- /*------------------------------------------------------------------------- 
-    tancotf.c - Computes tan or cot of a 32-bit float as outlined in [1] 
-   
-    Copyright (C) 2001, 2002, Jesus Calvino-Fraga, jesusc@ieee.org 
-   
-    This library is free software; you can redistribute it and/or modify it 
-    under the terms of the GNU General Public License as published by the 
-    Free Software Foundation; either version 2, or (at your option) any 
-    later version. 
-   
-    This library is distributed in the hope that it will be useful, 
-    but WITHOUT ANY WARRANTY; without even the implied warranty of 
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
-    GNU General Public License for more details. 
-   
-    You should have received a copy of the GNU General Public License 
-    along with this library; see the file COPYING. If not, write to the 
-    Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, 
-    MA 02110-1301, USA. 
-   
-    As a special exception, if you link this library with other files, 
-    some of which are compiled with SDCC, to produce an executable, 
-    this library does not by itself cause the resulting executable to 
-    be covered by the GNU General Public License. This exception does 
-    not however invalidate any other reasons why the executable file 
-    might be covered by the GNU General Public License. 
- -------------------------------------------------------------------------*/ 
-   
- /* [1] William James Cody and W.  M.  Waite.  _Software manual for the 
-    elementary functions_, Englewood Cliffs, N.J.:Prentice-Hall, 1980. */ 
-   
- /* Version 1.0 - Initial release */ 
-   
- #include <math.h> 
- #include <errno.h> 
- #include <stdbool.h> 
-   
- #define P0  0.100000000E+1 
- #define P1 -0.958017723E-1 
- #define Q0  0.100000000E+1 
- #define Q1 -0.429135777E+0 
- #define Q2  0.971685835E-2 
-   
- #define C1  1.5703125 
- #define C2  4.83826794897E-4 
-   
- #define P(f,g) (P1*g*f+f) 
- #define Q(g) ((Q2*g+Q1)*g+Q0) 
-   
- //A reasonable choice for YMAX is the integer part of B**(t/2)*PI/2: 
- #define YMAX 6433.0 
-   
- float tancotf(float x, bool iscotan) 
- { 
-     float f, g, xn, xnum, xden; 
-     int n; 
-   
-     if (fabsf(x) > YMAX) 
-     { 
-         errno = ERANGE; 
-         return 0.0; 
-     } 
-   
-     /*Round x*2*PI to the nearest integer*/ 
-     n=(x*TWO_O_PI+(x>0.0?0.5:-0.5)); /*works for +-x*/ 
-     xn=n; 
-   
-     xnum=(int)x; 
-     xden=x-xnum; 
-     f=((xnum-xn*C1)+xden)-xn*C2; 
-   
-     if (fabsf(f) < EPS) 
-     { 
-         xnum = f; 
-         xden = 1.0; 
-     } 
-     else 
-     { 
-         g = f*f; 
-         xnum = P(f,g); 
-         xden = Q(g); 
-     } 
-   
-     if(n&1) 
-     //xn is odd 
-     { 
-         if(iscotan) return (-xnum/xden); 
-                else return (-xden/xnum); 
-     } 
-     else 
-     { 
-         if(iscotan) return (xden/xnum); 
-                else return (xnum/xden); 
-     } 
- } 
-