GOT_LD_PREL19AArch64 Load Literal instruction, holding a 19 bit PC relative wordoffset of the global offset table entry for a symbol. The lowesttwo bits must be zero and are not stored in the instruction,giving a 21 bit signed byte offset. This relocation type requiressigned overflow checking.-- : BFD_RELOC_AARCH64_ADR_GOT_PAGEGet to the page base of the global offset table entry for a symbolas part of an ADRP instruction using a 21 bit PC relativevalue.Used in conjunction with BFD_RELOC_AARCH64_LD64_GOT_LO12_NC.-- : BFD_RELOC_AARCH64_LD64_GOT_LO12_NCUnsigned 12 bit byte offset for 64 bit load/store from the page ofthe GOT entry for this symbol. Used in conjunction withBFD_RELOC_AARCH64_ADR_GOTPAGE. Valid in LP64 ABI only.-- : BFD_RELOC_AARCH64_LD32_GOT_LO12_NCUnsigned 12 bit byte offset for 32 bit load/store from the page ofthe GOT entry for this symbol. Used in conjunction withBFD_RELOC_AARCH64_ADR_GOTPAGE. Valid in ILP32 ABI only.-- : BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21Get to the page base of the global offset table entry for a symbolstls_index structure as part of an adrp instruction using a 21 bitPC relative value. Used in conjunction withBFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC.-- : BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NCUnsigned 12 bit byte offset to global offset table entry for asymbols tls_index structure. Used in conjunction withBFD_RELOC_AARCH64_TLSGD_ADR_PAGE21.-- : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1AArch64 TLS INITIAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NCAArch64 TLS INITIAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21AArch64 TLS INITIAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NCAArch64 TLS INITIAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NCAArch64 TLS INITIAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19AArch64 TLS INITIAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2AArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1AArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NCAArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0AArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NCAArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12AArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12AArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NCAArch64 TLS LOCAL EXEC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_LD_PREL19AArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21AArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21AArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NCAArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NCAArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NCAArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_OFF_G1AArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NCAArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_LDRAArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_ADDAArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_TLSDESC_CALLAArch64 TLS DESC relocation.-- : BFD_RELOC_AARCH64_COPYAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_GLOB_DATAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_JUMP_SLOTAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_RELATIVEAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_TLS_DTPMODAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_TLS_DTPRELAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_TLS_TPRELAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_TLSDESCAArch64 TLS relocation.-- : BFD_RELOC_AARCH64_IRELATIVEAArch64 support for STT_GNU_IFUNC.-- : BFD_RELOC_AARCH64_RELOC_ENDAArch64 pseudo relocation code to mark the end of the AArch64relocation enumerators that have direct mapping to ELF reloc codes.There are a few more enumerators after this one; those are mainlyused by the AArch64 assembler for the internal fixup or to selectone of the above enumerators.-- : BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUPAArch64 pseudo relocation code to be used internally by the AArch64assembler and not (currently) written to any object files.-- : BFD_RELOC_AARCH64_LDST_LO12AArch64 unspecified load/store instruction, holding bits 0 to 11of the address. Used in conjunction withBFD_RELOC_AARCH64_ADR_HI21_PCREL.-- : BFD_RELOC_AARCH64_LD_GOT_LO12_NCAArch64 pseudo relocation code to be used internally by the AArch64assembler and not (currently) written to any object files.-- : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NCAArch64 pseudo relocation code to be used internally by the AArch64assembler and not (currently) written to any object files.-- : BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NCAArch64 pseudo relocation code to be used internally by the AArch64assembler and not (currently) written to any object files.-- : BFD_RELOC_TILEPRO_COPY-- : BFD_RELOC_TILEPRO_GLOB_DAT-- : BFD_RELOC_TILEPRO_JMP_SLOT-- : BFD_RELOC_TILEPRO_RELATIVE-- : BFD_RELOC_TILEPRO_BROFF_X1-- : BFD_RELOC_TILEPRO_JOFFLONG_X1-- : BFD_RELOC_TILEPRO_JOFFLONG_X1_PLT-- : BFD_RELOC_TILEPRO_IMM8_X0-- : BFD_RELOC_TILEPRO_IMM8_Y0-- : BFD_RELOC_TILEPRO_IMM8_X1-- : BFD_RELOC_TILEPRO_IMM8_Y1-- : BFD_RELOC_TILEPRO_DEST_IMM8_X1-- : BFD_RELOC_TILEPRO_MT_IMM15_X1-- : BFD_RELOC_TILEPRO_MF_IMM15_X1-- : BFD_RELOC_TILEPRO_IMM16_X0-- : BFD_RELOC_TILEPRO_IMM16_X1-- : BFD_RELOC_TILEPRO_IMM16_X0_LO-- : BFD_RELOC_TILEPRO_IMM16_X1_LO-- : BFD_RELOC_TILEPRO_IMM16_X0_HI-- : BFD_RELOC_TILEPRO_IMM16_X1_HI-- : BFD_RELOC_TILEPRO_IMM16_X0_HA-- : BFD_RELOC_TILEPRO_IMM16_X1_HA-- : BFD_RELOC_TILEPRO_IMM16_X0_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X1_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X0_LO_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X1_LO_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X0_HI_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X1_HI_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X0_HA_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X1_HA_PCREL-- : BFD_RELOC_TILEPRO_IMM16_X0_GOT-- : BFD_RELOC_TILEPRO_IMM16_X1_GOT-- : BFD_RELOC_TILEPRO_IMM16_X0_GOT_LO-- : BFD_RELOC_TILEPRO_IMM16_X1_GOT_LO-- : BFD_RELOC_TILEPRO_IMM16_X0_GOT_HI-- : BFD_RELOC_TILEPRO_IMM16_X1_GOT_HI-- : BFD_RELOC_TILEPRO_IMM16_X0_GOT_HA-- : BFD_RELOC_TILEPRO_IMM16_X1_GOT_HA-- : BFD_RELOC_TILEPRO_MMSTART_X0-- : BFD_RELOC_TILEPRO_MMEND_X0-- : BFD_RELOC_TILEPRO_MMSTART_X1-- : BFD_RELOC_TILEPRO_MMEND_X1-- : BFD_RELOC_TILEPRO_SHAMT_X0-- : BFD_RELOC_TILEPRO_SHAMT_X1-- : BFD_RELOC_TILEPRO_SHAMT_Y0-- : BFD_RELOC_TILEPRO_SHAMT_Y1-- : BFD_RELOC_TILEPRO_TLS_GD_CALL-- : BFD_RELOC_TILEPRO_IMM8_X0_TLS_GD_ADD-- : BFD_RELOC_TILEPRO_IMM8_X1_TLS_GD_ADD-- : BFD_RELOC_TILEPRO_IMM8_Y0_TLS_GD_ADD-- : BFD_RELOC_TILEPRO_IMM8_Y1_TLS_GD_ADD-- : BFD_RELOC_TILEPRO_TLS_IE_LOAD-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_LO-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_LO-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HI-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HI-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HA-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HA-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_LO-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_LO-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HI-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HI-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HA-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HA-- : BFD_RELOC_TILEPRO_TLS_DTPMOD32-- : BFD_RELOC_TILEPRO_TLS_DTPOFF32-- : BFD_RELOC_TILEPRO_TLS_TPOFF32-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_LO-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_LO-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HI-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HI-- : BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HA-- : BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HATilera TILEPro Relocations.-- : BFD_RELOC_TILEGX_HW0-- : BFD_RELOC_TILEGX_HW1-- : BFD_RELOC_TILEGX_HW2-- : BFD_RELOC_TILEGX_HW3-- : BFD_RELOC_TILEGX_HW0_LAST-- : BFD_RELOC_TILEGX_HW1_LAST-- : BFD_RELOC_TILEGX_HW2_LAST-- : BFD_RELOC_TILEGX_COPY-- : BFD_RELOC_TILEGX_GLOB_DAT-- : BFD_RELOC_TILEGX_JMP_SLOT-- : BFD_RELOC_TILEGX_RELATIVE-- : BFD_RELOC_TILEGX_BROFF_X1-- : BFD_RELOC_TILEGX_JUMPOFF_X1-- : BFD_RELOC_TILEGX_JUMPOFF_X1_PLT-- : BFD_RELOC_TILEGX_IMM8_X0-- : BFD_RELOC_TILEGX_IMM8_Y0-- : BFD_RELOC_TILEGX_IMM8_X1-- : BFD_RELOC_TILEGX_IMM8_Y1-- : BFD_RELOC_TILEGX_DEST_IMM8_X1-- : BFD_RELOC_TILEGX_MT_IMM14_X1-- : BFD_RELOC_TILEGX_MF_IMM14_X1-- : BFD_RELOC_TILEGX_MMSTART_X0-- : BFD_RELOC_TILEGX_MMEND_X0-- : BFD_RELOC_TILEGX_SHAMT_X0-- : BFD_RELOC_TILEGX_SHAMT_X1-- : BFD_RELOC_TILEGX_SHAMT_Y0-- : BFD_RELOC_TILEGX_SHAMT_Y1-- : BFD_RELOC_TILEGX_IMM16_X0_HW0-- : BFD_RELOC_TILEGX_IMM16_X1_HW0-- : BFD_RELOC_TILEGX_IMM16_X0_HW1-- : BFD_RELOC_TILEGX_IMM16_X1_HW1-- : BFD_RELOC_TILEGX_IMM16_X0_HW2-- : BFD_RELOC_TILEGX_IMM16_X1_HW2-- : BFD_RELOC_TILEGX_IMM16_X0_HW3-- : BFD_RELOC_TILEGX_IMM16_X1_HW3-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST-- : BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST-- : BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW2_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW2_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW3_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW3_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_GOT-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_GOT-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW2_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW2_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_GOT-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_GOT-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_GOT-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_GOT-- : BFD_RELOC_TILEGX_IMM16_X0_HW3_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW3_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_GD-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_GD-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_LE-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_LE-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_LE-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_LE-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_LE-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_LE-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_GD-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_GD-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_GD-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_GD-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_IE-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_IE-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL-- : BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_IE-- : BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_IE-- : BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_IE-- : BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_IE-- : BFD_RELOC_TILEGX_TLS_DTPMOD64-- : BFD_RELOC_TILEGX_TLS_DTPOFF64-- : BFD_RELOC_TILEGX_TLS_TPOFF64-- : BFD_RELOC_TILEGX_TLS_DTPMOD32-- : BFD_RELOC_TILEGX_TLS_DTPOFF32-- : BFD_RELOC_TILEGX_TLS_TPOFF32-- : BFD_RELOC_TILEGX_TLS_GD_CALL-- : BFD_RELOC_TILEGX_IMM8_X0_TLS_GD_ADD-- : BFD_RELOC_TILEGX_IMM8_X1_TLS_GD_ADD-- : BFD_RELOC_TILEGX_IMM8_Y0_TLS_GD_ADD-- : BFD_RELOC_TILEGX_IMM8_Y1_TLS_GD_ADD-- : BFD_RELOC_TILEGX_TLS_IE_LOAD-- : BFD_RELOC_TILEGX_IMM8_X0_TLS_ADD-- : BFD_RELOC_TILEGX_IMM8_X1_TLS_ADD-- : BFD_RELOC_TILEGX_IMM8_Y0_TLS_ADD-- : BFD_RELOC_TILEGX_IMM8_Y1_TLS_ADDTilera TILE-Gx Relocations.-- : BFD_RELOC_EPIPHANY_SIMM8Adapteva EPIPHANY - 8 bit signed pc-relative displacement-- : BFD_RELOC_EPIPHANY_SIMM24Adapteva EPIPHANY - 24 bit signed pc-relative displacement-- : BFD_RELOC_EPIPHANY_HIGHAdapteva EPIPHANY - 16 most-significant bits of absolute address-- : BFD_RELOC_EPIPHANY_LOWAdapteva EPIPHANY - 16 least-significant bits of absolute address-- : BFD_RELOC_EPIPHANY_SIMM11Adapteva EPIPHANY - 11 bit signed number - add/sub immediate-- : BFD_RELOC_EPIPHANY_IMM11Adapteva EPIPHANY - 11 bit sign-magnitude number (ld/stdisplacement)-- : BFD_RELOC_EPIPHANY_IMM8Adapteva EPIPHANY - 8 bit immediate for 16 bit mov instruction.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;2.10.2.2 `bfd_reloc_type_lookup'................................*Synopsis*reloc_howto_type *bfd_reloc_type_lookup(bfd *abfd, bfd_reloc_code_real_type code);reloc_howto_type *bfd_reloc_name_lookup(bfd *abfd, const char *reloc_name);*Description*Return a pointer to a howto structure which, when invoked, will performthe relocation CODE on data from the architecture noted.2.10.2.3 `bfd_default_reloc_type_lookup'........................................*Synopsis*reloc_howto_type *bfd_default_reloc_type_lookup(bfd *abfd, bfd_reloc_code_real_type code);*Description*Provides a default relocation lookup routine for any architecture.2.10.2.4 `bfd_get_reloc_code_name'..................................*Synopsis*const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);*Description*Provides a printable name for the supplied relocation code. Usefulmainly for printing error messages.2.10.2.5 `bfd_generic_relax_section'....................................*Synopsis*bfd_boolean bfd_generic_relax_section(bfd *abfd,asection *section,struct bfd_link_info *,bfd_boolean *);*Description*Provides default handling for relaxing for back ends which don't dorelaxing.2.10.2.6 `bfd_generic_gc_sections'..................................*Synopsis*bfd_boolean bfd_generic_gc_sections(bfd *, struct bfd_link_info *);*Description*Provides default handling for relaxing for back ends which don't dosection gc - i.e., does nothing.2.10.2.7 `bfd_generic_lookup_section_flags'...........................................*Synopsis*bfd_boolean bfd_generic_lookup_section_flags(struct bfd_link_info *, struct flag_info *, asection *);*Description*Provides default handling for section flags lookup - i.e., does nothing.Returns FALSE if the section should be omitted, otherwise TRUE.2.10.2.8 `bfd_generic_merge_sections'.....................................*Synopsis*bfd_boolean bfd_generic_merge_sections(bfd *, struct bfd_link_info *);*Description*Provides default handling for SEC_MERGE section merging for back endswhich don't have SEC_MERGE support - i.e., does nothing.2.10.2.9 `bfd_generic_get_relocated_section_contents'.....................................................*Synopsis*bfd_byte *bfd_generic_get_relocated_section_contents(bfd *abfd,struct bfd_link_info *link_info,struct bfd_link_order *link_order,bfd_byte *data,bfd_boolean relocatable,asymbol **symbols);*Description*Provides default handling of relocation effort for back ends whichcan't be bothered to do it efficiently.File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end2.11 Core files===============2.11.1 Core file functions--------------------------*Description*These are functions pertaining to core files.2.11.1.1 `bfd_core_file_failing_command'........................................*Synopsis*const char *bfd_core_file_failing_command (bfd *abfd);*Description*Return a read-only string explaining which program was running when itfailed and produced the core file ABFD.2.11.1.2 `bfd_core_file_failing_signal'.......................................*Synopsis*int bfd_core_file_failing_signal (bfd *abfd);*Description*Returns the signal number which caused the core dump which generatedthe file the BFD ABFD is attached to.2.11.1.3 `bfd_core_file_pid'............................*Synopsis*int bfd_core_file_pid (bfd *abfd);*Description*Returns the PID of the process the core dump the BFD ABFD is attachedto was generated from.2.11.1.4 `core_file_matches_executable_p'.........................................*Synopsis*bfd_boolean core_file_matches_executable_p(bfd *core_bfd, bfd *exec_bfd);*Description*Return `TRUE' if the core file attached to CORE_BFD was generated by arun of the executable file attached to EXEC_BFD, `FALSE' otherwise.2.11.1.5 `generic_core_file_matches_executable_p'.................................................*Synopsis*bfd_boolean generic_core_file_matches_executable_p(bfd *core_bfd, bfd *exec_bfd);*Description*Return TRUE if the core file attached to CORE_BFD was generated by arun of the executable file attached to EXEC_BFD. The match is based onexecutable basenames only.Note: When not able to determine the core file failing command orthe executable name, we still return TRUE even though we're not surethat core file and executable match. This is to avoid generating afalse warning in situations where we really don't know whether theymatch or not.File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end2.12 Targets============*Description*Each port of BFD to a different machine requires the creation of atarget back end. All the back end provides to the root part of BFD is astructure containing pointers to functions which perform certain lowlevel operations on files. BFD translates the applications's requeststhrough a pointer into calls to the back end routines.When a file is opened with `bfd_openr', its format and target areunknown. BFD uses various mechanisms to determine how to interpret thefile. The operations performed are:* Create a BFD by calling the internal routine `_bfd_new_bfd', thencall `bfd_find_target' with the target string supplied to`bfd_openr' and the new BFD pointer.* If a null target string was provided to `bfd_find_target', look upthe environment variable `GNUTARGET' and use that as the targetstring.* If the target string is still `NULL', or the target string is`default', then use the first item in the target vector as thetarget type, and set `target_defaulted' in the BFD to cause`bfd_check_format' to loop through all the targets. *Notebfd_target::. *Note Formats::.* Otherwise, inspect the elements in the target vector one by one,until a match on target name is found. When found, use it.* Otherwise return the error `bfd_error_invalid_target' to`bfd_openr'.* `bfd_openr' attempts to open the file using `bfd_open_file', andreturns the BFD.Once the BFD has been opened and the target selected, the fileformat may be determined. This is done by calling `bfd_check_format' onthe BFD with a suggested format. If `target_defaulted' has been set,each possible target type is tried to see if it recognizes thespecified format. `bfd_check_format' returns `TRUE' when the callerguesses right.* Menu:* bfd_target::File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets2.12.1 bfd_target-----------------*Description*This structure contains everything that BFD knows about a target. Itincludes things like its byte order, name, and which routines to callto do various operations.Every BFD points to a target structure with its `xvec' member.The macros below are used to dispatch to functions through the`bfd_target' vector. They are used in a number of macros further downin `bfd.h', and are also used when calling various routines by handinside the BFD implementation. The ARGLIST argument must beparenthesized; it contains all the arguments to the called function.They make the documentation (more) unpleasant to read, so if someonewants to fix this and not break the above, please do.#define BFD_SEND(bfd, message, arglist) \((*((bfd)->xvec->message)) arglist)#ifdef DEBUG_BFD_SEND#undef BFD_SEND#define BFD_SEND(bfd, message, arglist) \(((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \((*((bfd)->xvec->message)) arglist) : \(bfd_assert (__FILE__,__LINE__), NULL))#endifFor operations which index on the BFD format:#define BFD_SEND_FMT(bfd, message, arglist) \(((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)#ifdef DEBUG_BFD_SEND#undef BFD_SEND_FMT#define BFD_SEND_FMT(bfd, message, arglist) \(((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \(((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \(bfd_assert (__FILE__,__LINE__), NULL))#endifThis is the structure which defines the type of BFD this is. The`xvec' member of the struct `bfd' itself points here. Each module thatimplements access to a different target under BFD, defines one of these.FIXME, these names should be rationalised with the names of theentry points which call them. Too bad we can't have one macro to definethem both!enum bfd_flavour{bfd_target_unknown_flavour,bfd_target_aout_flavour,bfd_target_coff_flavour,bfd_target_ecoff_flavour,bfd_target_xcoff_flavour,bfd_target_elf_flavour,bfd_target_ieee_flavour,bfd_target_nlm_flavour,bfd_target_oasys_flavour,bfd_target_tekhex_flavour,bfd_target_srec_flavour,bfd_target_verilog_flavour,bfd_target_ihex_flavour,bfd_target_som_flavour,bfd_target_os9k_flavour,bfd_target_versados_flavour,bfd_target_msdos_flavour,bfd_target_ovax_flavour,bfd_target_evax_flavour,bfd_target_mmo_flavour,bfd_target_mach_o_flavour,bfd_target_pef_flavour,bfd_target_pef_xlib_flavour,bfd_target_sym_flavour,bfd_target_asxxxx_flavour};enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };/* Forward declaration. */typedef struct bfd_link_info _bfd_link_info;/* Forward declaration. */typedef struct flag_info flag_info;typedef struct bfd_target{/* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */char *name;/* The "flavour" of a back end is a general indication aboutthe contents of a file. */enum bfd_flavour flavour;/* The order of bytes within the data area of a file. */enum bfd_endian byteorder;/* The order of bytes within the header parts of a file. */enum bfd_endian header_byteorder;/* A mask of all the flags which an executable may have set -from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */flagword object_flags;/* A mask of all the flags which a section may have set - fromthe set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */flagword section_flags;/* The character normally found at the front of a symbol.