/*-------------------------------------------------------------------------
 
   logf.c - Computes the natural log of a 32 bit float as outlined in [1].
 
 
 
   Copyright (C) 2001, 2002, Jesus Calvino-Fraga, jesusc@ieee.org
 
 
 
   This library is free software; you can redistribute it and/or modify it
 
   under the terms of the GNU General Public License as published by the
 
   Free Software Foundation; either version 2, or (at your option) any
 
   later version.
 
 
 
   This library is distributed in the hope that it will be useful,
 
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
   GNU General Public License for more details.
 
 
 
   You should have received a copy of the GNU General Public License
 
   along with this library; see the file COPYING. If not, write to the
 
   Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
 
   MA 02110-1301, USA.
 
 
 
   As a special exception, if you link this library with other files,
 
   some of which are compiled with SDCC, to produce an executable,
 
   this library does not by itself cause the resulting executable to
 
   be covered by the GNU General Public License. This exception does
 
   not however invalidate any other reasons why the executable file
 
   might be covered by the GNU General Public License.
 
-------------------------------------------------------------------------*/
 
 
 
/* [1] William James Cody and W.  M.  Waite.  _Software manual for the
 
   elementary functions_, Englewood Cliffs, N.J.:Prentice-Hall, 1980. */
 
 
 
/* Version 1.0 - Initial release */
 
 
 
#define __SDCC_MATH_LIB
 
#include <math.h>
 
#include <errno.h>
 
 
 
 
 
#ifdef MATH_ASM_MCS51
 
 
 
#define __SDCC_FLOAT_LIB
 
#include <float.h>
 
 
 
// TODO: share with other temps
 
static __data unsigned char logf_tmp[4];
 
 
 
float logf(float x)
 
{
 
        x;
 
        __asm
 
 
 
        // extract the two input, placing it into:
 
        //      sign     exponent   mantiassa
 
        //      ----     --------   ---------
 
        //  x:  sign_a   exp_a     r4/r3/r2
 
 
 
        lcall   fsgetarg
 
logf_neg_check:
 
        jnb     sign_a, logf_zero_check
 
        // TODO: set errno to EDOM (negative numbers not allowed)
 
        lcall   fs_return_nan
 
        ljmp    logf_exit
 
 
 
logf_zero_check:
 
        cjne    r4, #0, logf_ok
 
        // TODO: set errno to ERANGE (zero not allowed)
 
        setb    sign_a
 
        lcall   fs_return_inf
 
        ljmp    logf_exit
 
 
 
logf_ok:
 
        push    exp_a
 
        mov     a, #3
 
        mov     r1, #0
 
        lcall   fs_rshift_a
 
 
 
        clr     a
 
        mov     (_logf_tmp + 0), a      // y = 0
 
        mov     (_logf_tmp + 1), a
 
        mov     (_logf_tmp + 2), a
 
        mov     (_logf_tmp + 3), a
 
        mov     dptr, #__fs_natural_log_table
 
        mov     r0, a
 
logf_cordic_loop:
 
        mov     ar7, r4         // r7/r6/r5 = x >> i
 
        mov     ar6, r3
 
        mov     ar5, r2
 
        mov     b, r1
 
        mov     a, r0
 
        lcall   __fs_cordic_rshift_r765_unsigned
 
        mov     a, r1           // check if x + (x >> i) > 1.0
 
        add     a, b
 
        mov     a, r2
 
        addc    a, r5
 
        mov     a, r3
 
        addc    a, r6
 
        mov     a, r4
 
        addc    a, r7
 
        anl     a, #0xE0
 
        jnz     logf_cordic_skip
 
        mov     a, r1           // x = x + (x >> i)
 
        add     a, b
 
        mov     r1, a
 
        mov     a, r2
 
        addc    a, r5
 
        mov     r2, a
 
        mov     a, r3
 
        addc    a, r6
 
        mov     r3, a
 
        mov     a, r4
 
        addc    a, r7
 
        mov     r4, a
 
        clr     a               // y = y + log_table[i]
 
        movc    a, @a+dptr
 
        add     a, (_logf_tmp + 0)
 
        mov     (_logf_tmp + 0), a
 
        mov     a, #1
 
        movc    a, @a+dptr
 
        addc    a, (_logf_tmp + 1)
 
        mov     (_logf_tmp + 1), a
 
        mov     a, #2
 
        movc    a, @a+dptr
 
        addc    a, (_logf_tmp + 2)
 
