?login_element?

Subversion Repositories NedoOS

Rev

Blame | Last modification | View Log | Download

  1. /*
  2. ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
  3. ** Opcodes for Lua virtual machine
  4. ** See Copyright Notice in lua.h
  5. */
  6.  
  7. #ifndef lopcodes_h
  8. #define lopcodes_h
  9.  
  10. #include "llimits.h"
  11.  
  12.  
  13. /*===========================================================================
  14.   We assume that instructions are unsigned numbers.
  15.   All instructions have an opcode in the first 6 bits.
  16.   Instructions can have the following fields:
  17.         `A' : 8 bits
  18.         `B' : 9 bits
  19.         `C' : 9 bits
  20.         `Bx' : 18 bits (`B' and `C' together)
  21.         `sBx' : signed Bx
  22.  
  23.   A signed argument is represented in excess K; that is, the number
  24.   value is the unsigned value minus K. K is exactly the maximum value
  25.   for that argument (so that -max is represented by 0, and +max is
  26.   represented by 2*max), which is half the maximum for the corresponding
  27.   unsigned argument.
  28. ===========================================================================*/
  29.  
  30.  
  31. enum OpMode {iABC, iABx, iAsBx};  /* basic instruction format */
  32.  
  33.  
  34. /*
  35. ** size and position of opcode arguments.
  36. */
  37. #define SIZE_C          9
  38. #define SIZE_B          9
  39. #define SIZE_Bx         (SIZE_C + SIZE_B)
  40. #define SIZE_A          8
  41.  
  42. #define SIZE_OP         6
  43.  
  44. #define POS_OP          0
  45. #define POS_A           (POS_OP + SIZE_OP)
  46. #define POS_C           (POS_A + SIZE_A)
  47. #define POS_B           (POS_C + SIZE_C)
  48. #define POS_Bx          POS_C
  49.  
  50.  
  51. /*
  52. ** limits for opcode arguments.
  53. ** we use (signed) int to manipulate most arguments,
  54. ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
  55. */
  56. #if SIZE_Bx < LUAI_BITSINT-1
  57. #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
  58. #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
  59. #else
  60. #define MAXARG_Bx        MAX_INT
  61. #define MAXARG_sBx        MAX_INT
  62. #endif
  63.  
  64.  
  65. #define MAXARG_A        ((1<<SIZE_A)-1)
  66. #define MAXARG_B        ((1<<SIZE_B)-1)
  67. #define MAXARG_C        ((1<<SIZE_C)-1)
  68.  
  69.  
  70. /* creates a mask with `n' 1 bits at position `p' */
  71. #define MASK1(n,p)      ((~((~(Instruction)0)<<n))<<p)
  72.  
  73. /* creates a mask with `n' 0 bits at position `p' */
  74. #define MASK0(n,p)      (~MASK1(n,p))
  75.  
  76. /*
  77. ** the following macros help to manipulate instructions
  78. */
  79.  
  80. #define GET_OPCODE(i)   (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
  81. #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
  82.                 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
  83.  
  84. #define GETARG_A(i)     (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
  85. #define SETARG_A(i,u)   ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
  86.                 ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
  87.  
  88. #define GETARG_B(i)     (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
  89. #define SETARG_B(i,b)   ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
  90.                 ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
  91.  
  92. #define GETARG_C(i)     (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
  93. #define SETARG_C(i,b)   ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
  94.                 ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
  95.  
  96. #define GETARG_Bx(i)    (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
  97. #define SETARG_Bx(i,b)  ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
  98.                 ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
  99.  
  100. #define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx)
  101. #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
  102.  
  103.  
  104. #define CREATE_ABC(o,a,b,c)     ((cast(Instruction, o)<<POS_OP) \
  105.                         | (cast(Instruction, a)<<POS_A) \
  106.                         | (cast(Instruction, b)<<POS_B) \
  107.                         | (cast(Instruction, c)<<POS_C))
  108.  
  109. #define CREATE_ABx(o,a,bc)      ((cast(Instruction, o)<<POS_OP) \
  110.                         | (cast(Instruction, a)<<POS_A) \
  111.                         | (cast(Instruction, bc)<<POS_Bx))
  112.  
  113.  
  114. /*
  115. ** Macros to operate RK indices
  116. */
  117.  
  118. /* this bit 1 means constant (0 means register) */
  119. #define BITRK           (1 << (SIZE_B - 1))
  120.  
  121. /* test whether value is a constant */
  122. #define ISK(x)          ((x) & BITRK)
  123.  
  124. /* gets the index of the constant */
  125. #define INDEXK(r)       ((int)(r) & ~BITRK)
  126.  
  127. #define MAXINDEXRK      (BITRK - 1)
  128.  
  129. /* code a constant index as a RK value */
  130. #define RKASK(x)        ((x) | BITRK)
  131.  
  132.  
  133. /*
  134. ** invalid register that fits in 8 bits
  135. */
  136. #define NO_REG          MAXARG_A
  137.  
  138.  
  139. /*
  140. ** R(x) - register
  141. ** Kst(x) - constant (in constant table)
  142. ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
  143. */
  144.  
  145.  
  146. /*
  147. ** grep "ORDER OP" if you change these enums
  148. */
  149.  
  150. typedef enum {
  151. /*----------------------------------------------------------------------
  152. name            args    description