(if any), perhaps `_'. */char symbol_leading_char;/* The pad character for file names within an archive header. */char ar_pad_char;/* The maximum number of characters in an archive header. */unsigned char ar_max_namelen;/* How well this target matches, used to select between variouspossible targets when more than one target matches. */unsigned char match_priority;/* Entries for byte swapping for data. These are different from theother entry points, since they don't take a BFD as the first argument.Certain other handlers could do the same. */bfd_uint64_t (*bfd_getx64) (const void *);bfd_int64_t (*bfd_getx_signed_64) (const void *);void (*bfd_putx64) (bfd_uint64_t, void *);bfd_vma (*bfd_getx32) (const void *);bfd_signed_vma (*bfd_getx_signed_32) (const void *);void (*bfd_putx32) (bfd_vma, void *);bfd_vma (*bfd_getx16) (const void *);bfd_signed_vma (*bfd_getx_signed_16) (const void *);void (*bfd_putx16) (bfd_vma, void *);/* Byte swapping for the headers. */bfd_uint64_t (*bfd_h_getx64) (const void *);bfd_int64_t (*bfd_h_getx_signed_64) (const void *);void (*bfd_h_putx64) (bfd_uint64_t, void *);bfd_vma (*bfd_h_getx32) (const void *);bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);void (*bfd_h_putx32) (bfd_vma, void *);bfd_vma (*bfd_h_getx16) (const void *);bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);void (*bfd_h_putx16) (bfd_vma, void *);/* Format dependent routines: these are vectors of entry pointswithin the target vector structure, one for each format to check. *//* Check the format of a file being read. Return a `bfd_target *' or zero. */const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);/* Set the format of a file being written. */bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);/* Write cached information into a file being written, at `bfd_close'. */bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);The general target vector. These vectors are initialized using theBFD_JUMP_TABLE macros./* Generic entry points. */#define BFD_JUMP_TABLE_GENERIC(NAME) \NAME##_close_and_cleanup, \NAME##_bfd_free_cached_info, \NAME##_new_section_hook, \NAME##_get_section_contents, \NAME##_get_section_contents_in_window/* Called when the BFD is being closed to do any necessary cleanup. */bfd_boolean (*_close_and_cleanup) (bfd *);/* Ask the BFD to free all cached information. */bfd_boolean (*_bfd_free_cached_info) (bfd *);/* Called when a new section is created. */bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);/* Read the contents of a section. */bfd_boolean (*_bfd_get_section_contents)(bfd *, sec_ptr, void *, file_ptr, bfd_size_type);bfd_boolean (*_bfd_get_section_contents_in_window)(bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);/* Entry points to copy private data. */#define BFD_JUMP_TABLE_COPY(NAME) \NAME##_bfd_copy_private_bfd_data, \NAME##_bfd_merge_private_bfd_data, \_bfd_generic_init_private_section_data, \NAME##_bfd_copy_private_section_data, \NAME##_bfd_copy_private_symbol_data, \NAME##_bfd_copy_private_header_data, \NAME##_bfd_set_private_flags, \NAME##_bfd_print_private_bfd_data/* Called to copy BFD general private data from one object fileto another. */bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);/* Called to merge BFD general private data from one object fileto a common output file when linking. */bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);/* Called to initialize BFD private section data from one object fileto another. */#define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))bfd_boolean (*_bfd_init_private_section_data)(bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);/* Called to copy BFD private section data from one object fileto another. */bfd_boolean (*_bfd_copy_private_section_data)(bfd *, sec_ptr, bfd *, sec_ptr);/* Called to copy BFD private symbol data from one symbolto another. */bfd_boolean (*_bfd_copy_private_symbol_data)(bfd *, asymbol *, bfd *, asymbol *);/* Called to copy BFD private header data from one object fileto another. */bfd_boolean (*_bfd_copy_private_header_data)(bfd *, bfd *);/* Called to set private backend flags. */bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);/* Called to print private BFD data. */bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);/* Core file entry points. */#define BFD_JUMP_TABLE_CORE(NAME) \NAME##_core_file_failing_command, \NAME##_core_file_failing_signal, \NAME##_core_file_matches_executable_p, \NAME##_core_file_pidchar * (*_core_file_failing_command) (bfd *);int (*_core_file_failing_signal) (bfd *);bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);int (*_core_file_pid) (bfd *);/* Archive entry points. */#define BFD_JUMP_TABLE_ARCHIVE(NAME) \NAME##_slurp_armap, \NAME##_slurp_extended_name_table, \NAME##_construct_extended_name_table, \NAME##_truncate_arname, \NAME##_write_armap, \NAME##_read_ar_hdr, \NAME##_write_ar_hdr, \NAME##_openr_next_archived_file, \NAME##_get_elt_at_index, \NAME##_generic_stat_arch_elt, \NAME##_update_armap_timestampbfd_boolean (*_bfd_slurp_armap) (bfd *);bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);bfd_boolean (*_bfd_construct_extended_name_table)(bfd *, char **, bfd_size_type *, const char **);void (*_bfd_truncate_arname) (bfd *, const char *, char *);bfd_boolean (*write_armap)(bfd *, unsigned int, struct orl *, unsigned int, int);void * (*_bfd_read_ar_hdr_fn) (bfd *);bfd_boolean (*_bfd_write_ar_hdr_fn) (bfd *, bfd *);bfd * (*openr_next_archived_file) (bfd *, bfd *);#define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))bfd * (*_bfd_get_elt_at_index) (bfd *, symindex);int (*_bfd_stat_arch_elt) (bfd *, struct stat *);bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);/* Entry points used for symbols. */#define BFD_JUMP_TABLE_SYMBOLS(NAME) \NAME##_get_symtab_upper_bound, \NAME##_canonicalize_symtab, \NAME##_make_empty_symbol, \NAME##_print_symbol, \NAME##_get_symbol_info, \NAME##_bfd_is_local_label_name, \NAME##_bfd_is_target_special_symbol, \NAME##_get_lineno, \NAME##_find_nearest_line, \NAME##_find_line, \NAME##_find_inliner_info, \NAME##_bfd_make_debug_symbol, \NAME##_read_minisymbols, \NAME##_minisymbol_to_symbollong (*_bfd_get_symtab_upper_bound) (bfd *);long (*_bfd_canonicalize_symtab)(bfd *, struct bfd_symbol **);struct bfd_symbol *(*_bfd_make_empty_symbol) (bfd *);void (*_bfd_print_symbol)(bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);#define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))void (*_bfd_get_symbol_info)(bfd *, struct bfd_symbol *, symbol_info *);#define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);alent * (*_get_lineno) (bfd *, struct bfd_symbol *);bfd_boolean (*_bfd_find_nearest_line)(bfd *, struct bfd_symbol **, struct bfd_section *, bfd_vma,const char **, const char **, unsigned int *, unsigned int *);bfd_boolean (*_bfd_find_line)(bfd *, struct bfd_symbol **, struct bfd_symbol *,const char **, unsigned int *);bfd_boolean (*_bfd_find_inliner_info)(bfd *, const char **, const char **, unsigned int *);/* Back-door to allow format-aware applications to create debug symbolswhile using BFD for everything else. Currently used by the assemblerwhen creating COFF files. */asymbol * (*_bfd_make_debug_symbol)(bfd *, void *, unsigned long size);#define bfd_read_minisymbols(b, d, m, s) \BFD_SEND (b, _read_minisymbols, (b, d, m, s))long (*_read_minisymbols)(bfd *, bfd_boolean, void **, unsigned int *);#define bfd_minisymbol_to_symbol(b, d, m, f) \BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))asymbol * (*_minisymbol_to_symbol)(bfd *, bfd_boolean, const void *, asymbol *);/* Routines for relocs. */#define BFD_JUMP_TABLE_RELOCS(NAME) \NAME##_get_reloc_upper_bound, \NAME##_canonicalize_reloc, \NAME##_bfd_reloc_type_lookup, \NAME##_bfd_reloc_name_lookuplong (*_get_reloc_upper_bound) (bfd *, sec_ptr);long (*_bfd_canonicalize_reloc)(bfd *, sec_ptr, arelent **, struct bfd_symbol **);/* See documentation on reloc types. */reloc_howto_type *(*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);reloc_howto_type *(*reloc_name_lookup) (bfd *, const char *);/* Routines used when writing an object file. */#define BFD_JUMP_TABLE_WRITE(NAME) \NAME##_set_arch_mach, \NAME##_set_section_contentsbfd_boolean (*_bfd_set_arch_mach)(bfd *, enum bfd_architecture, unsigned long);bfd_boolean (*_bfd_set_section_contents)(bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);/* Routines used by the linker. */#define BFD_JUMP_TABLE_LINK(NAME) \NAME##_sizeof_headers, \NAME##_bfd_get_relocated_section_contents, \NAME##_bfd_relax_section, \NAME##_bfd_link_hash_table_create, \NAME##_bfd_link_add_symbols, \NAME##_bfd_link_just_syms, \NAME##_bfd_copy_link_hash_symbol_type, \NAME##_bfd_final_link, \NAME##_bfd_link_split_section, \NAME##_bfd_gc_sections, \NAME##_bfd_lookup_section_flags, \NAME##_bfd_merge_sections, \NAME##_bfd_is_group_section, \NAME##_bfd_discard_group, \NAME##_section_already_linked, \NAME##_bfd_define_common_symbolint (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *);bfd_byte * (*_bfd_get_relocated_section_contents)(bfd *, struct bfd_link_info *, struct bfd_link_order *,bfd_byte *, bfd_boolean, struct bfd_symbol **);bfd_boolean (*_bfd_relax_section)(bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);/* Create a hash table for the linker. Different backends storedifferent information in this table. */struct bfd_link_hash_table *(*_bfd_link_hash_table_create) (bfd *);/* Add symbols from this object file into the hash table. */bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);/* Indicate that we are only retrieving symbol values from this section. */void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);/* Copy the symbol type and other attributes for a linker scriptassignment of one symbol to another. */#define bfd_copy_link_hash_symbol_type(b, t, f) \BFD_SEND (b, _bfd_copy_link_hash_symbol_type, (b, t, f))void (*_bfd_copy_link_hash_symbol_type)(bfd *, struct bfd_link_hash_entry *, struct bfd_link_hash_entry *);/* Do a link based on the link_order structures attached to eachsection of the BFD. */bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);/* Should this section be split up into smaller pieces during linking. */bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);/* Remove sections that are not referenced from the output. */bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);/* Sets the bitmask of allowed and disallowed section flags. */bfd_boolean (*_bfd_lookup_section_flags) (struct bfd_link_info *,struct flag_info *,asection *);/* Attempt to merge SEC_MERGE sections. */bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);/* Is this section a member of a group? */bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);/* Discard members of a group. */bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);/* Check if SEC has been already linked during a reloceatable orfinal link. */bfd_boolean (*_section_already_linked) (bfd *, asection *,struct bfd_link_info *);/* Define a common symbol. */bfd_boolean (*_bfd_define_common_symbol) (bfd *, struct bfd_link_info *,struct bfd_link_hash_entry *);/* Routines to handle dynamic symbols and relocs. */#define BFD_JUMP_TABLE_DYNAMIC(NAME) \NAME##_get_dynamic_symtab_upper_bound, \NAME##_canonicalize_dynamic_symtab, \NAME##_get_synthetic_symtab, \NAME##_get_dynamic_reloc_upper_bound, \NAME##_canonicalize_dynamic_reloc/* Get the amount of memory required to hold the dynamic symbols. */long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);/* Read in the dynamic symbols. */long (*_bfd_canonicalize_dynamic_symtab)(bfd *, struct bfd_symbol **);/* Create synthetized symbols. */long (*_bfd_get_synthetic_symtab)(bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,struct bfd_symbol **);/* Get the amount of memory required to hold the dynamic relocs. */long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);/* Read in the dynamic relocs. */long (*_bfd_canonicalize_dynamic_reloc)(bfd *, arelent **, struct bfd_symbol **);A pointer to an alternative bfd_target in case the current one is notsatisfactory. This can happen when the target cpu supports both bigand little endian code, and target chosen by the linker has the wrongendianness. The function open_output() in ld/ldlang.c uses this fieldto find an alternative output format that is suitable./* Opposite endian version of this target. */const struct bfd_target * alternative_target;/* Data for use by back-end routines, which isn'tgeneric enough to belong in this structure. */const void *backend_data;} bfd_target;2.12.1.1 `bfd_set_default_target'.................................*Synopsis*bfd_boolean bfd_set_default_target (const char *name);*Description*Set the default target vector to use when recognizing a BFD. Thistakes the name of the target, which may be a BFD target name or aconfiguration triplet.2.12.1.2 `bfd_find_target'..........................*Synopsis*const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);*Description*Return a pointer to the transfer vector for the object target namedTARGET_NAME. If TARGET_NAME is `NULL', choose the one in theenvironment variable `GNUTARGET'; if that is null or not defined, thenchoose the first entry in the target list. Passing in the string"default" or setting the environment variable to "default" will causethe first entry in the target list to be returned, and"target_defaulted" will be set in the BFD if ABFD isn't `NULL'. Thiscauses `bfd_check_format' to loop over all the targets to find the onethat matches the file being read.2.12.1.3 `bfd_get_target_info'..............................*Synopsis*const bfd_target *bfd_get_target_info (const char *target_name,bfd *abfd,bfd_boolean *is_bigendian,int *underscoring,const char **def_target_arch);*Description*Return a pointer to the transfer vector for the object target namedTARGET_NAME. If TARGET_NAME is `NULL', choose the one in theenvironment variable `GNUTARGET'; if that is null or not defined, thenchoose the first entry in the target list. Passing in the string"default" or setting the environment variable to "default" will causethe first entry in the target list to be returned, and"target_defaulted" will be set in the BFD if ABFD isn't `NULL'. Thiscauses `bfd_check_format' to loop over all the targets to find the onethat matches the file being read. If IS_BIGENDIAN is not `NULL', thenset this value to target's endian mode. True for big-endian, FALSE forlittle-endian or for invalid target. If UNDERSCORING is not `NULL',then set this value to target's underscoring mode. Zero fornone-underscoring, -1 for invalid target, else the value of targetvector's symbol underscoring. If DEF_TARGET_ARCH is not `NULL', thenset it to the architecture string specified by the target_name.2.12.1.4 `bfd_target_list'..........................*Synopsis*const char ** bfd_target_list (void);*Description*Return a freshly malloced NULL-terminated vector of the names of allthe valid BFD targets. Do not modify the names.2.12.1.5 `bfd_seach_for_target'...............................*Synopsis*const bfd_target *bfd_search_for_target(int (*search_func) (const bfd_target *, void *),void *);*Description*Return a pointer to the first transfer vector in the list of transfervectors maintained by BFD that produces a non-zero result when passedto the function SEARCH_FUNC. The parameter DATA is passed, unexamined,to the search function.File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end2.13 Architectures==================BFD keeps one atom in a BFD describing the architecture of the dataattached to the BFD: a pointer to a `bfd_arch_info_type'.Pointers to structures can be requested independently of a BFD sothat an architecture's information can be interrogated without accessto an open BFD.The architecture information is provided by each architecturepackage. The set of default architectures is selected by the macro`SELECT_ARCHITECTURES'. This is normally set up in the`config/TARGET.mt' file of your choice. If the name is not defined,then all the architectures supported are included.When BFD starts up, all the architectures are called with aninitialize method. It is up to the architecture back end to insert asmany items into the list of architectures as it wants to; generallythis would be one for each machine and one for the default case (anitem with a machine field of 0).BFD's idea of an architecture is implemented in `archures.c'.2.13.1 bfd_architecture-----------------------*Description*This enum gives the object file's CPU architecture, in a globalsense--i.e., what processor family does it belong to? Another fieldindicates which processor within the family is in use. The machinegives a number which distinguishes different versions of thearchitecture, containing, for example, 2 and 3 for Intel i960 KA andi960 KB, and 68020 and 68030 for Motorola 68020 and 68030.enum bfd_architecture{bfd_arch_unknown, /* File arch not known. */bfd_arch_obscure, /* Arch known, not one of these. */bfd_arch_m68k, /* Motorola 68xxx */#define bfd_mach_m68000 1#define bfd_mach_m68008 2#define bfd_mach_m68010 3#define bfd_mach_m68020 4#define bfd_mach_m68030 5#define bfd_mach_m68040 6#define bfd_mach_m68060 7#define bfd_mach_cpu32 8#define bfd_mach_fido 9#define bfd_mach_mcf_isa_a_nodiv 10#define bfd_mach_mcf_isa_a 11#define bfd_mach_mcf_isa_a_mac 12#define bfd_mach_mcf_isa_a_emac 13#define bfd_mach_mcf_isa_aplus 14#define bfd_mach_mcf_isa_aplus_mac 15#define bfd_mach_mcf_isa_aplus_emac 16#define bfd_mach_mcf_isa_b_nousp 17#define bfd_mach_mcf_isa_b_nousp_mac 18#define bfd_mach_mcf_isa_b_nousp_emac 19#define bfd_mach_mcf_isa_b 20#define bfd_mach_mcf_isa_b_mac 21#define bfd_mach_mcf_isa_b_emac 22#define bfd_mach_mcf_isa_b_float 23#define bfd_mach_mcf_isa_b_float_mac 24#define bfd_mach_mcf_isa_b_float_emac 25#define bfd_mach_mcf_isa_c 26#define bfd_mach_mcf_isa_c_mac 27#define bfd_mach_mcf_isa_c_emac 28#define bfd_mach_mcf_isa_c_nodiv 29#define bfd_mach_mcf_isa_c_nodiv_mac 30#define bfd_mach_mcf_isa_c_nodiv_emac 31bfd_arch_vax, /* DEC Vax */bfd_arch_i960, /* Intel 960 *//* The order of the following is important.lower number indicates a machine type thatonly accepts a subset of the instructionsavailable to machines with higher numbers.The exception is the "ca", which isincompatible with all other machines except"core". */#define bfd_mach_i960_core 1#define bfd_mach_i960_ka_sa 2#define bfd_mach_i960_kb_sb 3#define bfd_mach_i960_mc 4#define bfd_mach_i960_xa 5#define bfd_mach_i960_ca 6#define bfd_mach_i960_jx 7#define bfd_mach_i960_hx 8bfd_arch_or1k, /* OpenRISC 1000 */#define bfd_mach_or1k 1#define bfd_mach_or1knd 2bfd_arch_sparc, /* SPARC */#define bfd_mach_sparc 1/* The difference between v8plus and v9 is that v9 is a true 64 bit env. */#define bfd_mach_sparc_sparclet 2#define bfd_mach_sparc_sparclite 3#define bfd_mach_sparc_v8plus 4#define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */#define bfd_mach_sparc_sparclite_le 6#define bfd_mach_sparc_v9 7#define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */#define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */#define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. *//* Nonzero if MACH has the v9 instruction set. */#define bfd_mach_sparc_v9_p(mach) \((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \&& (mach) != bfd_mach_sparc_sparclite_le)/* Nonzero if MACH is a 64 bit sparc architecture. */#define bfd_mach_sparc_64bit_p(mach) \((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)bfd_arch_spu, /* PowerPC SPU */#define bfd_mach_spu 256bfd_arch_mips, /* MIPS Rxxxx */#define bfd_mach_mips3000 3000#define bfd_mach_mips3900 3900#define bfd_mach_mips4000 4000#define bfd_mach_mips4010 4010#define bfd_mach_mips4100 4100#define bfd_mach_mips4111 4111#define bfd_mach_mips4120 4120#define bfd_mach_mips4300 4300#define bfd_mach_mips4400 4400#define bfd_mach_mips4600 4600#define bfd_mach_mips4650 4650#define bfd_mach_mips5000 5000#define bfd_mach_mips5400 5400#define bfd_mach_mips5500 5500#define bfd_mach_mips5900 5900#define bfd_mach_mips6000 6000#define bfd_mach_mips7000 7000#define bfd_mach_mips8000 8000#define bfd_mach_mips9000 9000#define bfd_mach_mips10000 10000#define bfd_mach_mips12000 12000#define bfd_mach_mips14000 14000#define bfd_mach_mips16000 16000#define bfd_mach_mips16 16#define bfd_mach_mips5 5#define bfd_mach_mips_loongson_2e 3001#define bfd_mach_mips_loongson_2f 3002#define bfd_mach_mips_loongson_3a 3003#define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */#define bfd_mach_mips_octeon 6501#define bfd_mach_mips_octeonp 6601#define bfd_mach_mips_octeon2 6502#define bfd_mach_mips_xlr 887682 /* decimal 'XLR' */#define bfd_mach_mipsisa32 32#define bfd_mach_mipsisa32r2 33#define bfd_mach_mipsisa32r3 34#define bfd_mach_mipsisa32r5 36#define bfd_mach_mipsisa32r6 37#define bfd_mach_mipsisa64 64#define bfd_mach_mipsisa64r2 65#define bfd_mach_mipsisa64r3 66#define bfd_mach_mipsisa64r5 68#define bfd_mach_mipsisa64r6 69#define bfd_mach_mips_micromips 96bfd_arch_i386, /* Intel 386 */#define bfd_mach_i386_intel_syntax (1 << 0)#define bfd_mach_i386_i8086 (1 << 1)#define bfd_mach_i386_i386 (1 << 2)#define bfd_mach_x86_64 (1 << 3)#define bfd_mach_x64_32 (1 << 4)#define