        mov     (_logf_tmp + 2), a
 
        mov     a, #3
 
        movc    a, @a+dptr
 
        addc    a, (_logf_tmp + 3)
 
        mov     (_logf_tmp + 3), a
 
logf_cordic_skip:
 
        inc     dptr
 
        inc     dptr
 
        inc     dptr
 
        inc     dptr
 
        inc     r0
 
        cjne    r0, #30, logf_cordic_loop
 
        // at this point, _logf_tmp has the natural log of the positive
 
        // normalized fractional part (0.5 to 1.0 -> 0.693 to 0.0)
 
        mov     r4, (_logf_tmp + 3)
 
        mov     r3, (_logf_tmp + 2)
 
        mov     r2, (_logf_tmp + 1)
 
        mov     r1, (_logf_tmp + 0)
 
        mov     exp_a, #129
 
        setb    sign_a
 
        lcall   fs_normalize_a
 
        pop     acc
 
        cjne    a, #126, logf_exponent
 
        // if the input exponent was 126, then we don't need to add
 
        // anything and we can just return the with we have already
 
 
 
        // TODO: which of these gives best accuracy???
 
        lcall   fs_zerocheck_return
 
        //lcall fs_round_and_return
 
        sjmp    logf_exit
 
logf_exponent:
 
        jc      logf_exp_neg
 
        // the input exponent was greater than 126
 
logf_exp_pos:
 
        add     a, #130
 
        clr     sign_b
 
        sjmp    logf_exp_scale
 
logf_exp_neg:
 
        // the input exponent was less than 126
 
        cpl     a
 
        add     a, #127
 
        setb    sign_b
 
logf_exp_scale:
 
        // r0 has abs(exp - 126)
 
        mov     r0, a
 
        // put the log of faction into b, so we can use a to compute
 
        // the offset to be added to it or subtracted from it
 
        lcall   fs_swap_a_b
 
        // multiply r0 by log(2), or r0 * 0xB17218
 
        mov     a, #0x18
 
        mov     b, r0
 
        mul     ab
 
        mov     r1, a
 
        mov     r2, b
 
        mov     a, #0xB1
 
        mov     b, r0
 
        mul     ab
 
        mov     r3, a
 
        mov     r4, b
 
        mov     a, #0x72
 
        mov     b, r0
 
        mul     ab
 
        add     a, r2
 
        mov     r2, a
 
        mov     a, b
 
        addc    a, r3
 
        mov     r3, a
 
        clr     a
 
        addc    a, r4
 
        mov     r4, a
 
        // turn r0 * log(2) into a proper float
 
        mov     exp_a, #134
 
        lcall   fs_normalize_a
 
        // now just add log(fractional) +/- log(2) * abs(exp - 126)
 
        lcall   fsadd_direct_entry
 
logf_exit:
 
        __endasm;
 
#pragma less_pedantic
 
}
 
 
 
#else // not MATH_ASM_MCS51
 
 
 
/*Constants for 24 bits or less (8 decimal digits)*/
 
#define A0 -0.5527074855E+0
 
#define B0 -0.6632718214E+1
 
#define A(w) (A0)
 
#define B(w) (w+B0)
 
 
 
#define C0  0.70710678118654752440
 
#define C1  0.693359375 /*355.0/512.0*/
 
#define C2 -2.121944400546905827679E-4
 
 
 
float logf(float x) _FLOAT_FUNC_REENTRANT
 
{
 
#if     defined(__SDCC_mcs51) && defined(__SDCC_MODEL_SMALL) \
 
    && !defined(__SDCC_NOOVERLAY)
 
    volatile
 
#endif
 
    float Rz;
 
    float f, z, w, znum, zden, xn;
 
    int n;
 
 
 
    if (x<=0.0)
 
    {
 
        errno=EDOM;
 
        return 0.0;
 
    }
 
    f=frexpf(x, &n);
 
    znum=f-0.5;
 
    if (f>C0)
 
    {
 
        znum-=0.5;
 
        zden=(f*0.5)+0.5;
 
    }
 
    else
 
    {
 
        n--;
 
        zden=znum*0.5+0.5;
 
    }
 
    z=znum/zden;
 
    w=z*z;
 
 
 
    Rz=z+z*(w*A(w)/B(w));
 
    xn=n;
 
    return ((xn*C2+Rz)+xn*C1);
 
}
 
 
 
#endif