  153. ------------------------------------------------------------------------*/
  154. OP_MOVE,/*      A B     R(A) := R(B)                                    */
  155. OP_LOADK,/*     A Bx    R(A) := Kst(Bx)                                 */
  156. OP_LOADBOOL,/*  A B C   R(A) := (Bool)B; if (C) pc++                    */
  157. OP_LOADNIL,/*   A B     R(A) := ... := R(B) := nil                      */
  158. OP_GETUPVAL,/*  A B     R(A) := UpValue[B]                              */
  159.  
  160. OP_GETGLOBAL,/* A Bx    R(A) := Gbl[Kst(Bx)]                            */
  161. OP_GETTABLE,/*  A B C   R(A) := R(B)[RK(C)]                             */
  162.  
  163. OP_SETGLOBAL,/* A Bx    Gbl[Kst(Bx)] := R(A)                            */
  164. OP_SETUPVAL,/*  A B     UpValue[B] := R(A)                              */
  165. OP_SETTABLE,/*  A B C   R(A)[RK(B)] := RK(C)                            */
  166.  
  167. OP_NEWTABLE,/*  A B C   R(A) := {} (size = B,C)                         */
  168.  
  169. OP_SELF,/*      A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]             */
  170.  
  171. OP_ADD,/*       A B C   R(A) := RK(B) + RK(C)                           */
  172. OP_SUB,/*       A B C   R(A) := RK(B) - RK(C)                           */
  173. OP_MUL,/*       A B C   R(A) := RK(B) * RK(C)                           */
  174. OP_DIV,/*       A B C   R(A) := RK(B) / RK(C)                           */
  175. OP_MOD,/*       A B C   R(A) := RK(B) % RK(C)                           */
  176. OP_POW,/*       A B C   R(A) := RK(B) ^ RK(C)                           */
  177. OP_UNM,/*       A B     R(A) := -R(B)                                   */
  178. OP_NOT,/*       A B     R(A) := not R(B)                                */
  179. OP_LEN,/*       A B     R(A) := length of R(B)                          */
  180.  
  181. OP_CONCAT,/*    A B C   R(A) := R(B).. ... ..R(C)                       */
  182.  
  183. OP_JMP,/*       sBx     pc+=sBx                                 */
  184.  
  185. OP_EQ,/*        A B C   if ((RK(B) == RK(C)) ~= A) then pc++            */
  186. OP_LT,/*        A B C   if ((RK(B) <  RK(C)) ~= A) then pc++            */
  187. OP_LE,/*        A B C   if ((RK(B) <= RK(C)) ~= A) then pc++            */
  188.  
  189. OP_TEST,/*      A C     if not (R(A) <=> C) then pc++                   */
  190. OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++     */
  191.  
  192. OP_CALL,/*      A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
  193. OP_TAILCALL,/*  A B C   return R(A)(R(A+1), ... ,R(A+B-1))              */
  194. OP_RETURN,/*    A B     return R(A), ... ,R(A+B-2)      (see note)      */
  195.  
  196. OP_FORLOOP,/*   A sBx   R(A)+=R(A+2);
  197.                         if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
  198. OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx                           */
  199.  
  200. OP_TFORLOOP,/*  A C     R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
  201.                         if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++   */
  202. OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B        */
  203.  
  204. OP_CLOSE,/*     A       close all variables in the stack up to (>=) R(A)*/
  205. OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))  */
  206.  
  207. OP_VARARG/*     A B     R(A), R(A+1), ..., R(A+B-1) = vararg            */
  208. } OpCode;
  209.  
  210.  
  211. #define NUM_OPCODES     (cast(int, OP_VARARG) + 1)
  212.  
  213.  
  214.  
  215. /*===========================================================================
  216.   Notes:
  217.   (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
  218.       and can be 0: OP_CALL then sets `top' to last_result+1, so
  219.       next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
  220.  
  221.   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
  222.       set top (like in OP_CALL with C == 0).
  223.  
  224.   (*) In OP_RETURN, if (B == 0) then return up to `top'
  225.  
  226.   (*) In OP_SETLIST, if (B == 0) then B = `top';
  227.       if (C == 0) then next `instruction' is real C
  228.  
  229.   (*) For comparisons, A specifies what condition the test should accept
  230.       (true or false).
  231.  
  232.   (*) All `skips' (pc++) assume that next instruction is a jump
  233. ===========================================================================*/
  234.  
  235.  
  236. /*
  237. ** masks for instruction properties. The format is:
  238. ** bits 0-1: op mode
  239. ** bits 2-3: C arg mode
  240. ** bits 4-5: B arg mode
  241. ** bit 6: instruction set register A
  242. ** bit 7: operator is a test
  243. */  
  244.  
  245. enum OpArgMask {
  246.   OpArgN,  /* argument is not used */
  247.   OpArgU,  /* argument is used */
  248.   OpArgR,  /* argument is a register or a jump offset */
  249.   OpArgK   /* argument is a constant or register/constant */
  250. };
  251.  
  252. LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
  253.  
  254. #define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3))
  255. #define getBMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
  256. #define getCMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
  257. #define testAMode(m)    (luaP_opmodes[m] & (1 << 6))
  258. #define testTMode(m)    (luaP_opmodes[m] & (1 << 7))
  259.  
  260.  
  261. LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
  262.  
  263.  
  264. /* number of list items to accumulate before a SETLIST instruction */
  265. #define LFIELDS_PER_FLUSH       50
  266.  
  267.  
  268. #endif
  269.