bfd_mach_i386_i386_intel_syntax (bfd_mach_i386_i386 | bfd_mach_i386_intel_syntax)#define bfd_mach_x86_64_intel_syntax (bfd_mach_x86_64 | bfd_mach_i386_intel_syntax)#define bfd_mach_x64_32_intel_syntax (bfd_mach_x64_32 | bfd_mach_i386_intel_syntax)bfd_arch_l1om, /* Intel L1OM */#define bfd_mach_l1om (1 << 5)#define bfd_mach_l1om_intel_syntax (bfd_mach_l1om | bfd_mach_i386_intel_syntax)bfd_arch_k1om, /* Intel K1OM */#define bfd_mach_k1om (1 << 6)#define bfd_mach_k1om_intel_syntax (bfd_mach_k1om | bfd_mach_i386_intel_syntax)#define bfd_mach_i386_nacl (1 << 7)#define bfd_mach_i386_i386_nacl (bfd_mach_i386_i386 | bfd_mach_i386_nacl)#define bfd_mach_x86_64_nacl (bfd_mach_x86_64 | bfd_mach_i386_nacl)#define bfd_mach_x64_32_nacl (bfd_mach_x64_32 | bfd_mach_i386_nacl)bfd_arch_we32k, /* AT&T WE32xxx */bfd_arch_tahoe, /* CCI/Harris Tahoe */bfd_arch_i860, /* Intel 860 */bfd_arch_i370, /* IBM 360/370 Mainframes */bfd_arch_romp, /* IBM ROMP PC/RT */bfd_arch_convex, /* Convex */bfd_arch_m88k, /* Motorola 88xxx */bfd_arch_m98k, /* Motorola 98xxx */bfd_arch_pyramid, /* Pyramid Technology */bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */#define bfd_mach_h8300 1#define bfd_mach_h8300h 2#define bfd_mach_h8300s 3#define bfd_mach_h8300hn 4#define bfd_mach_h8300sn 5#define bfd_mach_h8300sx 6#define bfd_mach_h8300sxn 7bfd_arch_pdp11, /* DEC PDP-11 */bfd_arch_plugin,bfd_arch_powerpc, /* PowerPC */#define bfd_mach_ppc 32#define bfd_mach_ppc64 64#define bfd_mach_ppc_403 403#define bfd_mach_ppc_403gc 4030#define bfd_mach_ppc_405 405#define bfd_mach_ppc_505 505#define bfd_mach_ppc_601 601#define bfd_mach_ppc_602 602#define bfd_mach_ppc_603 603#define bfd_mach_ppc_ec603e 6031#define bfd_mach_ppc_604 604#define bfd_mach_ppc_620 620#define bfd_mach_ppc_630 630#define bfd_mach_ppc_750 750#define bfd_mach_ppc_860 860#define bfd_mach_ppc_a35 35#define bfd_mach_ppc_rs64ii 642#define bfd_mach_ppc_rs64iii 643#define bfd_mach_ppc_7400 7400#define bfd_mach_ppc_e500 500#define bfd_mach_ppc_e500mc 5001#define bfd_mach_ppc_e500mc64 5005#define bfd_mach_ppc_e5500 5006#define bfd_mach_ppc_e6500 5007#define bfd_mach_ppc_titan 83#define bfd_mach_ppc_vle 84bfd_arch_rs6000, /* IBM RS/6000 */#define bfd_mach_rs6k 6000#define bfd_mach_rs6k_rs1 6001#define bfd_mach_rs6k_rsc 6003#define bfd_mach_rs6k_rs2 6002bfd_arch_hppa, /* HP PA RISC */#define bfd_mach_hppa10 10#define bfd_mach_hppa11 11#define bfd_mach_hppa20 20#define bfd_mach_hppa20w 25bfd_arch_d10v, /* Mitsubishi D10V */#define bfd_mach_d10v 1#define bfd_mach_d10v_ts2 2#define bfd_mach_d10v_ts3 3bfd_arch_d30v, /* Mitsubishi D30V */bfd_arch_dlx, /* DLX */bfd_arch_m68hc11, /* Motorola 68HC11 */bfd_arch_m68hc12, /* Motorola 68HC12 */#define bfd_mach_m6812_default 0#define bfd_mach_m6812 1#define bfd_mach_m6812s 2bfd_arch_m9s12x, /* Freescale S12X */bfd_arch_m9s12xg, /* Freescale XGATE */bfd_arch_z8k, /* Zilog Z8000 */#define bfd_mach_z8001 1#define bfd_mach_z8002 2bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */#define bfd_mach_sh 1#define bfd_mach_sh2 0x20#define bfd_mach_sh_dsp 0x2d#define bfd_mach_sh2a 0x2a#define bfd_mach_sh2a_nofpu 0x2b#define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1#define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2#define bfd_mach_sh2a_or_sh4 0x2a3#define bfd_mach_sh2a_or_sh3e 0x2a4#define bfd_mach_sh2e 0x2e#define bfd_mach_sh3 0x30#define bfd_mach_sh3_nommu 0x31#define bfd_mach_sh3_dsp 0x3d#define bfd_mach_sh3e 0x3e#define bfd_mach_sh4 0x40#define bfd_mach_sh4_nofpu 0x41#define bfd_mach_sh4_nommu_nofpu 0x42#define bfd_mach_sh4a 0x4a#define bfd_mach_sh4a_nofpu 0x4b#define bfd_mach_sh4al_dsp 0x4d#define bfd_mach_sh5 0x50bfd_arch_alpha, /* Dec Alpha */#define bfd_mach_alpha_ev4 0x10#define bfd_mach_alpha_ev5 0x20#define bfd_mach_alpha_ev6 0x30bfd_arch_arm, /* Advanced Risc Machines ARM. */#define bfd_mach_arm_unknown 0#define bfd_mach_arm_2 1#define bfd_mach_arm_2a 2#define bfd_mach_arm_3 3#define bfd_mach_arm_3M 4#define bfd_mach_arm_4 5#define bfd_mach_arm_4T 6#define bfd_mach_arm_5 7#define bfd_mach_arm_5T 8#define bfd_mach_arm_5TE 9#define bfd_mach_arm_XScale 10#define bfd_mach_arm_ep9312 11#define bfd_mach_arm_iWMMXt 12#define bfd_mach_arm_iWMMXt2 13bfd_arch_nds32, /* Andes NDS32 */#define bfd_mach_n1 1#define bfd_mach_n1h 2#define bfd_mach_n1h_v2 3#define bfd_mach_n1h_v3 4#define bfd_mach_n1h_v3m 5bfd_arch_ns32k, /* National Semiconductors ns32000 */bfd_arch_w65, /* WDC 65816 */bfd_arch_tic30, /* Texas Instruments TMS320C30 */bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */#define bfd_mach_tic3x 30#define bfd_mach_tic4x 40bfd_arch_tic54x, /* Texas Instruments TMS320C54X */bfd_arch_tic6x, /* Texas Instruments TMS320C6X */bfd_arch_tic80, /* TI TMS320c80 (MVP) */bfd_arch_v850, /* NEC V850 */bfd_arch_v850_rh850,/* NEC V850 (using RH850 ABI) */#define bfd_mach_v850 1#define bfd_mach_v850e 'E'#define bfd_mach_v850e1 '1'#define bfd_mach_v850e2 0x4532#define bfd_mach_v850e2v3 0x45325633#define bfd_mach_v850e3v5 0x45335635 /* ('E'|'3'|'V'|'5') */bfd_arch_arc, /* ARC Cores */#define bfd_mach_arc_5 5#define bfd_mach_arc_6 6#define bfd_mach_arc_7 7#define bfd_mach_arc_8 8bfd_arch_m32c, /* Renesas M16C/M32C. */#define bfd_mach_m16c 0x75#define bfd_mach_m32c 0x78bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */#define bfd_mach_m32r 1 /* For backwards compatibility. */#define bfd_mach_m32rx 'x'#define bfd_mach_m32r2 '2'bfd_arch_mn10200, /* Matsushita MN10200 */bfd_arch_mn10300, /* Matsushita MN10300 */#define bfd_mach_mn10300 300#define bfd_mach_am33 330#define bfd_mach_am33_2 332bfd_arch_fr30,#define bfd_mach_fr30 0x46523330bfd_arch_frv,#define bfd_mach_frv 1#define bfd_mach_frvsimple 2#define bfd_mach_fr300 300#define bfd_mach_fr400 400#define bfd_mach_fr450 450#define bfd_mach_frvtomcat 499 /* fr500 prototype */#define bfd_mach_fr500 500#define bfd_mach_fr550 550bfd_arch_moxie, /* The moxie processor */#define bfd_mach_moxie 1bfd_arch_mcore,bfd_arch_mep,#define bfd_mach_mep 1#define bfd_mach_mep_h1 0x6831#define bfd_mach_mep_c5 0x6335bfd_arch_metag,#define bfd_mach_metag 1bfd_arch_ia64, /* HP/Intel ia64 */#define bfd_mach_ia64_elf64 64#define bfd_mach_ia64_elf32 32bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */#define bfd_mach_ip2022 1#define bfd_mach_ip2022ext 2bfd_arch_iq2000, /* Vitesse IQ2000. */#define bfd_mach_iq2000 1#define bfd_mach_iq10 2bfd_arch_epiphany, /* Adapteva EPIPHANY */#define bfd_mach_epiphany16 1#define bfd_mach_epiphany32 2bfd_arch_mt,#define bfd_mach_ms1 1#define bfd_mach_mrisc2 2#define bfd_mach_ms2 3bfd_arch_pj,bfd_arch_avr, /* Atmel AVR microcontrollers. */#define bfd_mach_avr1 1#define bfd_mach_avr2 2#define bfd_mach_avr25 25#define bfd_mach_avr3 3#define bfd_mach_avr31 31#define bfd_mach_avr35 35#define bfd_mach_avr4 4#define bfd_mach_avr5 5#define bfd_mach_avr51 51#define bfd_mach_avr6 6#define bfd_mach_avrtiny 100#define bfd_mach_avrxmega1 101#define bfd_mach_avrxmega2 102#define bfd_mach_avrxmega3 103#define bfd_mach_avrxmega4 104#define bfd_mach_avrxmega5 105#define bfd_mach_avrxmega6 106#define bfd_mach_avrxmega7 107bfd_arch_bfin, /* ADI Blackfin */#define bfd_mach_bfin 1bfd_arch_cr16, /* National Semiconductor CompactRISC (ie CR16). */#define bfd_mach_cr16 1bfd_arch_cr16c, /* National Semiconductor CompactRISC. */#define bfd_mach_cr16c 1bfd_arch_crx, /* National Semiconductor CRX. */#define bfd_mach_crx 1bfd_arch_cris, /* Axis CRIS */#define bfd_mach_cris_v0_v10 255#define bfd_mach_cris_v32 32#define bfd_mach_cris_v10_v32 1032bfd_arch_rl78,#define bfd_mach_rl78 0x75bfd_arch_rx, /* Renesas RX. */#define bfd_mach_rx 0x75bfd_arch_s390, /* IBM s390 */#define bfd_mach_s390_31 31#define bfd_mach_s390_64 64bfd_arch_score, /* Sunplus score */#define bfd_mach_score3 3#define bfd_mach_score7 7bfd_arch_mmix, /* Donald Knuth's educational processor. */bfd_arch_xstormy16,#define bfd_mach_xstormy16 1bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */#define bfd_mach_msp11 11#define bfd_mach_msp110 110#define bfd_mach_msp12 12#define bfd_mach_msp13 13#define bfd_mach_msp14 14#define bfd_mach_msp15 15#define bfd_mach_msp16 16#define bfd_mach_msp20 20#define bfd_mach_msp21 21#define bfd_mach_msp22 22#define bfd_mach_msp23 23#define bfd_mach_msp24 24#define bfd_mach_msp26 26#define bfd_mach_msp31 31#define bfd_mach_msp32 32#define bfd_mach_msp33 33#define bfd_mach_msp41 41#define bfd_mach_msp42 42#define bfd_mach_msp43 43#define bfd_mach_msp44 44#define bfd_mach_msp430x 45#define bfd_mach_msp46 46#define bfd_mach_msp47 47#define bfd_mach_msp54 54bfd_arch_xc16x, /* Infineon's XC16X Series. */#define bfd_mach_xc16x 1#define bfd_mach_xc16xl 2#define bfd_mach_xc16xs 3bfd_arch_xgate, /* Freescale XGATE */#define bfd_mach_xgate 1bfd_arch_xtensa, /* Tensilica's Xtensa cores. */#define bfd_mach_xtensa 1bfd_arch_z80,#define bfd_mach_z80strict 1 /* No undocumented opcodes. */#define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */#define bfd_mach_z80full 7 /* All undocumented instructions. */#define bfd_mach_r800 11 /* R800: successor with multiplication. */bfd_arch_lm32, /* Lattice Mico32 */#define bfd_mach_lm32 1bfd_arch_microblaze,/* Xilinx MicroBlaze. */bfd_arch_tilepro, /* Tilera TILEPro */bfd_arch_tilegx, /* Tilera TILE-Gx */#define bfd_mach_tilepro 1#define bfd_mach_tilegx 1#define bfd_mach_tilegx32 2bfd_arch_aarch64, /* AArch64 */#define bfd_mach_aarch64 0#define bfd_mach_aarch64_ilp32 32bfd_arch_nios2,#define bfd_mach_nios2 0bfd_arch_last};2.13.2 bfd_arch_info--------------------*Description*This structure contains information on architectures for use within BFD.typedef struct bfd_arch_info{int bits_per_word;int bits_per_address;int bits_per_byte;enum bfd_architecture arch;unsigned long mach;const char *arch_name;const char *printable_name;unsigned int section_align_power;/* TRUE if this is the default machine for the architecture.The default arch should be the first entry for an arch so thatall the entries for that arch can be accessed via `next'. */bfd_boolean the_default;const struct bfd_arch_info * (*compatible)(const struct bfd_arch_info *a, const struct bfd_arch_info *b);bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);/* Allocate via bfd_malloc and return a fill buffer of size COUNT. IfIS_BIGENDIAN is TRUE, the order of bytes is big endian. If CODE isTRUE, the buffer contains code. */void *(*fill) (bfd_size_type count, bfd_boolean is_bigendian,bfd_boolean code);const struct bfd_arch_info *next;}bfd_arch_info_type;2.13.2.1 `bfd_printable_name'.............................*Synopsis*const char *bfd_printable_name (bfd *abfd);*Description*Return a printable string representing the architecture and machinefrom the pointer to the architecture info structure.2.13.2.2 `bfd_scan_arch'........................*Synopsis*const bfd_arch_info_type *bfd_scan_arch (const char *string);*Description*Figure out if BFD supports any cpu which could be described with thename STRING. Return a pointer to an `arch_info' structure if a machineis found, otherwise NULL.2.13.2.3 `bfd_arch_list'........................*Synopsis*const char **bfd_arch_list (void);*Description*Return a freshly malloced NULL-terminated vector of the names of allthe valid BFD architectures. Do not modify the names.2.13.2.4 `bfd_arch_get_compatible'..................................*Synopsis*const bfd_arch_info_type *bfd_arch_get_compatible(const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);*Description*Determine whether two BFDs' architectures and machine types arecompatible. Calculates the lowest common denominator between the twoarchitectures and machine types implied by the BFDs and returns apointer to an `arch_info' structure describing the compatible machine.2.13.2.5 `bfd_default_arch_struct'..................................*Description*The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' whichhas been initialized to a fairly generic state. A BFD starts life bypointing to this structure, until the correct back end has determinedthe real architecture of the file.extern const bfd_arch_info_type bfd_default_arch_struct;2.13.2.6 `bfd_set_arch_info'............................*Synopsis*void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);*Description*Set the architecture info of ABFD to ARG.2.13.2.7 `bfd_default_set_arch_mach'....................................*Synopsis*bfd_boolean bfd_default_set_arch_mach(bfd *abfd, enum bfd_architecture arch, unsigned long mach);*Description*Set the architecture and machine type in BFD ABFD to ARCH and MACH.Find the correct pointer to a structure and insert it into the`arch_info' pointer.2.13.2.8 `bfd_get_arch'.......................*Synopsis*enum bfd_architecture bfd_get_arch (bfd *abfd);*Description*Return the enumerated type which describes the BFD ABFD's architecture.2.13.2.9 `bfd_get_mach'.......................*Synopsis*unsigned long bfd_get_mach (bfd *abfd);*Description*Return the long type which describes the BFD ABFD's machine.2.13.2.10 `bfd_arch_bits_per_byte'..................................*Synopsis*unsigned int bfd_arch_bits_per_byte (bfd *abfd);*Description*Return the number of bits in one of the BFD ABFD's architecture's bytes.2.13.2.11 `bfd_arch_bits_per_address'.....................................*Synopsis*unsigned int bfd_arch_bits_per_address (bfd *abfd);*Description*Return the number of bits in one of the BFD ABFD's architecture'saddresses.2.13.2.12 `bfd_default_compatible'..................................*Synopsis*const bfd_arch_info_type *bfd_default_compatible(const bfd_arch_info_type *a, const bfd_arch_info_type *b);*Description*The default function for testing for compatibility.2.13.2.13 `bfd_default_scan'............................*Synopsis*bfd_boolean bfd_default_scan(const struct bfd_arch_info *info, const char *string);*Description*The default function for working out whether this is an architecturehit and a machine hit.2.13.2.14 `bfd_get_arch_info'.............................*Synopsis*const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);*Description*Return the architecture info struct in ABFD.2.13.2.15 `bfd_lookup_arch'...........................*Synopsis*const bfd_arch_info_type *bfd_lookup_arch(enum bfd_architecture arch, unsigned long machine);*Description*Look for the architecture info structure which matches the argumentsARCH and MACHINE. A machine of 0 matches the machine/architecturestructure which marks itself as the default.2.13.2.16 `bfd_printable_arch_mach'...................................*Synopsis*const char *bfd_printable_arch_mach(enum bfd_architecture arch, unsigned long machine);*Description*Return a printable string representing the architecture and machinetype.This routine is depreciated.2.13.2.17 `bfd_octets_per_byte'...............................*Synopsis*unsigned int bfd_octets_per_byte (bfd *abfd);*Description*Return the number of octets (8-bit quantities) per target byte (minimumaddressable unit). In most cases, this will be one, but some DSPtargets have 16, 32, or even 48 bits per byte.2.13.2.18 `bfd_arch_mach_octets_per_byte'.........................................*Synopsis*unsigned int bfd_arch_mach_octets_per_byte(enum bfd_architecture arch, unsigned long machine);*Description*See bfd_octets_per_byte.This routine is provided for those cases where a bfd * is notavailable2.13.2.19 `bfd_arch_default_fill'.................................*Synopsis*void *bfd_arch_default_fill (bfd_size_type count,bfd_boolean is_bigendian,bfd_boolean code);*Description*Allocate via bfd_malloc and return a fill buffer of size COUNT. IfIS_BIGENDIAN is TRUE, the order of bytes is big endian. If CODE isTRUE, the buffer contains code.File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end/* Set to N to open the next N BFDs using an alternate id space. */extern unsigned int bfd_use_reserved_id;2.14 Opening and closing BFDs=============================2.14.1 Functions for opening and closing----------------------------------------2.14.1.1 `bfd_fopen'....................*Synopsis*bfd *bfd_fopen (const char *filename, const char *target,const char *mode, int fd);*Description*Open the file FILENAME with the target TARGET. Return a pointer to thecreated BFD. If FD is not -1, then `fdopen' is used to open the file;otherwise, `fopen' is used. MODE is passed directly to `fopen' or`fdopen'.Calls `bfd_find_target', so TARGET is interpreted as by thatfunction.The new BFD is marked as cacheable iff FD is -1.If `NULL' is returned then an error has occured. Possible errorsare `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'error.On error, FD is always closed.A copy of the FILENAME argument is stored in the newly created BFD.It can be accessed via the bfd_get_filename() macro.2.14.1.2 `bfd_openr'....................*Synopsis*bfd *bfd_openr (const char *filename, const char *target);*Description*Open the file FILENAME (using `fopen') with the target TARGET. Returna pointer to the created BFD.Calls `bfd_find_target', so TARGET is interpreted as by thatfunction.If `NULL' is returned then an error has occured. Possible errorsare `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'error.A copy of the FILENAME argument is stored in the newly created BFD.It can be accessed via the bfd_get_filename() macro.2.14.1.3 `bfd_fdopenr'......................*Synopsis*bfd *bfd_fdopenr (const char *filename, const char *target, int fd);*Description*`bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. Itopens a BFD on a file already described by the FD supplied.When the file is later `bfd_close'd, the file descriptor will beclosed. If the caller desires that this file descriptor be cached byBFD (opened as needed, closed as needed to free descriptors for otheropens), with the supplied FD used as an initial file descriptor (butsubject to closure at any time), call bfd_set_cacheable(bfd, 1) on thereturned BFD. The default is to assume no caching; the file descriptorwill remain open until `bfd_close', and will not be affected by BFDoperations on other files.Possible errors are `bfd_error_no_memory',`bfd_error_invalid_target' and `bfd_error_system_call'.On error, FD is closed.A copy of the FILENAME argument is stored in the newly created BFD.It can be accessed via the bfd_get_filename() macro.2.14.1.4 `bfd_openstreamr'..........................*Synopsis*bfd *bfd_openstreamr (const char * filename, const char * target, void * stream);*Description*Open a BFD for read access on an existing stdio stream. When the BFDis passed to `bfd_close', the stream will be closed.A copy of the FILENAME argument is stored in the newly created BFD.It can be accessed via the bfd_get_filename() macro.2.14.1.5 `bfd_openr_iovec'..........................*Synopsis*bfd *bfd_openr_iovec (const char *filename, const char *target,void *(*open_func) (struct bfd *nbfd,void *open_closure),void *open_closure,file_ptr (*pread_func) (struct bfd *nbfd,void *stream,void *buf,file_ptr nbytes,file_ptr offset),int (*close_func) (struct bfd *nbfd,void *stream),int (*stat_func) (struct bfd *abfd,void *stream,struct stat *sb));*Description*Create and return a BFD backed by a read-only STREAM. The STREAM iscreated using OPEN_FUNC, accessed using PREAD_FUNC and destroyed usingCLOSE_FUNC.Calls `bfd_find_target', so TARGET is interpreted as by thatfunction.Calls OPEN_FUNC (which can call `bfd_zalloc' and `bfd_get_filename')to obtain the read-only stream backing the BFD. OPEN_FUNC eithersucceeds returning the non-`NULL' STREAM, or fails returning `NULL'(setting `bfd_error').Calls PREAD_FUNC to request NBYTES of data from STREAM starting atOFFSET (e.g., via a call to `bfd_read'). PREAD_FUNC either succeedsreturning the number of bytes read (which can be less than NBYTES whenend-of-file), or fails returning -1 (setting `bfd_error').Calls CLOSE_FUNC when the BFD is later closed using `bfd_close'.CLOSE_FUNC either succeeds returning 0, or fails returning -1 (setting`bfd_error').Calls STAT_FUNC to fill in a stat structure for bfd_stat,bfd_get_size, and bfd_get_mtime calls. STAT_FUNC returns 0 on success,or returns -1 on failure (setting `bfd_error').If `bfd_openr_iovec' returns `NULL' then an error has occurred.Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target'and `bfd_error_system_call'.A copy of the FILENAME argument is stored in the newly created BFD.It can be accessed via the bfd_get_filename() macro.2.14.1.6 `bfd_openw'....................*Synopsis*bfd *bfd_openw (const char *filename, const char *target);*Description*Create a BFD, associated with file FILENAME, using the file formatTARGET, and return a pointer to it.Possible errors are `bfd_error_system_call', `bfd_error_no_memory',`bfd_error_invalid_target'.A copy of the FILENAME argument is stored in the newly created BFD.It can be accessed via the bfd_get_filename() macro.2.14.1.7 `bfd_close'....................*Synopsis*bfd_boolean bfd_close (bfd *abfd);*Description*Close a BFD. If the BFD was open for writing, then pending operationsare completed and the file written out and closed. If the created fileis executable, then `chmod' is called to mark it as such.All memory attached to the BFD is released.The file descriptor associated with the BFD is closed (even if itwas passed in to BFD by `bfd_fdopenr').*Returns*`TRUE' is returned if all is ok, otherwise `FALSE'.2.14.1.8 `bfd_close_all_done'.............................*Synopsis*bfd_boolean bfd_close_all_done (bfd *);*Description*Close a BFD. Differs from `bfd_close' since it does not complete anypending operations. This routine would be used if the application hadjust used BFD for swapping and didn't want to use any of the writingcode.If the created file is executable, then `chmod' is called to mark itas such.All memory attached to the BFD is released.*Returns*`TRUE' is returned if all is ok, otherwise `FALSE'.2.14.1.9 `bfd_create'.....................*Synopsis*bfd *bfd_create (const char *filename, bfd *templ);*Description*Create a new BFD in the manner of `bfd_openw', but without opening afile. The new BFD takes the target from the target used by TEMPL. Theformat is always set to `bfd_object'.A copy of the FILENAME argument is stored in the newly created BFD.It can be accessed via the bfd_get_filename() macro.2.14.1.10 `bfd_make_writable'.............................*Synopsis*bfd_boolean bfd_make_writable (bfd *abfd);*Description*Takes a BFD as created by `bfd_create' and converts it into one like asreturned by `bfd_openw'. It does this by converting the BFD toBFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' onthis bfd later.*Returns*`TRUE' is returned if all is ok, otherwise `FALSE'.2.14.1.11 `bfd_make_readable'.............................*Synopsis*bfd_boolean bfd_make_readable (bfd *abfd);*Description*Takes a BFD as created by `bfd_create' and `bfd_make_writable' andconverts it into one like as returned by `bfd_openr'. It does this bywriting the contents out to the memory buffer, then reversing thedirection.*Returns*`TRUE' is returned if all is ok, otherwise `FALSE'.2.14.1.12 `bfd_alloc'.....................*Synopsis*void *bfd_alloc (bfd *abfd, bfd_size_type wanted);*Description*Allocate a block of WANTED bytes of memory attached to `abfd' andreturn a pointer to it.2.14.1.13 `bfd_alloc2'......................*Synopsis*void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);*Description*Allocate a block of NMEMB elements of SIZE bytes each of memoryattached to `abfd' and return a pointer to it.2.14.1.14 `bfd_zalloc'......................*Synopsis*void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);*Description*Allocate a block of WANTED bytes of zeroed memory attached to `abfd'and return a pointer to it.2.14.1.15 `bfd_zalloc2'.......................*Synopsis*void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);*Description*Allocate a block of NMEMB elements of SIZE bytes each of zeroed memoryattached to `abfd' and return a pointer to it.2.14.1.16 `bfd_calc_gnu_debuglink_crc32'........................................*Synopsis*unsigned long bfd_calc_gnu_debuglink_crc32(unsigned long crc, const unsigned char *buf, bfd_size_type len);*Description*Computes a CRC value as used in the .gnu_debuglink section. Advancesthe previously computed CRC value by computing and adding in the crc32for LEN bytes of BUF.*Returns*Return the updated CRC32 value.2.14.1.17 `bfd_get_debug_link_info'...................................*Synopsis*char *bfd_get_debug_link_info (bfd *abfd, unsigned long *crc32_out);*Description*Fetch the filename and CRC32 value for any separate debuginfoassociated with ABFD. Return NULL if no such info found, otherwisereturn filename and update CRC32_OUT. The returned filename isallocated with `malloc'; freeing it is the responsibility of the caller.2.14.1.18 `bfd_get_alt_debug_link_info'.......................................*Synopsis*char *bfd_get_alt_debug_link_info (bfd * abfd,bfd_size_type *buildid_len,bfd_byte **buildid_out);*Description*Fetch the filename and BuildID value for any alternate debuginfoassociated with ABFD. Return NULL if no such info found, otherwisereturn filename and update BUILDID_LEN and BUILDID_OUT. The returnedfilename and build_id are allocated with `malloc'; freeing them is theresponsibility of the caller.2.14.1.19 `separate_debug_file_exists'......................................*Synopsis*bfd_boolean separate_debug_file_exists(char *name, unsigned long crc32);*Description*Checks to see if NAME is a file and if its contents match CRC32.2.14.1.20 `separate_alt_debug_file_exists'..........................................*Synopsis*bfd_boolean separate_alt_debug_file_exists(char *name, unsigned long crc32);*Description*Checks to see if NAME is a file and if its BuildID matches BUILDID.2.14.1.21 `find_separate_debug_file'....................................*Synopsis*char *find_separate_debug_file (bfd *abfd);*Description*Searches ABFD for a section called SECTION_NAME which is expected tocontain a reference to a file containing separate debugginginformation. The function scans various locations in the filesystem,including the file tree rooted at DEBUG_FILE_DIRECTORY, and returns thefirst matching filename that it finds. If CHECK_CRC is TRUE then thecontents of the file must also match the CRC value contained inSECTION_NAME. Returns NULL if no valid file could be found.2.14.1.22 `bfd_follow_gnu_debuglink'....................................*Synopsis*char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);*Description*Takes a BFD and searches it for a .gnu_debuglink section. If thissection is found, it examines the section for the name and checksum ofa '.debug' file containing auxiliary debugging information. It thensearches the filesystem for this .debug file in some standardlocations, including the directory tree rooted at DIR, and if foundreturns the full filename.If DIR is NULL, it will search a default path configured into libbfdat build time. [XXX this feature is not currently implemented].*Returns*`NULL' on any errors or failure to locate the .debug file, otherwise apointer to a heap-allocated string containing the filename. The calleris responsible for freeing this string.2.14.1.23 `bfd_follow_gnu_debugaltlink'.......................................*Synopsis*char *bfd_follow_gnu_debugaltlink (bfd *abfd, const char *dir);*Description*Takes a BFD and searches it for a .gnu_debugaltlink section. If thissection is found, it examines the section for the name of a filecontaining auxiliary debugging information. It then searches thefilesystem for this file in a set of standard locations, including thedirectory tree rooted at DIR, and if found returns the full filename.If DIR is NULL, it will search a default path configured into libbfdat build time. [FIXME: This feature is not currently implemented].*Returns*`NULL' on any errors or failure to locate the debug file, otherwise apointer to a heap-allocated string containing the filename. The calleris responsible for freeing this string.2.14.1.24 `bfd_create_gnu_debuglink_section'............................................*Synopsis*struct bfd_section *bfd_create_gnu_debuglink_section(bfd *abfd, const char *filename);*Description*Takes a BFD and adds a .gnu_debuglink section to it. The section issized to be big enough to contain a link to the specified FILENAME.*Returns*A pointer to the new section is returned if all is ok. Otherwise`NULL' is returned and bfd_error is set.2.14.1.25 `bfd_fill_in_gnu_debuglink_section'.............................................*Synopsis*bfd_boolean bfd_fill_in_gnu_debuglink_section(bfd *abfd, struct bfd_section *sect, const char *filename);*Description*Takes a BFD and containing a .gnu_debuglink section SECT and fills inthe contents of the section to contain a link to the specifiedFILENAME. The filename should be relative to the current directory.*Returns*`TRUE' is returned if all is ok. Otherwise `FALSE' is returned andbfd_error is set.File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end2.15 Implementation details===========================2.15.1 Internal functions-------------------------*Description*These routines are used within BFD. They are not intended for export,but are documented here for completeness.2.15.1.1 `bfd_write_bigendian_4byte_int'........................................*Synopsis*bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);*Description*Write a 4 byte integer I to the output BFD ABFD, in big endian orderregardless of what else is going on. This is useful in archives.2.15.1.2 `bfd_put_size'.......................2.15.1.3 `bfd_get_size'.......................*Description*These macros as used for reading and writing raw data in sections; eachaccess (except for bytes) is vectored through the target format of theBFD and mangled accordingly. The mangling performs any necessary endiantranslations and removes alignment restrictions. Note that typesaccepted and returned by these macros are identical so they can beswapped around in macros--for example, `libaout.h' defines `GET_WORD'to either `bfd_get_32' or `bfd_get_64'.In the put routines, VAL must be a `bfd_vma'. If we are on a systemwithout prototypes, the caller is responsible for making sure that istrue, with a cast if necessary. We don't cast them in the macrodefinitions because that would prevent `lint' or `gcc -Wall' fromdetecting sins such as passing a pointer. To detect calling these withless than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit`bfd_vma''s./* Byte swapping macros for user section data. */#define bfd_put_8(abfd, val, ptr) \((void) (*((unsigned char *) (ptr)) = (val) & 0xff))#define bfd_put_signed_8 \bfd_put_8#define bfd_get_8(abfd, ptr) \(*(const unsigned char *) (ptr) & 0xff)#define bfd_get_signed_8(abfd, ptr) \(((*(const unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)#define bfd_put_16(abfd, val, ptr) \BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))#define bfd_put_signed_16 \bfd_put_16#define bfd_get_16(abfd, ptr) \BFD_SEND (abfd, bfd_getx16, (ptr))#define bfd_get_signed_16(abfd, ptr) \BFD_SEND (abfd, bfd_getx_signed_16, (ptr))#define bfd_put_32(abfd, val, ptr) \BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))#define bfd_put_signed_32 \bfd_put_32#define bfd_get_32(abfd, ptr) \BFD_SEND (abfd, bfd_getx32, (ptr))#define bfd_get_signed_32(abfd, ptr) \BFD_SEND (abfd, bfd_getx_signed_32, (ptr))#define bfd_put_64(abfd, val, ptr) \BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))#define bfd_put_signed_64 \bfd_put_64#define bfd_get_64(abfd, ptr) \BFD_SEND (abfd, bfd_getx64, (ptr))#define bfd_get_signed_64(abfd, ptr) \BFD_SEND (abfd, bfd_getx_signed_64, (ptr))#define bfd_get(bits, abfd, ptr) \((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \: (bits) == 16 ? bfd_get_16 (abfd, ptr) \: (bits) == 32 ? bfd_get_32 (abfd, ptr) \: (bits) == 64 ? bfd_get_64 (abfd, ptr) \: (abort (), (bfd_vma) - 1))#define bfd_put(bits, abfd, val, ptr) \((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \: (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \: (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \: (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \: (abort (), (void) 0))2.15.1.4 `bfd_h_put_size'.........................*Description*These macros have the same function as their `bfd_get_x' brethren,except that they are used for removing information for the headerrecords of object files. Believe it or not, some object files keeptheir header records in big endian order and their data in littleendian order./* Byte swapping macros for file header data. */#define bfd_h_put_8(abfd, val, ptr) \bfd_put_8 (abfd, val, ptr)#define bfd_h_put_signed_8(abfd, val, ptr) \bfd_put_8 (abfd, val, ptr)#define bfd_h_get_8(abfd, ptr) \bfd_get_8 (abfd, ptr)#define bfd_h_get_signed_8(abfd, ptr) \bfd_get_signed_8 (abfd, ptr)#define bfd_h_put_16(abfd, val, ptr) \BFD_SEND (abfd, bfd_h_putx16, (val, ptr))#define bfd_h_put_signed_16 \bfd_h_put_16#define bfd_h_get_16(abfd, ptr) \BFD_SEND (abfd, bfd_h_getx16, (ptr))#define bfd_h_get_signed_16(abfd, ptr) \BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))#define bfd_h_put_32(abfd, val, ptr) \BFD_SEND (abfd, bfd_h_putx32, (val, ptr))#define bfd_h_put_signed_32 \bfd_h_put_32#define bfd_h_get_32(abfd, ptr) \BFD_SEND (abfd, bfd_h_getx32, (ptr))#define bfd_h_get_signed_32(abfd, ptr) \BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))#define bfd_h_put_64(abfd, val, ptr) \BFD_SEND (abfd, bfd_h_putx64, (val, ptr))#define bfd_h_put_signed_64 \bfd_h_put_64#define bfd_h_get_64(abfd, ptr) \BFD_SEND (abfd, bfd_h_getx64, (ptr))#define bfd_h_get_signed_64(abfd, ptr) \BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))/* Aliases for the above, which should eventually go away. */#define H_PUT_64 bfd_h_put_64#define H_PUT_32 bfd_h_put_32#define H_PUT_16 bfd_h_put_16#define H_PUT_8 bfd_h_put_8#define H_PUT_S64 bfd_h_put_signed_64#define H_PUT_S32 bfd_h_put_signed_32#define H_PUT_S16 bfd_h_put_signed_16#define H_PUT_S8 bfd_h_put_signed_8#define H_GET_64 bfd_h_get_64#define H_GET_32 bfd_h_get_32#define H_GET_16 bfd_h_get_16#define H_GET_8 bfd_h_get_8#define H_GET_S64 bfd_h_get_signed_64#define H_GET_S32 bfd_h_get_signed_32#define H_GET_S16 bfd_h_get_signed_16#define H_GET_S8 bfd_h_get_signed_82.15.1.5 `bfd_log2'...................*Synopsis*unsigned int bfd_log2 (bfd_vma x);*Description*Return the log base 2 of the value supplied, rounded up. E.g., an X of1025 returns 11. A X of 0 returns 0.File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end2.16 File caching=================The file caching mechanism is embedded within BFD and allows theapplication to open as many BFDs as it wants without regard to theunderlying operating system's file descriptor limit (often as low as 20open files). The module in `cache.c' maintains a least recently usedlist of `bfd_cache_max_open' files, and exports the name`bfd_cache_lookup', which runs around and makes sure that the requiredBFD is open. If not, then it chooses a file to close, closes it andopens the one wanted, returning its file handle.2.16.1 Caching functions------------------------2.16.1.1 `bfd_cache_init'.........................*Synopsis*bfd_boolean bfd_cache_init (bfd *abfd);*Description*Add a newly opened BFD to the cache.2.16.1.2 `bfd_cache_close'..........................*Synopsis*bfd_boolean bfd_cache_close (bfd *abfd);*Description*Remove the BFD ABFD from the cache. If the attached file is open, thenclose it too.*Returns*`FALSE' is returned if closing the file fails, `TRUE' is returned ifall is well.2.16.1.3 `bfd_cache_close_all'..............................*Synopsis*bfd_boolean bfd_cache_close_all (void);*Description*Remove all BFDs from the cache. If the attached file is open, thenclose it too.*Returns*`FALSE' is returned if closing one of the file fails, `TRUE' isreturned if all is well.2.16.1.4 `bfd_open_file'........................*Synopsis*FILE* bfd_open_file (bfd *abfd);*Description*Call the OS to open a file for ABFD. Return the `FILE *' (possibly`NULL') that results from this operation. Set up the BFD so thatfuture accesses know the file is open. If the `FILE *' returned is`NULL', then it won't have been put in the cache, so it won't have tobe removed from it.File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end2.17 Linker Functions=====================The linker uses three special entry points in the BFD target vector.It is not necessary to write special routines for these entry pointswhen creating a new BFD back end, since generic versions are provided.However, writing them can speed up linking and make it usesignificantly less runtime memory.The first routine creates a hash table used by the other routines.The second routine adds the symbols from an object file to the hashtable. The third routine takes all the object files and links themtogether to create the output file. These routines are designed sothat the linker proper does not need to know anything about the symbolsin the object files that it is linking. The linker merely arranges thesections as directed by the linker script and lets BFD handle thedetails of symbols and relocs.The second routine and third routines are passed a pointer to a`struct bfd_link_info' structure (defined in `bfdlink.h') which holdsinformation relevant to the link, including the linker hash table(which was created by the first routine) and a set of callbackfunctions to the linker proper.The generic linker routines are in `linker.c', and use the headerfile `genlink.h'. As of this writing, the only back ends which haveimplemented versions of these routines are a.out (in `aoutx.h') andECOFF (in `ecoff.c'). The a.out routines are used as examplesthroughout this section.* Menu:* Creating a Linker Hash Table::* Adding Symbols to the Hash Table::* Performing the Final Link::File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions2.17.1 Creating a linker hash table-----------------------------------The linker routines must create a hash table, which must be derivedfrom `struct bfd_link_hash_table' described in `bfdlink.c'. *Note HashTables::, for information on how to create a derived hash table. Thisentry point is called using the target vector of the linker output file.The `_bfd_link_hash_table_create' entry point must allocate andinitialize an instance of the desired hash table. If the back end doesnot require any additional information to be stored with the entries inthe hash table, the entry point may simply create a `structbfd_link_hash_table'. Most likely, however, some additionalinformation will be needed.For example, with each entry in the hash table the a.out linkerkeeps the index the symbol has in the final output file (this indexnumber is used so that when doing a relocatable link the symbol indexused in the output file can be quickly filled in when copying over areloc). The a.out linker code defines the required structures andfunctions for a hash table derived from `struct bfd_link_hash_table'.The a.out linker hash table is created by the function`NAME(aout,link_hash_table_create)'; it simply allocates space for thehash table, initializes it, and returns a pointer to it.When writing the linker routines for a new back end, you willgenerally not know exactly which fields will be required until you havefinished. You should simply create a new hash table which defines noadditional fields, and then simply add fields as they become necessary.File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions2.17.2 Adding symbols to the hash table---------------------------------------The linker proper will call the `_bfd_link_add_symbols' entry point foreach object file or archive which is to be linked (typically these arethe files named on the command line, but some may also come from thelinker script). The entry point is responsible for examining the file.For an object file, BFD must add any relevant symbol information to thehash table. For an archive, BFD must determine which elements of thearchive should be used and adding them to the link.The a.out version of this entry point is`NAME(aout,link_add_symbols)'.* Menu:* Differing file formats::* Adding symbols from an object file::* Adding symbols from an archive::File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table2.17.2.1 Differing file formats...............................Normally all the files involved in a link will be of the same format,but it is also possible to link together different format object files,and the back end must support that. The `_bfd_link_add_symbols' entrypoint is called via the target vector of the file to be added. Thishas an important consequence: the function may not assume that the hashtable is the type created by the corresponding`_bfd_link_hash_table_create' vector. All the `_bfd_link_add_symbols'function can assume about the hash table is that it is derived from`struct bfd_link_hash_table'.Sometimes the `_bfd_link_add_symbols' function must store someinformation in the hash table entry to be used by the `_bfd_final_link'function. In such a case the output bfd xvec must be checked to makesure that the hash table was created by an object file of the sameformat.The `_bfd_final_link' routine must be prepared to handle a hashentry without any extra information added by the`_bfd_link_add_symbols' function. A hash entry without extrainformation will also occur when the linker script directs the linkerto create a symbol. Note that, regardless of how a hash table entry isadded, all the fields will be initialized to some sort of null value bythe hash table entry initialization function.See `ecoff_link_add_externals' for an example of how to check theoutput bfd before saving information (in this case, the ECOFF externalsymbol debugging information) in a hash table entry.File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table2.17.2.2 Adding symbols from an object file...........................................When the `_bfd_link_add_symbols' routine is passed an object file, itmust add all externally visible symbols in that object file to the hashtable. The actual work of adding the symbol to the hash table isnormally handled by the function `_bfd_generic_link_add_one_symbol'.The `_bfd_link_add_symbols' routine is responsible for reading all thesymbols from the object file and passing the correct information to`_bfd_generic_link_add_one_symbol'.The `_bfd_link_add_symbols' routine should not use`bfd_canonicalize_symtab' to read the symbols. The point of providingthis routine is to avoid the overhead of converting the symbols intogeneric `asymbol' structures.`_bfd_generic_link_add_one_symbol' handles the details of combiningcommon symbols, warning about multiple definitions, and so forth. Ittakes arguments which describe the symbol to add, notably symbol flags,a section, and an offset. The symbol flags include such things as`BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the objectfile, or something like `bfd_und_section_ptr' for an undefined symbolor `bfd_com_section_ptr' for a common symbol.If the `_bfd_final_link' routine is also going to need to read thesymbol information, the `_bfd_link_add_symbols' routine should save itsomewhere attached to the object file BFD. However, the informationshould only be saved if the `keep_memory' field of the `info' argumentis TRUE, so that the `-no-keep-memory' linker switch is effective.The a.out function which adds symbols from an object file is`aout_link_add_object_symbols', and most of the interesting work is in`aout_link_add_symbols'. The latter saves pointers to the hash tablesentries created by `_bfd_generic_link_add_one_symbol' indexed by symbolnumber, so that the `_bfd_final_link' routine does not have to call thehash table lookup routine to locate the entry.File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table2.17.2.3 Adding symbols from an archive.......................................When the `_bfd_link_add_symbols' routine is passed an archive, it mustlook through the symbols defined by the archive and decide whichelements of the archive should be included in the link. For each suchelement it must call the `add_archive_element' linker callback, and itmust add the symbols from the object file to the linker hash table.(The callback may in fact indicate that a replacement BFD should beused, in which case the symbols from that BFD should be added to thelinker hash table instead.)In most cases the work of looking through the symbols in the archiveshould be done by the `_bfd_generic_link_add_archive_symbols' function.`_bfd_generic_link_add_archive_symbols' is passed a function to call tomake the final decision about adding an archive element to the link andto do the actual work of adding the symbols to the linker hash table.If the element is to be included, the `add_archive_element' linkercallback routine must be called with the element as an argument, andthe element's symbols must be added to the linker hash table just asthough the element had itself been passed to the`_bfd_link_add_symbols' function.When the a.out `_bfd_link_add_symbols' function receives an archive,it calls `_bfd_generic_link_add_archive_symbols' passing`aout_link_check_archive_element' as the function argument.`aout_link_check_archive_element' calls `aout_link_check_ar_symbols'.If the latter decides to add the element (an element is only added ifit provides a real, non-common, definition for a previously undefinedor common symbol) it calls the `add_archive_element' callback and then`aout_link_check_archive_element' calls `aout_link_add_symbols' toactually add the symbols to the linker hash table - possibly those of asubstitute BFD, if the `add_archive_element' callback avails itself ofthat option.The ECOFF back end is unusual in that it does not normally call`_bfd_generic_link_add_archive_symbols', because ECOFF archives alreadycontain a hash table of symbols. The ECOFF back end searches thearchive itself to avoid the overhead of creating a new hash table.File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions2.17.3 Performing the final link--------------------------------When all the input files have been processed, the linker calls the`_bfd_final_link' entry point of the output BFD. This routine isresponsible for producing the final output file, which has severalaspects. It must relocate the contents of the input sections and copythe data into the output sections. It must build an output symboltable including any local symbols from the input files and the globalsymbols from the hash table. When producing relocatable output, it mustmodify the input relocs and write them into the output file. There mayalso be object format dependent work to be done.The linker will also call the `write_object_contents' entry pointwhen the BFD is closed. The two entry points must work together inorder to produce the correct output file.The details of how this works are inevitably dependent upon thespecific object file format. The a.out `_bfd_final_link' routine is`NAME(aout,final_link)'.* Menu:* Information provided by the linker::* Relocating the section contents::* Writing the symbol table::File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link2.17.3.1 Information provided by the linker...........................................Before the linker calls the `_bfd_final_link' entry point, it sets upsome data structures for the function to use.The `input_bfds' field of the `bfd_link_info' structure will pointto a list of all the input files included in the link. These files arelinked through the `link.next' field of the `bfd' structure.Each section in the output file will have a list of `link_order'structures attached to the `map_head.link_order' field (the`link_order' structure is defined in `bfdlink.h'). These structuresdescribe how to create the contents of the output section in terms ofthe contents of various input sections, fill constants, and,eventually, other types of information. They also describe relocs thatmust be created by the BFD backend, but do not correspond to any inputfile; this is used to support -Ur, which builds constructors whilegenerating a relocatable object file.File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link2.17.3.2 Relocating the section contents........................................The `_bfd_final_link' function should look through the `link_order'structures attached to each section of the output file. Each`link_order' structure should either be handled specially, or it shouldbe passed to the function `_bfd_default_link_order' which will do theright thing (`_bfd_default_link_order' is defined in `linker.c').For efficiency, a `link_order' of type `bfd_indirect_link_order'whose associated section belongs to a BFD of the same format as theoutput BFD must be handled specially. This type of `link_order'describes part of an output section in terms of a section belonging toone of the input files. The `_bfd_final_link' function should read thecontents of the section and any associated relocs, apply the relocs tothe section contents, and write out the modified section contents. Ifperforming a relocatable link, the relocs themselves must also bemodified and written out.The functions `_bfd_relocate_contents' and`_bfd_final_link_relocate' provide some general support for performingthe actual relocations, notably overflow checking. Their argumentsinclude information about the symbol the relocation is against and a`reloc_howto_type' argument which describes the relocation to perform.These functions are defined in `reloc.c'.The a.out function which handles reading, relocating, and writingsection contents is `aout_link_input_section'. The actual relocationis done in `aout_link_input_section_std' and`aout_link_input_section_ext'.File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link2.17.3.3 Writing the symbol table.................................The `_bfd_final_link' function must gather all the symbols in the inputfiles and write them out. It must also write out all the symbols inthe global hash table. This must be controlled by the `strip' and`discard' fields of the `bfd_link_info' structure.The local symbols of the input files will not have been entered intothe linker hash table. The `_bfd_final_link' routine must considereach input file and include the symbols in the output file. It may beconvenient to do this when looking through the `link_order' structures,or it may be done by stepping through the `input_bfds' list.The `_bfd_final_link' routine must also traverse the global hashtable to gather all the externally visible symbols. It is possiblethat most of the externally visible symbols may be written out whenconsidering the symbols of each input file, but it is still necessaryto traverse the hash table since the linker script may have definedsome symbols that are not in any of the input files.The `strip' field of the `bfd_link_info' structure controls whichsymbols are written out. The possible values are listed in`bfdlink.h'. If the value is `strip_some', then the `keep_hash' fieldof the `bfd_link_info' structure is a hash table of symbols to keep;each symbol should be looked up in this hash table, and only symbolswhich are present should be included in the output file.If the `strip' field of the `bfd_link_info' structure permits localsymbols to be written out, the `discard' field is used to furthercontrols which local symbols are included in the output file. If thevalue is `discard_l', then all local symbols which begin with a certainprefix are discarded; this is controlled by the`bfd_is_local_label_name' entry point.The a.out backend handles symbols by calling`aout_link_write_symbols' on each input BFD and then traversing theglobal hash table with the function `aout_link_write_other_symbol'. Itbuilds a string table while writing out the symbols, which is writtento the output file at the end of `NAME(aout,final_link)'.2.17.3.4 `bfd_link_split_section'.................................*Synopsis*bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);*Description*Return nonzero if SEC should be split during a reloceatable or finallink.#define bfd_link_split_section(abfd, sec) \BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))2.17.3.5 `bfd_section_already_linked'.....................................*Synopsis*bfd_boolean bfd_section_already_linked (bfd *abfd,asection *sec,struct bfd_link_info *info);*Description*Check if DATA has been already linked during a reloceatable or finallink. Return TRUE if it has.#define bfd_section_already_linked(abfd, sec, info) \BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))2.17.3.6 `bfd_generic_define_common_symbol'...........................................*Synopsis*bfd_boolean bfd_generic_define_common_symbol(bfd *output_bfd, struct bfd_link_info *info,struct bfd_link_hash_entry *h);*Description*Convert common symbol H into a defined symbol. Return TRUE on successand FALSE on failure.#define bfd_define_common_symbol(output_bfd, info, h) \BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))2.17.3.7 `bfd_find_version_for_sym'...................................*Synopsis*struct bfd_elf_version_tree * bfd_find_version_for_sym(struct bfd_elf_version_tree *verdefs,const char *sym_name, bfd_boolean *hide);*Description*Search an elf version script tree for symbol versioning info and export/ don't-export status for a given symbol. Return non-NULL on successand NULL on failure; also sets the output `hide' boolean parameter.2.17.3.8 `bfd_hide_sym_by_version'..................................*Synopsis*bfd_boolean bfd_hide_sym_by_version(struct bfd_elf_version_tree *verdefs, const char *sym_name);*Description*Search an elf version script tree for symbol versioning info for agiven symbol. Return TRUE if the symbol is hidden.File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end2.18 Hash Tables================BFD provides a simple set of hash table functions. Routines areprovided to initialize a hash table, to free a hash table, to look up astring in a hash table and optionally create an entry for it, and totraverse a hash table. There is currently no routine to delete anstring from a hash table.The basic hash table does not permit any data to be stored with astring. However, a hash table is designed to present a base class fromwhich other types of hash tables may be derived. These derived typesmay store additional information with the string. Hash tables wereimplemented in this way, rather than simply providing a data pointer ina hash table entry, because they were designed for use by the linkerback ends. The linker may create thousands of hash table entries, andthe overhead of allocating private data and storing and followingpointers becomes noticeable.The basic hash table code is in `hash.c'.* Menu:* Creating and Freeing a Hash Table::* Looking Up or Entering a String::* Traversing a Hash Table::* Deriving a New Hash Table Type::File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables2.18.1 Creating and freeing a hash table----------------------------------------To create a hash table, create an instance of a `struct bfd_hash_table'(defined in `bfd.h') and call `bfd_hash_table_init' (if you knowapproximately how many entries you will need, the function`bfd_hash_table_init_n', which takes a SIZE argument, may be used).`bfd_hash_table_init' returns `FALSE' if some sort of error occurs.The function `bfd_hash_table_init' take as an argument a function touse to create new entries. For a basic hash table, use the function`bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for whyyou would want to use a different value for this argument.`bfd_hash_table_init' will create an objalloc which will be used toallocate new entries. You may allocate memory on this objalloc using`bfd_hash_allocate'.Use `bfd_hash_table_free' to free up all the memory that has beenallocated for a hash table. This will not free up the `structbfd_hash_table' itself, which you must provide.Use `bfd_hash_set_default_size' to set the default size of hashtable to use.File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables2.18.2 Looking up or entering a string--------------------------------------The function `bfd_hash_lookup' is used both to look up a string in thehash table and to create a new entry.If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up astring. If the string is found, it will returns a pointer to a `structbfd_hash_entry'. If the string is not found in the table`bfd_hash_lookup' will return `NULL'. You should not modify any of thefields in the returns `struct bfd_hash_entry'.If the CREATE argument is `TRUE', the string will be entered intothe hash table if it is not already there. Either way a pointer to a`struct bfd_hash_entry' will be returned, either to the existingstructure or to a newly created one. In this case, a `NULL' returnmeans that an error occurred.If the CREATE argument is `TRUE', and a new entry is created, theCOPY argument is used to decide whether to copy the string onto thehash table objalloc or not. If COPY is passed as `FALSE', you must becareful not to deallocate or modify the string as long as the hash tableexists.File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables2.18.3 Traversing a hash table------------------------------The function `bfd_hash_traverse' may be used to traverse a hash table,calling a function on each element. The traversal is done in a randomorder.`bfd_hash_traverse' takes as arguments a function and a generic`void *' pointer. The function is called with a hash table entry (a`struct bfd_hash_entry *') and the generic pointer passed to`bfd_hash_traverse'. The function must return a `boolean' value, whichindicates whether to continue traversing the hash table. If thefunction returns `FALSE', `bfd_hash_traverse' will stop the traversaland return immediately.File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables2.18.4 Deriving a new hash table type-------------------------------------Many uses of hash tables want to store additional information whicheach entry in the hash table. Some also find it convenient to storeadditional information with the hash table itself. This may be doneusing a derived hash table.Since C is not an object oriented language, creating a derived hashtable requires sticking together some boilerplate routines with a fewdifferences specific to the type of hash table you want to create.An example of a derived hash table is the linker hash table. Thestructures for this are defined in `bfdlink.h'. The functions are in`linker.c'.You may also derive a hash table from an already derived hash table.For example, the a.out linker backend code uses a hash table derivedfrom the linker hash table.* Menu:* Define the Derived Structures::* Write the Derived Creation Routine::* Write Other Derived Routines::File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type2.18.4.1 Define the derived structures......................................You must define a structure for an entry in the hash table, and astructure for the hash table itself.The first field in the structure for an entry in the hash table mustbe of the type used for an entry in the hash table you are derivingfrom. If you are deriving from a basic hash table this is `structbfd_hash_entry', which is defined in `bfd.h'. The first field in thestructure for the hash table itself must be of the type of the hashtable you are deriving from itself. If you are deriving from a basichash table, this is `struct bfd_hash_table'.For example, the linker hash table defines `structbfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is oftype `struct bfd_hash_entry'. Similarly, the first field in `structbfd_link_hash_table', `table', is of type `struct bfd_hash_table'.File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type2.18.4.2 Write the derived creation routine...........................................You must write a routine which will create and initialize an entry inthe hash table. This routine is passed as the function argument to`bfd_hash_table_init'.In order to permit other hash tables to be derived from the hashtable you are creating, this routine must be written in a standard way.The first argument to the creation routine is a pointer to a hashtable entry. This may be `NULL', in which case the routine shouldallocate the right amount of space. Otherwise the space has alreadybeen allocated by a hash table type derived from this one.After allocating space, the creation routine must call the creationroutine of the hash table type it is derived from, passing in a pointerto the space it just allocated. This will initialize any fields usedby the base hash table.Finally the creation routine must initialize any local fields forthe new hash table type.Here is a boilerplate example of a creation routine. FUNCTION_NAMEis the name of the routine. ENTRY_TYPE is the type of an entry in thehash table you are creating. BASE_NEWFUNC is the name of the creationroutine of the hash table type your hash table is derived from.struct bfd_hash_entry *FUNCTION_NAME (struct bfd_hash_entry *entry,struct bfd_hash_table *table,const char *string){struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry;/* Allocate the structure if it has not already been allocated by aderived class. */if (ret == NULL){ret = bfd_hash_allocate (table, sizeof (* ret));if (ret == NULL)return NULL;}/* Call the allocation method of the base class. */ret = ((ENTRY_TYPE *)BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string));/* Initialize the local fields here. */return (struct bfd_hash_entry *) ret;}*Description*The creation routine for the linker hash table, which is in `linker.c',looks just like this example. FUNCTION_NAME is`_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'.BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basichash table.`_bfd_link_hash_newfunc' also initializes the local fields in alinker hash table entry: `type', `written' and `next'.File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type2.18.4.3 Write other derived routines.....................................You will want to write other routines for your new hash table, as well.You will want an initialization routine which calls theinitialization routine of the hash table you are deriving from andinitializes any other local fields. For the linker hash table, this is`_bfd_link_hash_table_init' in `linker.c'.You will want a lookup routine which calls the lookup routine of thehash table you are deriving from and casts the result. The linker hashtable uses `bfd_link_hash_lookup' in `linker.c' (this actually takes anadditional argument which it uses to decide how to return the looked upvalue).You may want a traversal routine. This should just call thetraversal routine of the hash table you are deriving from withappropriate casts. The linker hash table uses `bfd_link_hash_traverse'in `linker.c'.These routines may simply be defined as macros. For example, thea.out backend linker hash table, which is derived from the linker hashtable, uses macros for the lookup and traversal routines. These are`aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h.File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top3 BFD back ends**************** Menu:* What to Put Where::* aout :: a.out backends* coff :: coff backends* elf :: elf backends* mmo :: mmo backendFile: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends3.1 What to Put Where=====================All of BFD lives in one directory.File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends3.2 a.out backends==================*Description*BFD supports a number of different flavours of a.out format, though themajor differences are only the sizes of the structures on disk, and theshape of the relocation information.The support is split into a basic support file `aoutx.h' and otherfiles which derive functions from the base. One derivation file is`aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functionssupport for sun3, sun4, 386 and 29k a.out files, to create a targetjump vector for a specific target.This information is further split out into more specific files foreach machine, including `sunos.c' for sun3 and sun4, `newsos3.c' forthe Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.outformat.The base file `aoutx.h' defines general mechanisms for reading andwriting records to and from disk and various other methods which BFDrequires. It is included by `aout32.c' and `aout64.c' to form the names`aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc.As an example, this is what goes on to make the back end for a sun4,from `aout32.c':#define ARCH_SIZE 32#include "aoutx.h"Which exports names:...aout_32_canonicalize_relocaout_32_find_nearest_lineaout_32_get_linenoaout_32_get_reloc_upper_bound...from `sunos.c':#define TARGET_NAME "a.out-sunos-big"#define VECNAME sparc_aout_sunos_be_vec#include "aoutf1.h"requires all the names from `aout32.c', and produces the jump vectorsparc_aout_sunos_be_vecThe file `host-aout.c' is a special case. It is for a large set ofhosts that use "more or less standard" a.out files, and for whichcross-debugging is not interesting. It uses the standard 32-bit a.outsupport routines, but determines the file offsets and addresses of thetext, data, and BSS sections, the machine architecture and machinetype, and the entry point address, in a host-dependent manner. Oncethese values have been determined, generic code is used to handle theobject file.When porting it to run on a new system, you must supply:HOST_PAGE_SIZEHOST_SEGMENT_SIZEHOST_MACHINE_ARCH (optional)HOST_MACHINE_MACHINE (optional)HOST_TEXT_START_ADDRHOST_STACK_END_ADDRin the file `../include/sys/h-XXX.h' (for your host). These values,plus the structures and macros defined in `a.out.h' on your hostsystem, will produce a BFD target that will access ordinary a.out fileson your host. To configure a new machine to use `host-aout.c', specify:TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vecTDEPFILES= host-aout.o trad-core.oin the `config/XXX.mt' file, and modify `configure.ac' to use the`XXX.mt' file (by setting "`bfd_target=XXX'") when your configurationis selected.3.2.1 Relocations-----------------*Description*The file `aoutx.h' provides for both the _standard_ and _extended_forms of a.out relocation records.The standard records contain only an address, a symbol index, and atype field. The extended records (used on 29ks and sparcs) also have afull integer for an addend.3.2.2 Internal entry points---------------------------*Description*`aoutx.h' exports several routines for accessing the contents of ana.out file, which are gathered and exported in turn by various formatspecific files (eg sunos.c).3.2.2.1 `aout_SIZE_swap_exec_header_in'.......................................*Synopsis*void aout_SIZE_swap_exec_header_in,(bfd *abfd,struct external_exec *bytes,struct internal_exec *execp);*Description*Swap the information in an executable header RAW_BYTES taken from a rawbyte stream memory image into the internal exec header structure EXECP.3.2.2.2 `aout_SIZE_swap_exec_header_out'........................................*Synopsis*void aout_SIZE_swap_exec_header_out(bfd *abfd,struct internal_exec *execp,struct external_exec *raw_bytes);*Description*Swap the information in an internal exec header structure EXECP intothe buffer RAW_BYTES ready for writing to disk.3.2.2.3 `aout_SIZE_some_aout_object_p'......................................*Synopsis*const bfd_target *aout_SIZE_some_aout_object_p(bfd *abfd,struct internal_exec *execp,const bfd_target *(*callback_to_real_object_p) (bfd *));*Description*Some a.out variant thinks that the file open in ABFD checking is ana.out file. Do some more checking, and set up for access if it reallyis. Call back to the calling environment's "finish up" function justbefore returning, to handle any last-minute setup.3.2.2.4 `aout_SIZE_mkobject'............................*Synopsis*bfd_boolean aout_SIZE_mkobject, (bfd *abfd);*Description*Initialize BFD ABFD for use with a.out files.3.2.2.5 `aout_SIZE_machine_type'................................*Synopsis*enum machine_type aout_SIZE_machine_type(enum bfd_architecture arch,unsigned long machine,bfd_boolean *unknown);*Description*Keep track of machine architecture and machine type for a.out's. Returnthe `machine_type' for a particular architecture and machine, or`M_UNKNOWN' if that exact architecture and machine can't be representedin a.out format.If the architecture is understood, machine type 0 (default) isalways understood.3.2.2.6 `aout_SIZE_set_arch_mach'.................................*Synopsis*bfd_boolean aout_SIZE_set_arch_mach,(bfd *,enum bfd_architecture arch,unsigned long machine);*Description*Set the architecture and the machine of the BFD ABFD to the values ARCHand MACHINE. Verify that ABFD's format can support the architecturerequired.3.2.2.7 `aout_SIZE_new_section_hook'....................................*Synopsis*bfd_boolean aout_SIZE_new_section_hook,(bfd *abfd,asection *newsect);*Description*Called by the BFD in response to a `bfd_make_section' request.File: bfd.info, Node: coff, Next: elf, Prev: aout, Up: BFD back ends3.3 coff backends=================BFD supports a number of different flavours of coff format. The majordifferences between formats are the sizes and alignments of fields instructures on disk, and the occasional extra field.Coff in all its varieties is implemented with a few common files anda number of implementation specific files. For example, The 88k bcscoff format is implemented in the file `coff-m88k.c'. This file`#include's `coff/m88k.h' which defines the external structure of thecoff format for the 88k, and `coff/internal.h' which defines theinternal structure. `coff-m88k.c' also defines the relocations used bythe 88k format *Note Relocations::.The Intel i960 processor version of coff is implemented in`coff-i960.c'. This file has the same structure as `coff-m88k.c',except that it includes `coff/i960.h' rather than `coff-m88k.h'.3.3.1 Porting to a new version of coff--------------------------------------The recommended method is to select from the existing implementationsthe version of coff which is most like the one you want to use. Forexample, we'll say that i386 coff is the one you select, and that yourcoff flavour is called foo. Copy `i386coff.c' to `foocoff.c', copy`../include/coff/i386.h' to `../include/coff/foo.h', and add the linesto `targets.c' and `Makefile.in' so that your new back end is used.Alter the shapes of the structures in `../include/coff/foo.h' so thatthey match what you need. You will probably also have to add `#ifdef'sto the code in `coff/internal.h' and `coffcode.h' if your version ofcoff is too wild.You can verify that your new BFD backend works quite simply bybuilding `objdump' from the `binutils' directory, and making sure thatits version of what's going on and your host system's idea (assuming ithas the pretty standard coff dump utility, usually called `att-dump' orjust `dump') are the same. Then clean up your code, and send whatyou've done to Cygnus. Then your stuff will be in the next release, andyou won't have to keep integrating it.3.3.2 How the coff backend works--------------------------------3.3.2.1 File layout...................The Coff backend is split into generic routines that are applicable toany Coff target and routines that are specific to a particular target.The target-specific routines are further split into ones which arebasically the same for all Coff targets except that they use theexternal symbol format or use different values for certain constants.The generic routines are in `coffgen.c'. These routines work forany Coff target. They use some hooks into the target specific code;the hooks are in a `bfd_coff_backend_data' structure, one of whichexists for each target.The essentially similar target-specific routines are in`coffcode.h'. This header file includes executable C code. Thevarious Coff targets first include the appropriate Coff header file,make any special defines that are needed, and then include `coffcode.h'.Some of the Coff targets then also have additional routines in thetarget source file itself.For example, `coff-i960.c' includes `coff/internal.h' and`coff/i960.h'. It then defines a few constants, such as `I960', andincludes `coffcode.h'. Since the i960 has complex relocation types,`coff-i960.c' also includes some code to manipulate the i960 relocs.This code is not in `coffcode.h' because it would not be used by anyother target.3.3.2.2 Coff long section names...............................In the standard Coff object format, section names are limited to theeight bytes available in the `s_name' field of the `SCNHDR' sectionheader structure. The format requires the field to be NUL-padded, butnot necessarily NUL-terminated, so the longest section names permittedare a full eight characters.The Microsoft PE variants of the Coff object file format add anextension to support the use of long section names. This extension isdefined in section 4 of the Microsoft PE/COFF specification (rev 8.1).If a section name is too long to fit into the section header's `s_name'field, it is instead placed into the string table, and the `s_name'field is filled with a slash ("/") followed by the ASCII decimalrepresentation of the offset of the full name relative to the stringtable base.Note that this implies that the extension can only be used in objectfiles, as executables do not contain a string table. The standardspecifies that long section names from objects emitted into executableimages are to be truncated.However, as a GNU extension, BFD can generate executable images thatcontain a string table and long section names. This would appear to betechnically valid, as the standard only says that Coff debugginginformation is deprecated, not forbidden, and in practice it works,although some tools that parse PE files expecting the MS standardformat may become confused; `PEview' is one known example.The functionality is supported in BFD by code implemented under thecontrol of the macro `COFF_LONG_SECTION_NAMES'. If not defined, theformat does not support long section names in any way. If defined, itis used to initialise a flag, `_bfd_coff_long_section_names', and ahook function pointer, `_bfd_coff_set_long_section_names', in the Coffbackend data structure. The flag controls the generation of longsection names in output BFDs at runtime; if it is false, as it will beby default when generating an executable image, long section names aretruncated; if true, the long section names extension is employed. Thehook points to a function that allows the value of the flag to bealtered at runtime, on formats that support long section names at all;on other formats it points to a stub that returns an error indication.With input BFDs, the flag is set according to whether any longsection names are detected while reading the section headers. For acompletely new BFD, the flag is set to the default for the targetformat. This information can be used by a client of the BFD librarywhen deciding what output format to generate, and means that a BFD thatis opened for read and subsequently converted to a writeable BFD andmodified in-place will retain whatever format it had on input.If `COFF_LONG_SECTION_NAMES' is simply defined (blank), or isdefined to the value "1", then long section names are enabled bydefault; if it is defined to the value zero, they are disabled bydefault (but still accepted in input BFDs). The header `coffcode.h'defines a macro, `COFF_DEFAULT_LONG_SECTION_NAMES', which is used inthe backends to initialise the backend data structure fieldsappropriately; see the comments for further detail.3.3.2.3 Bit twiddling.....................Each flavour of coff supported in BFD has its own header filedescribing the external layout of the structures. There is also aninternal description of the coff layout, in `coff/internal.h'. A majorfunction of the coff backend is swapping the bytes and twiddling thebits to translate the external form of the structures into the normalinternal form. This is all performed in the `bfd_swap'_thing_directionroutines. Some elements are different sizes between different versionsof coff; it is the duty of the coff version specific include file tooverride the definitions of various packing routines in `coffcode.h'.E.g., the size of line number entry in coff is sometimes 16 bits, andsometimes 32 bits. `#define'ing `PUT_LNSZ_LNNO' and `GET_LNSZ_LNNO'will select the correct one. No doubt, some day someone will find aversion of coff which has a varying field size not catered to at themoment. To port BFD, that person will have to add more `#defines'.Three of the bit twiddling routines are exported to `gdb';`coff_swap_aux_in', `coff_swap_sym_in' and `coff_swap_lineno_in'. `GDB'reads the symbol table on its own, but uses BFD to fix things up. Moreof the bit twiddlers are exported for `gas'; `coff_swap_aux_out',`coff_swap_sym_out', `coff_swap_lineno_out', `coff_swap_reloc_out',`coff_swap_filehdr_out', `coff_swap_aouthdr_out',`coff_swap_scnhdr_out'. `Gas' currently keeps track of all the symboltable and reloc drudgery itself, thereby saving the internal BFDoverhead, but uses BFD to swap things on the way out, making crossports much safer. Doing so also allows BFD (and thus the linker) touse the same header files as `gas', which makes one avenue to disasterdisappear.3.3.2.4 Symbol reading......................The simple canonical form for symbols used by BFD is not rich enough tokeep all the information available in a coff symbol table. The back endgets around this problem by keeping the original symbol table around,"behind the scenes".When a symbol table is requested (through a call to`bfd_canonicalize_symtab'), a request gets through to`coff_get_normalized_symtab'. This reads the symbol table from the cofffile and swaps all the structures inside into the internal form. Italso fixes up all the pointers in the table (represented in the file byoffsets from the first symbol in the table) into physical pointers toelements in the new internal table. This involves some work since themeanings of fields change depending upon context: a field that is apointer to another structure in the symbol table at one moment may bethe size in bytes of a structure at the next. Another pass is madeover the table. All symbols which mark file names (`C_FILE' symbols)are modified so that the internal string points to the value in theauxent (the real filename) rather than the normal text associated withthe symbol (`".file"').At this time the symbol names are moved around. Coff stores allsymbols less than nine characters long physically within the symboltable; longer strings are kept at the end of the file in the stringtable. This pass moves all strings into memory and replaces them withpointers to the strings.The symbol table is massaged once again, this time to create thecanonical table used by the BFD application. Each symbol is inspectedin turn, and a decision made (using the `sclass' field) about thevarious flags to set in the `asymbol'. *Note Symbols::. The generatedcanonical table shares strings with the hidden internal symbol table.Any linenumbers are read from the coff file too, and attached to thesymbols which own the functions the linenumbers belong to.3.3.2.5 Symbol writing......................Writing a symbol to a coff file which didn't come from a coff file willlose any debugging information. The `asymbol' structure remembers theBFD from which the symbol was taken, and on output the back end makessure that the same destination target as source target is present.When the symbols have come from a coff file then all the debugginginformation is preserved.Symbol tables are provided for writing to the back end in a vectorof pointers to pointers. This allows applications like the linker toaccumulate and output large symbol tables without having to do too muchbyte copying.This function runs through the provided symbol table and patcheseach symbol marked as a file place holder (`C_FILE') to point to thenext file place holder in the list. It also marks each `offset' fieldin the list with the offset from the first symbol of the current symbol.Another function of this procedure is to turn the canonical valueform of BFD into the form used by coff. Internally, BFD expects symbolvalues to be offsets from a section base; so a symbol physically at0x120, but in a section starting at 0x100, would have the value 0x20.Coff expects symbols to contain their final value, so symbols havetheir values changed at this point to reflect their sum with theirowning section. This transformation uses the `output_section' field ofthe `asymbol''s `asection' *Note Sections::.* `coff_mangle_symbols'This routine runs though the provided symbol table and uses theoffsets generated by the previous pass and the pointers generated whenthe symbol table was read in to create the structured hierarchyrequired by coff. It changes each pointer to a symbol into the indexinto the symbol table of the asymbol.* `coff_write_symbols'This routine runs through the symbol table and patches up thesymbols from their internal form into the coff way, calls the bittwiddlers, and writes out the table to the file.3.3.2.6 `coff_symbol_type'..........................*Description*The hidden information for an `asymbol' is described in a`combined_entry_type':typedef struct coff_ptr_struct{/* Remembers the offset from the first symbol in the file forthis symbol. Generated by coff_renumber_symbols. */unsigned int offset;/* Should the value of this symbol be renumbered. Used forXCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */unsigned int fix_value : 1;/* Should the tag field of this symbol be renumbered.Created by coff_pointerize_aux. */unsigned int fix_tag : 1;/* Should the endidx field of this symbol be renumbered.Created by coff_pointerize_aux. */unsigned int fix_end : 1;/* Should the x_csect.x_scnlen field be renumbered.Created by coff_pointerize_aux. */unsigned int fix_scnlen : 1;/* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is theindex into the line number entries. Set by coff_slurp_symbol_table. */unsigned int fix_line : 1;/* The container for the symbol structure as read and translatedfrom the file. */union{union internal_auxent auxent;struct internal_syment syment;} u;/* Selector for the union above. */bfd_boolean is_sym;} combined_entry_type;/* Each canonical asymbol really looks like this: */typedef struct coff_symbol_struct{/* The actual symbol which the rest of BFD works with */asymbol symbol;/* A pointer to the hidden information for this symbol */combined_entry_type *native;/* A pointer to the linenumber information for this symbol */struct lineno_cache_entry *lineno;/* Have the line numbers been relocated yet ? */bfd_boolean done_lineno;} coff_symbol_type;3.3.2.7 `bfd_coff_backend_data'.............................../* COFF symbol classifications. */enum coff_symbol_classification{/* Global symbol. */COFF_SYMBOL_GLOBAL,/* Common symbol. */COFF_SYMBOL_COMMON,/* Undefined symbol. */COFF_SYMBOL_UNDEFINED,/* Local symbol. */COFF_SYMBOL_LOCAL,/* PE section symbol. */COFF_SYMBOL_PE_SECTION};Special entry points for gdb to swap in coff symbol table parts:typedef struct{void (*_bfd_coff_swap_aux_in)(bfd *, void *, int, int, int, int, void *);void (*_bfd_coff_swap_sym_in)(bfd *, void *, void *);void (*_bfd_coff_swap_lineno_in)(bfd *, void *, void *);unsigned int (*_bfd_coff_swap_aux_out)(bfd *, void *, int, int, int, int, void *);unsigned int (*_bfd_coff_swap_sym_out)(bfd *, void *, void *);unsigned int (*_bfd_coff_swap_lineno_out)(bfd *, void *, void *);unsigned int (*_bfd_coff_swap_reloc_out)(bfd *, void *, void *);unsigned int (*_bfd_coff_swap_filehdr_out)(bfd *, void *, void *);unsigned int (*_bfd_coff_swap_aouthdr_out)(bfd *, void *, void *);unsigned int (*_bfd_coff_swap_scnhdr_out)(bfd *, void *, void *);unsigned int _bfd_filhsz;unsigned int _bfd_aoutsz;unsigned int _bfd_scnhsz;unsigned int _bfd_symesz;unsigned int _bfd_auxesz;unsigned int _bfd_relsz;unsigned int _bfd_linesz;unsigned int _bfd_filnmlen;bfd_boolean _bfd_coff_long_filenames;bfd_boolean _bfd_coff_long_section_names;bfd_boolean (*_bfd_coff_set_long_section_names)(bfd *, int);unsigned int _bfd_coff_default_section_alignment_power;bfd_boolean _bfd_coff_force_symnames_in_strings;unsigned int _bfd_coff_debug_string_prefix_length;unsigned int _bfd_coff_max_nscns;void (*_bfd_coff_swap_filehdr_in)(bfd *, void *, void *);void (*_bfd_coff_swap_aouthdr_in)(bfd *, void *, void *);void (*_bfd_coff_swap_scnhdr_in)(bfd *, void *, void *);void (*_bfd_coff_swap_reloc_in)(bfd *abfd, void *, void *);bfd_boolean (*_bfd_coff_bad_format_hook)(bfd *, void *);bfd_boolean (*_bfd_coff_set_arch_mach_hook)(bfd *, void *);void * (*_bfd_coff_mkobject_hook)(bfd *, void *, void *);bfd_boolean (*_bfd_styp_to_sec_flags_hook)(bfd *, void *, const char *, asection *, flagword *);void (*_bfd_set_alignment_hook)(bfd *, asection *, void *);bfd_boolean (*_bfd_coff_slurp_symbol_table)(bfd *);bfd_boolean (*_bfd_coff_symname_in_debug)(bfd *, struct internal_syment *);bfd_boolean (*_bfd_coff_pointerize_aux_hook)(bfd *, combined_entry_type *, combined_entry_type *,unsigned int, combined_entry_type *);bfd_boolean (*_bfd_coff_print_aux)(bfd *, FILE *, combined_entry_type *, combined_entry_type *,combined_entry_type *, unsigned int);void (*_bfd_coff_reloc16_extra_cases)(bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,bfd_byte *, unsigned int *, unsigned int *);int (*_bfd_coff_reloc16_estimate)(bfd *, asection *, arelent *, unsigned int,struct bfd_link_info *);enum coff_symbol_classification (*_bfd_coff_classify_symbol)(bfd *, struct internal_syment *);bfd_boolean (*_bfd_coff_compute_section_file_positions)(bfd *);bfd_boolean (*_bfd_coff_start_final_link)(bfd *, struct bfd_link_info *);bfd_boolean (*_bfd_coff_relocate_section)(bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,struct internal_reloc *, struct internal_syment *, asection **);reloc_howto_type *(*_bfd_coff_rtype_to_howto)(bfd *, asection *, struct internal_reloc *,struct coff_link_hash_entry *, struct internal_syment *,bfd_vma *);bfd_boolean (*_bfd_coff_adjust_symndx)(bfd *, struct bfd_link_info *, bfd *, asection *,struct internal_reloc *, bfd_boolean *);bfd_boolean (*_bfd_coff_link_add_one_symbol)(struct bfd_link_info *, bfd *, const char *, flagword,asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean,struct bfd_link_hash_entry **);bfd_boolean (*_bfd_coff_link_output_has_begun)(bfd *, struct coff_final_link_info *);bfd_boolean (*_bfd_coff_final_link_postscript)(bfd *, struct coff_final_link_info *);bfd_boolean (*_bfd_coff_print_pdata)(bfd *, void *);} bfd_coff_backend_data;#define coff_backend_info(abfd) \((bfd_coff_backend_data *) (abfd)->xvec->backend_data)#define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))#define bfd_coff_swap_sym_in(a,e,i) \((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))#define bfd_coff_swap_lineno_in(a,e,i) \((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i))#define bfd_coff_swap_reloc_out(abfd, i, o) \((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))#define bfd_coff_swap_lineno_out(abfd, i, o) \((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))#define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o))#define bfd_coff_swap_sym_out(abfd, i,o) \((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o))#define bfd_coff_swap_scnhdr_out(abfd, i,o) \((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))#define bfd_coff_swap_filehdr_out(abfd, i,o) \((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))#define bfd_coff_swap_aouthdr_out(abfd, i,o) \((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o))#define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)#define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)#define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)#define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)#define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)#define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz)#define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)#define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen)#define bfd_coff_long_filenames(abfd) \(coff_backend_info (abfd)->_bfd_coff_long_filenames)#define bfd_coff_long_section_names(abfd) \(coff_backend_info (abfd)->_bfd_coff_long_section_names)#define bfd_coff_set_long_section_names(abfd, enable) \((coff_backend_info (abfd)->_bfd_coff_set_long_section_names) (abfd, enable))#define bfd_coff_default_section_alignment_power(abfd) \(coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)#define bfd_coff_max_nscns(abfd) \(coff_backend_info (abfd)->_bfd_coff_max_nscns)#define bfd_coff_swap_filehdr_in(abfd, i,o) \((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))#define bfd_coff_swap_aouthdr_in(abfd, i,o) \((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))#define bfd_coff_swap_scnhdr_in(abfd, i,o) \((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))#define bfd_coff_swap_reloc_in(abfd, i, o) \((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))#define bfd_coff_bad_format_hook(abfd, filehdr) \((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))#define bfd_coff_set_arch_mach_hook(abfd, filehdr)\((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))#define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\(abfd, filehdr, aouthdr))#define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\(abfd, scnhdr, name, section, flags_ptr))#define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))#define bfd_coff_slurp_symbol_table(abfd)\((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))#define bfd_coff_symname_in_debug(abfd, sym)\((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))#define bfd_coff_force_symnames_in_strings(abfd)\(coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings)#define bfd_coff_debug_string_prefix_length(abfd)\(coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length)#define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\((coff_backend_info (abfd)->_bfd_coff_print_aux)\(abfd, file, base, symbol, aux, indaux))#define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\reloc, data, src_ptr, dst_ptr)\((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\(abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))#define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\(abfd, section, reloc, shrink, link_info))#define bfd_coff_classify_symbol(abfd, sym)\((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\(abfd, sym))#define bfd_coff_compute_section_file_positions(abfd)\((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\(abfd))#define bfd_coff_start_final_link(obfd, info)\((coff_backend_info (obfd)->_bfd_coff_start_final_link)\(obfd, info))#define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\(obfd, info, ibfd, o, con, rel, isyms, secs))#define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\(abfd, sec, rel, h, sym, addendp))#define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\(obfd, info, ibfd, sec, rel, adjustedp))#define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\value, string, cp, coll, hashp)\((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\(info, abfd, name, flags, section, value, string, cp, coll, hashp))#define bfd_coff_link_output_has_begun(a,p) \((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p))#define bfd_coff_final_link_postscript(a,p) \((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p))#define bfd_coff_have_print_pdata(a) \(coff_backend_info (a)->_bfd_coff_print_pdata)#define bfd_coff_print_pdata(a,p) \((coff_backend_info (a)->_bfd_coff_print_pdata) (a, p))/* Macro: Returns true if the bfd is a PE executable as opposed to aPE object file. */#define bfd_pei_p(abfd) \(CONST_STRNEQ ((abfd)->xvec->name, "pei-"))3.3.2.8 Writing relocations...........................To write relocations, the back end steps though the canonicalrelocation table and create an `internal_reloc'. The symbol index touse is removed from the `offset' field in the symbol table supplied.The address comes directly from the sum of the section base address andthe relocation offset; the type is dug directly from the howto field.Then the `internal_reloc' is swapped into the shape of an`external_reloc' and written out to disk.3.3.2.9 Reading linenumbers...........................Creating the linenumber table is done by reading in the entire cofflinenumber table, and creating another table for internal use.A coff linenumber table is structured so that each function ismarked as having a line number of 0. Each line within the function isan offset from the first line in the function. The base of the linenumber information for the table is stored in the symbol associatedwith the function.Note: The PE format uses line number 0 for a flag indicating a newsource file.The information is copied from the external to the internal table,and each symbol which marks a function is marked by pointing its...How does this work ?3.3.2.10 Reading relocations............................Coff relocations are easily transformed into the internal BFD form(`arelent').Reading a coff relocation table is done in the following stages:* Read the entire coff relocation table into memory.* Process each relocation in turn; first swap it from the externalto the internal form.* Turn the symbol referenced in the relocation's symbol index into apointer into the canonical symbol table. This table is the sameas the one returned by a call to `bfd_canonicalize_symtab'. Theback end will call that routine and save the result if acanonicalization hasn't been done.* The reloc index is turned into a pointer to a howto structure, ina back end specific way. For instance, the 386 and 960 use the`r_type' to directly produce an index into a howto table vector;the 88k subtracts a number from the `r_type' field and creates anaddend field.File: bfd.info, Node: elf, Next: mmo, Prev: coff, Up: BFD back ends3.4 ELF backends================BFD support for ELF formats is being worked on. Currently, the bestsupported back ends are for sparc and i386 (running svr4 or Solaris 2).Documentation of the internals of the support code still needs to bewritten. The code is changing quickly enough that we haven't botheredyet.File: bfd.info, Node: mmo, Prev: elf, Up: BFD back ends3.5 mmo backend===============The mmo object format is used exclusively together with ProfessorDonald E. Knuth's educational 64-bit processor MMIX. The simulator`mmix' which is available at `http://mmix.cs.hm.edu/src/index.html'understands this format. That package also includes a combinedassembler and linker called `mmixal'. The mmo format has no advantagesfeature-wise compared to e.g. ELF. It is a simple non-relocatableobject format with no support for archives or debugging information,except for symbol value information and line numbers (which is not yetimplemented in BFD). See `http://mmix.cs.hm.edu/' for more informationabout MMIX. The ELF format is used for intermediate object files inthe BFD implementation.* Menu:* File layout::* Symbol-table::* mmo section mapping::File: bfd.info, Node: File layout, Next: Symbol-table, Prev: mmo, Up: mmo3.5.1 File layout-----------------The mmo file contents is not partitioned into named sections as withe.g. ELF. Memory areas is formed by specifying the location of thedata that follows. Only the memory area `0x0000...00' to `0x01ff...ff'is executable, so it is used for code (and constants) and the area`0x2000...00' to `0x20ff...ff' is used for writable data. *Note mmosection mapping::.There is provision for specifying "special data" of 65536 differenttypes. We use type 80 (decimal), arbitrarily chosen the same as theELF `e_machine' number for MMIX, filling it with section informationnormally found in ELF objects. *Note mmo section mapping::.Contents is entered as 32-bit words, xor:ed over previous contents,always zero-initialized. A word that starts with the byte `0x98' formsa command called a `lopcode', where the next byte distinguished betweenthe thirteen lopcodes. The two remaining bytes, called the `Y' and `Z'fields, or the `YZ' field (a 16-bit big-endian number), are used forvarious purposes different for each lopcode. As documented in`http://mmix.cs.hm.edu/doc/mmixal.pdf', the lopcodes are:`lop_quote'0x98000001. The next word is contents, regardless of whether itstarts with 0x98 or not.`lop_loc'0x9801YYZZ, where `Z' is 1 or 2. This is a location directive,setting the location for the next data to the next 32-bit word(for Z = 1) or 64-bit word (for Z = 2), plus Y * 2^56. Normally`Y' is 0 for the text segment and 2 for the data segment. Bewarethat the low bits of non- tetrabyte-aligned values are silentlydiscarded when being automatically incremented and when storingcontents (in contrast to e.g. its use as current location whenfollowed by lop_fixo et al before the next possibly-quotedtetrabyte contents).`lop_skip'0x9802YYZZ. Increase the current location by `YZ' bytes.`lop_fixo'0x9803YYZZ, where `Z' is 1 or 2. Store the current location as 64bits into the location pointed to by the next 32-bit (Z = 1) or64-bit (Z = 2) word, plus Y * 2^56.`lop_fixr'0x9804YYZZ. `YZ' is stored into the current location plus 2 - 4 *YZ.`lop_fixrx'0x980500ZZ. `Z' is 16 or 24. A value `L' derived from thefollowing 32-bit word are used in a manner similar to `YZ' inlop_fixr: it is xor:ed into the current location minus 4 * L. Thefirst byte of the word is 0 or 1. If it is 1, then L = (LOWEST 24BITS OF WORD) - 2^Z, if 0, then L = (LOWEST 24 BITS OF WORD).`lop_file'0x9806YYZZ. `Y' is the file number, `Z' is count of 32-bit words.Set the file number to `Y' and the line counter to 0. The next Z* 4 bytes contain the file name, padded with zeros if the count isnot a multiple of four. The same `Y' may occur multiple times,but `Z' must be 0 for all but the first occurrence.`lop_line'0x9807YYZZ. `YZ' is the line number. Together with lop_file, itforms the source location for the next 32-bit word. Note that foreach non-lopcode 32-bit word, line numbers are assumed incrementedby one.`lop_spec'0x9808YYZZ. `YZ' is the type number. Data until the next lopcodeother than lop_quote forms special data of type `YZ'. *Note mmosection mapping::.Other types than 80, (or type 80 with a content that does notparse) is stored in sections named `.MMIX.spec_data.N' where N isthe `YZ'-type. The flags for such a sections say not to allocateor load the data. The vma is 0. Contents of multiple occurrencesof special data N is concatenated to the data of the previouslop_spec Ns. The location in data or code at which the lop_specoccurred is lost.`lop_pre'0x980901ZZ. The first lopcode in a file. The `Z' field forms thelength of header information in 32-bit words, where the first wordtells the time in seconds since `00:00:00 GMT Jan 1 1970'.`lop_post'0x980a00ZZ. Z > 32. This lopcode follows after allcontent-generating lopcodes in a program. The `Z' field denotesthe value of `rG' at the beginning of the program. The following256 - Z big-endian 64-bit words are loaded into global registers`$G' ... `$255'.`lop_stab'0x980b0000. The next-to-last lopcode in a program. Must followimmediately after the lop_post lopcode and its data. After thislopcode follows all symbols in a compressed format (*noteSymbol-table::).`lop_end'0x980cYYZZ. The last lopcode in a program. It must follow thelop_stab lopcode and its data. The `YZ' field contains the numberof 32-bit words of symbol table information after the precedinglop_stab lopcode.Note that the lopcode "fixups"; `lop_fixr', `lop_fixrx' and`lop_fixo' are not generated by BFD, but are handled. They aregenerated by `mmixal'.This trivial one-label, one-instruction file::Main TRAP 1,2,3can be represented this way in mmo:0x98090101 - lop_pre, one 32-bit word with timestamp.<timestamp>0x98010002 - lop_loc, text segment, using a 64-bit address.Note that mmixal does not emit this for the file above.0x00000000 - Address, high 32 bits.0x00000000 - Address, low 32 bits.0x98060002 - lop_file, 2 32-bit words for file-name.0x74657374 - "test"0x2e730000 - ".s\0\0"0x98070001 - lop_line, line 1.0x00010203 - TRAP 1,2,30x980a00ff - lop_post, setting $255 to 0.0x000000000x000000000x980b0000 - lop_stab for ":Main" = 0, serial 1.0x203a4040 *Note Symbol-table::.0x104040200x4d2061200x69016e000x810000000x980c0005 - lop_end; symbol table contained five 32-bit words.File: bfd.info, Node: Symbol-table, Next: mmo section mapping, Prev: File layout, Up: mmo3.5.2 Symbol table format-------------------------From mmixal.w (or really, the generated mmixal.tex) in the MMIXwarepackage which also contains the `mmix' simulator: "Symbols are storedand retrieved by means of a `ternary search trie', following ideas ofBentley and Sedgewick. (See ACM-SIAM Symp. on Discrete Algorithms `8'(1997), 360-369; R.Sedgewick, `Algorithms in C' (Reading, Mass.Addison-Wesley, 1998), `15.4'.) Each trie node stores a character, andthere are branches to subtries for the cases where a given character isless than, equal to, or greater than the character in the trie. Therealso is a pointer to a symbol table entry if a symbol ends at thecurrent node."So it's a tree encoded as a stream of bytes. The stream of bytesacts on a single virtual global symbol, adding and removing charactersand signalling complete symbol points. Here, we read the stream andcreate symbols at the completion points.First, there's a control byte `m'. If any of the listed bits in `m'is nonzero, we execute what stands at the right, in the listed order:(MMO3_LEFT)0x40 - Traverse left trie.(Read a new command byte and recurse.)(MMO3_SYMBITS)0x2f - Read the next byte as a character and store it in thecurrent character position; increment character position.Test the bits of `m':(MMO3_WCHAR)0x80 - The character is 16-bit (so read another byte,merge into current character.(MMO3_TYPEBITS)0xf - We have a complete symbol; parse the type, valueand serial number and do what should be donewith a symbol. The type and length informationis in j = (m & 0xf).(MMO3_REGQUAL_BITS)j == 0xf: A register variable. The followingbyte tells which register.j <= 8: An absolute symbol. Read j bytes as thebig-endian number the symbol equals.A j = 2 with two zero bytes denotes anunknown symbol.j > 8: As with j <= 8, but add (0x20 << 56)to the value in the following j - 8bytes.Then comes the serial number, as a variant ofuleb128, but better named ubeb128:Read bytes and shift the previous value left 7(multiply by 128). Add in the new byte, repeatuntil a byte has bit 7 set. The serial numberis the computed value minus 128.(MMO3_MIDDLE)0x20 - Traverse middle trie. (Read a new command byteand recurse.) Decrement character position.(MMO3_RIGHT)0x10 - Traverse right trie. (Read a new command byte andrecurse.)Let's look again at the `lop_stab' for the trivial file (*note Filelayout::).0x980b0000 - lop_stab for ":Main" = 0, serial 1.0x203a40400x104040200x4d2061200x69016e000x81000000This forms the trivial trie (note that the path between ":" and "M"is redundant):203a ":"40 /40 /10 \40 /40 /204d "M"2061 "a"2069 "i"016e "n" is the last character in a full symbol, andwith a value represented in one byte.00 The value is 0.81 The serial number is 1.File: bfd.info, Node: mmo section mapping, Prev: Symbol-table, Up: mmo3.5.3 mmo section mapping-------------------------The implementation in BFD uses special data type 80 (decimal) toencapsulate and describe named sections, containing e.g. debuginformation. If needed, any datum in the encapsulation will be quotedusing lop_quote. First comes a 32-bit word holding the number of32-bit words containing the zero-terminated zero-padded segment name.After the name there's a 32-bit word holding flags describing thesection type. Then comes a 64-bit big-endian word with the sectionlength (in bytes), then another with the section start address.Depending on the type of section, the contents might follow,zero-padded to 32-bit boundary. For a loadable section (such as dataor code), the contents might follow at some later point, notnecessarily immediately, as a lop_loc with the same start address as inthe section description, followed by the contents. This in effectforms a descriptor that must be emitted before the actual contents.Sections described this way must not overlap.For areas that don't have such descriptors, synthetic sections areformed by BFD. Consecutive contents in the two memory areas`0x0000...00' to `0x01ff...ff' and `0x2000...00' to `0x20ff...ff' areentered in sections named `.text' and `.data' respectively. If an areais not otherwise described, but would together with a neighboring lowerarea be less than `0x40000000' bytes long, it is joined with the lowerarea and the gap is zero-filled. For other cases, a new section isformed, named `.MMIX.sec.N'. Here, N is a number, a running countthrough the mmo file, starting at 0.A loadable section specified as:.section secname,"ax"TETRA 1,2,3,4,-1,-2009BYTE 80and linked to address `0x4', is represented by the sequence:0x98080050 - lop_spec 800x00000002 - two 32-bit words for the section name0x7365636e - "secn"0x616d6500 - "ame\0"0x00000033 - flags CODE, READONLY, LOAD, ALLOC0x00000000 - high 32 bits of section length0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits0x00000000 - high 32 bits of section address0x00000004 - section address is 40x98010002 - 64 bits with address of following data0x00000000 - high 32 bits of address0x00000004 - low 32 bits: data starts at address 40x00000001 - 10x00000002 - 20x00000003 - 30x00000004 - 40xffffffff - -10xfffff827 - -20090x50000000 - 80 as a byte, padded with zeros.Note that the lop_spec wrapping does not include the sectioncontents. Compare this to a non-loaded section specified as:.section thirdsecTETRA 200001,100002BYTE 38,40This, when linked to address `0x200000000000001c', is represented by:0x98080050 - lop_spec 800x00000002 - two 32-bit words for the section name0x7365636e - "thir"0x616d6500 - "dsec"0x00000010 - flag READONLY0x00000000 - high 32 bits of section length0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits0x20000000 - high 32 bits of address0x0000001c - low 32 bits of address 0x200000000000001c0x00030d41 - 2000010x000186a2 - 1000020x26280000 - 38, 40 as bytes, padded with zerosFor the latter example, the section contents must not be loaded inmemory, and is therefore specified as part of the special data. Theaddress is usually unimportant but might provide information for e.g.the DWARF 2 debugging format.File: bfd.info, Node: GNU Free Documentation License, Next: BFD Index, Prev: BFD back ends, Up: TopVersion 1.3, 3 November 2008Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.`http://fsf.org/'Everyone is permitted to copy and distribute verbatim copiesof this license document, but changing it is not allowed.0. PREAMBLEThe purpose of this License is to make a manual, textbook, or otherfunctional and useful document "free" in the sense of freedom: toassure everyone the effective freedom to copy and redistribute it,with or without modifying it, either commercially ornoncommercially. Secondarily, this License preserves for theauthor and publisher a way to get credit for their work, while notbeing considered responsible for modifications made by others.This License is a kind of "copyleft", which means that derivativeworks of the document must themselves be free in the same sense.It complements the GNU General Public License, which is a copyleftlicense designed for free software.We have designed this License in order to use it for manuals forfree software, because free software needs free documentation: afree program should come with manuals providing the same freedomsthat the software does. But this License is not limited tosoftware manuals; it can be used for any textual work, regardlessof subject matter or whether it is published as a printed book.We recommend this License principally for works whose purpose isinstruction or reference.1. APPLICABILITY AND DEFINITIONSThis License applies to any manual or other work, in any medium,that contains a notice placed by the copyright holder saying itcan be distributed under the terms of this License. Such a noticegrants a world-wide, royalty-free license, unlimited in duration,to use that work under the conditions stated herein. The"Document", below, refers to any such manual or work. Any memberof the public is a licensee, and is addressed as "you". Youaccept the license if you copy, modify or distribute the work in away requiring permission under copyright law.A "Modified Version" of the Document means any work containing theDocument or a portion of it, either copied verbatim, or withmodifications and/or translated into another language.A "Secondary Section" is a named appendix or a front-matter sectionof the Document that deals exclusively with the relationship of thepublishers or authors of the Document to the Document's overallsubject (or to related matters) and contains nothing that couldfall directly within that overall subject. (Thus, if the Documentis in part a textbook of mathematics, a Secondary Section may notexplain any mathematics.) The relationship could be a matter ofhistorical connection with the subject or with related matters, orof legal, commercial, philosophical, ethical or political positionregarding them.The "Invariant Sections" are certain Secondary Sections whosetitles are designated, as being those of Invariant Sections, inthe notice that says that the Document is released under thisLicense. If a section does not fit the above definition ofSecondary then it is not allowed to be designated as Invariant.The Document may contain zero Invariant Sections. If the Documentdoes not identify any Invariant Sections then there are none.The "Cover Texts" are certain short passages of text that arelisted, as Front-Cover Texts or Back-Cover Texts, in the noticethat says that the Document is released under this License. AFront-Cover Text may be at most 5 words, and a Back-Cover Text maybe at most 25 words.A "Transparent" copy of the Document means a machine-readable copy,represented in a format whose specification is available to thegeneral public, that is suitable for revising the documentstraightforwardly with generic text editors or (for imagescomposed of pixels) generic paint programs or (for drawings) somewidely available drawing editor, and that is suitable for input totext formatters or for automatic translation to a variety offormats suitable for input to text formatters. A copy made in anotherwise Transparent file format whose markup, or absence ofmarkup, has been arranged to thwart or discourage subsequentmodification by readers is not Transparent. An image format isnot Transparent if used for any substantial amount of text. Acopy that is not "Transparent" is called "Opaque".Examples of suitable formats for Transparent copies include plainASCII without markup, Texinfo input format, LaTeX input format,SGML or XML using a publicly available DTD, andstandard-conforming simple HTML, PostScript or PDF designed forhuman modification. Examples of transparent image formats includePNG, XCF and JPG. Opaque formats include proprietary formats thatcan be read and edited only by proprietary word processors, SGML orXML for which the DTD and/or processing tools are not generallyavailable, and the machine-generated HTML, PostScript or PDFproduced by some word processors for output purposes only.The "Title Page" means, for a printed book, the title page itself,plus such following pages as are needed to hold, legibly, thematerial this License requires to appear in the title page. Forworks in formats which do not have any title page as such, "TitlePage" means the text near the most prominent appearance of thework's title, preceding the beginning of the body of the text.The "publisher" means any person or entity that distributes copiesof the Document to the public.A section "Entitled XYZ" means a named subunit of the Documentwhose title either is precisely XYZ or contains XYZ in parenthesesfollowing text that translates XYZ in another language. (Here XYZstands for a specific section name mentioned below, such as"Acknowledgements", "Dedications", "Endorsements", or "History".)To "Preserve the Title" of such a section when you modify theDocument means that it remains a section "Entitled XYZ" accordingto this definition.The Document may include Warranty Disclaimers next to the noticewhich states that this License applies to the Document. TheseWarranty Disclaimers are considered to be included by reference inthis License, but only as regards disclaiming warranties: any otherimplication that these Warranty Disclaimers may have is void andhas no effect on the meaning of this License.2. VERBATIM COPYINGYou may copy and distribute the Document in any medium, eithercommercially or noncommercially, provided that this License, thecopyright notices, and the license notice saying this Licenseapplies to the Document are reproduced in all copies, and that youadd no other conditions whatsoever to those of this License. Youmay not use technical measures to obstruct or control the readingor further copying of the copies you make or distribute. However,you may accept compensation in exchange for copies. If youdistribute a large enough number of copies you must also followthe conditions in section 3.You may also lend copies, under the same conditions stated above,and you may publicly display copies.3. COPYING IN QUANTITYIf you publish printed copies (or copies in media that commonlyhave printed covers) of the Document, numbering more than 100, andthe Document's license notice requires Cover Texts, you mustenclose the copies in covers that carry, clearly and legibly, allthese Cover Texts: Front-Cover Texts on the front cover, andBack-Cover Texts on the back cover. Both covers must also clearlyand legibly identify you as the publisher of these copies. Thefront cover must present the full title with all words of thetitle equally prominent and visible. You may add other materialon the covers in addition. Copying with changes limited to thecovers, as long as they preserve the title of the Document andsatisfy these conditions, can be treated as verbatim copying inother respects.If the required texts for either cover are too voluminous to fitlegibly, you should put the first ones listed (as many as fitreasonably) on the actual cover, and continue the rest ontoadjacent pages.If you publish or distribute Opaque copies of the Documentnumbering more than 100, you must either include amachine-readable Transparent copy along with each Opaque copy, orstate in or with each Opaque copy a computer-network location fromwhich the general network-using public has access to downloadusing public-standard network protocols a complete Transparentcopy of the Document, free of added material. If you use thelatter option, you must take reasonably prudent steps, when youbegin distribution of Opaque copies in quantity, to ensure thatthis Transparent copy will remain thus accessible at the statedlocation until at least one year after the last time youdistribute an Opaque copy (directly or through your agents orretailers) of that edition to the public.It is requested, but not required, that you contact the authors ofthe Document well before redistributing any large number ofcopies, to give them a chance to provide you with an updatedversion of the Document.4. MODIFICATIONSYou may copy and distribute a Modified Version of the Documentunder the conditions of sections 2 and 3 above, provided that yourelease the Modified Version under precisely this License, withthe Modified Version filling the role of the Document, thuslicensing distribution and modification of the Modified Version towhoever possesses a copy of it. In addition, you must do thesethings in the Modified Version:A. Use in the Title Page (and on the covers, if any) a titledistinct from that of the Document, and from those ofprevious versions (which should, if there were any, be listedin the History section of the Document). You may use thesame title as a previous version if the original publisher ofthat version gives permission.B. List on the Title Page, as authors, one or more persons orentities responsible for authorship of the modifications inthe Modified Version, together with at least five of theprincipal authors of the Document (all of its principalauthors, if it has fewer than five), unless they release youfrom this requirement.C. State on the Title page the name of the publisher of theModified Version, as the publisher.D. Preserve all the copyright notices of the Document.E. Add an appropriate copyright notice for your modificationsadjacent to the other copyright notices.F. Include, immediately after the copyright notices, a licensenotice giving the public permission to use the ModifiedVersion under the terms of this License, in the form shown inthe Addendum below.G. Preserve in that license notice the full lists of InvariantSections and required Cover Texts given in the Document'slicense notice.H. Include an unaltered copy of this License.I. Preserve the section Entitled "History", Preserve its Title,and add to it an item stating at least the title, year, newauthors, and publisher of the Modified Version as given onthe Title Page. If there is no section Entitled "History" inthe Document, create one stating the title, year, authors,and publisher of the Document as given on its Title Page,then add an item describing the Modified Version as stated inthe previous sentence.J. Preserve the network location, if any, given in the Documentfor public access to a Transparent copy of the Document, andlikewise the network locations given in the Document forprevious versions it was based on. These may be placed inthe "History" section. You may omit a network location for awork that was published at least four years before theDocument itself, or if the original publisher of the versionit refers to gives permission.K. For any section Entitled "Acknowledgements" or "Dedications",Preserve the Title of the section, and preserve in thesection all the substance and tone of each of the contributoracknowledgements and/or dedications given therein.L. Preserve all the Invariant Sections of the Document,unaltered in their text and in their titles. Section numbersor the equivalent are not considered part of the sectiontitles.M. Delete any section Entitled "Endorsements". Such a sectionmay not be included in the Modified Version.N. Do not retitle any existing section to be Entitled"Endorsements" or to conflict in title with any InvariantSection.O. Preserve any Warranty Disclaimers.If the Modified Version includes new front-matter sections orappendices that qualify as Secondary Sections and contain nomaterial copied from the Document, you may at your optiondesignate some or all of these sections as invariant. To do this,add their titles to the list of Invariant Sections in the ModifiedVersion's license notice. These titles must be distinct from anyother section titles.You may add a section Entitled "Endorsements", provided it containsnothing but endorsements of your Modified Version by variousparties--for example, statements of peer review or that the texthas been approved by an organization as the authoritativedefinition of a standard.You may add a passage of up to five words as a Front-Cover Text,and a passage of up to 25 words as a Back-Cover Text, to the endof the list of Cover Texts in the Modified Version. Only onepassage of Front-Cover Text and one of Back-Cover Text may beadded by (or through arrangements made by) any one entity. If theDocument already includes a cover text for the same cover,previously added by you or by arrangement made by the same entityyou are acting on behalf of, you may not add another; but you mayreplace the old one, on explicit permission from the previouspublisher that added the old one.The author(s) and publisher(s) of the Document do not by thisLicense give permission to use their names for publicity for or toassert or imply endorsement of any Modified Version.5. COMBINING DOCUMENTSYou may combine the Document with other documents released underthis License, under the terms defined in section 4 above formodified versions, provided that you include in the combinationall of the Invariant Sections of all of the original documents,unmodified, and list them all as Invariant Sections of yourcombined work in its license notice, and that you preserve alltheir Warranty Disclaimers.The combined work need only contain one copy of this License, andmultiple identical Invariant Sections may be replaced with a singlecopy. If there are multiple Invariant Sections with the same namebut different contents, make the title of each such section uniqueby adding at the end of it, in parentheses, the name of theoriginal author or publisher of that section if known, or else aunique number. Make the same adjustment to the section titles inthe list of Invariant Sections in the license notice of thecombined work.In the combination, you must combine any sections Entitled"History" in the various original documents, forming one sectionEntitled "History"; likewise combine any sections Entitled"Acknowledgements", and any sections Entitled "Dedications". Youmust delete all sections Entitled "Endorsements."6. COLLECTIONS OF DOCUMENTSYou may make a collection consisting of the Document and otherdocuments released under this License, and replace the individualcopies of this License in the various documents with a single copythat is included in the collection, provided that you follow therules of this License for verbatim copying of each of thedocuments in all other respects.You may extract a single document from such a collection, anddistribute it individually under this License, provided you inserta copy of this License into the extracted document, and followthis License in all other respects regarding verbatim copying ofthat document.7. AGGREGATION WITH INDEPENDENT WORKSA compilation of the Document or its derivatives with otherseparate and independent documents or works, in or on a volume ofa storage or distribution medium, is called an "aggregate" if thecopyright resulting from the compilation is not used to limit thelegal rights of the compilation's users beyond what the individualworks permit. When the Document is included in an aggregate, thisLicense does not apply to the other works in the aggregate whichare not themselves derivative works of the Document.If the Cover Text requirement of section 3 is applicable to thesecopies of the Document, then if the Document is less than one halfof the entire aggregate, the Document's Cover Texts may be placedon covers that bracket the Document within the aggregate, or theelectronic equivalent of covers if the Document is in electronicform. Otherwise they must appear on printed covers that bracketthe whole aggregate.8. TRANSLATIONTranslation is considered a kind of modification, so you maydistribute translations of the Document under the terms of section4. Replacing Invariant Sections with translations requires specialpermission from their copyright holders, but you may includetranslations of some or all Invariant Sections in addition to theoriginal versions of these Invariant Sections. You may include atranslation of this License, and all the license notices in theDocument, and any Warranty Disclaimers, provided that you alsoinclude the original English version of this License and theoriginal versions of those notices and disclaimers. In case of adisagreement between the translation and the original version ofthis License or a notice or disclaimer, the original version willprevail.If a section in the Document is Entitled "Acknowledgements","Dedications", or "History", the requirement (section 4) toPreserve its Title (section 1) will typically require changing theactual title.9. TERMINATIONYou may not copy, modify, sublicense, or distribute the Documentexcept as expressly provided under this License. Any attemptotherwise to copy, modify, sublicense, or distribute it is void,and will automatically terminate your rights under this License.However, if you cease all violation of this License, then yourlicense from a particular copyright holder is reinstated (a)provisionally, unless and until the copyright holder explicitlyand finally terminates your license, and (b) permanently, if thecopyright holder fails to notify you of the violation by somereasonable means prior to 60 days after the cessation.Moreover, your license from a particular copyright holder isreinstated permanently if the copyright holder notifies you of theviolation by some reasonable means, this is the first time you havereceived notice of violation of this License (for any work) fromthat copyright holder, and you cure the violation prior to 30 daysafter your receipt of the notice.Termination of your rights under this section does not terminatethe licenses of parties who have received copies or rights fromyou under this License. If your rights have been terminated andnot permanently reinstated, receipt of a copy of some or all ofthe same material does not give you any rights to use it.10. FUTURE REVISIONS OF THIS LICENSEThe Free Software Foundation may publish new, revised versions ofthe GNU Free Documentation License from time to time. Such newversions will be similar in spirit to the present version, but maydiffer in detail to address new problems or concerns. See`http://www.gnu.org/copyleft/'.Each version of the License is given a distinguishing versionnumber. If the Document specifies that a particular numberedversion of this License "or any later version" applies to it, youhave the option of following the terms and conditions either ofthat specified version or of any later version that has beenpublished (not as a draft) by the Free Software Foundation. Ifthe Document does not specify a version number of this License,you may choose any version ever published (not as a draft) by theFree Software Foundation. If the Document specifies that a proxycan decide which future versions of this License can be used, thatproxy's public statement of acceptance of a version permanentlyauthorizes you to choose that version for the Document.11. RELICENSING"Massive Multiauthor Collaboration Site" (or "MMC Site") means anyWorld Wide Web server that publishes copyrightable works and alsoprovides prominent facilities for anybody to edit those works. Apublic wiki that anybody can edit is an example of such a server.A "Massive Multiauthor Collaboration" (or "MMC") contained in thesite means any set of copyrightable works thus published on the MMCsite."CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0license published by Creative Commons Corporation, a not-for-profitcorporation with a principal place of business in San Francisco,California, as well as future copyleft versions of that licensepublished by that same organization."Incorporate" means to publish or republish a Document, in whole orin part, as part of another Document.An MMC is "eligible for relicensing" if it is licensed under thisLicense, and if all works that were first published under thisLicense somewhere other than this MMC, and subsequentlyincorporated in whole or in part into the MMC, (1) had no covertexts or invariant sections, and (2) were thus incorporated priorto November 1, 2008.The operator of an MMC Site may republish an MMC contained in thesite under CC-BY-SA on the same site at any time before August 1,2009, provided the MMC is eligible for relicensing.ADDENDUM: How to use this License for your documents====================================================To use this License in a document you have written, include a copy ofthe License in the document and put the following copyright and licensenotices just after the title page:Copyright (C) YEAR YOUR NAME.Permission is granted to copy, distribute and/or modify this documentunder the terms of the GNU Free Documentation License, Version 1.3or any later version published by the Free Software Foundation;with no Invariant Sections, no Front-Cover Texts, and no Back-CoverTexts. A copy of the license is included in the section entitled ``GNUFree Documentation License''.If you have Invariant Sections, Front-Cover Texts and Back-CoverTexts, replace the "with...Texts." line with this:with the Invariant Sections being LIST THEIR TITLES, withthe Front-Cover Texts being LIST, and with the Back-Cover Textsbeing LIST.If you have Invariant Sections without Cover Texts, or some othercombination of the three, merge those two alternatives to suit thesituation.If your document contains nontrivial examples of program code, werecommend releasing these examples in parallel under your choice offree software license, such as the GNU General Public License, topermit their use in free software.File: bfd.info, Node: BFD Index, Prev: GNU Free Documentation License, Up: TopBFD Index*********