- /* 
- ** $Id: lopcodes.h,v 1.142.1.2 2014/10/20 18:32:09 roberto Exp $ 
- ** Opcodes for Lua virtual machine 
- ** See Copyright Notice in lua.h 
- */ 
-   
- #ifndef lopcodes_h 
- #define lopcodes_h 
-   
- #include "llimits.h" 
-   
-   
- /*=========================================================================== 
-   We assume that instructions are unsigned numbers. 
-   All instructions have an opcode in the first 6 bits. 
-   Instructions can have the following fields: 
-         `A' : 8 bits 
-         `B' : 9 bits 
-         `C' : 9 bits 
-         'Ax' : 26 bits ('A', 'B', and 'C' together) 
-         `Bx' : 18 bits (`B' and `C' together) 
-         `sBx' : signed Bx 
-   
-   A signed argument is represented in excess K; that is, the number 
-   value is the unsigned value minus K. K is exactly the maximum value 
-   for that argument (so that -max is represented by 0, and +max is 
-   represented by 2*max), which is half the maximum for the corresponding 
-   unsigned argument. 
- ===========================================================================*/ 
-   
-   
- enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */ 
-   
-   
- /* 
- ** size and position of opcode arguments. 
- */ 
- #define SIZE_C          9 
- #define SIZE_B          9 
- #define SIZE_Bx         (SIZE_C + SIZE_B) 
- #define SIZE_A          8 
- #define SIZE_Ax         (SIZE_C + SIZE_B + SIZE_A) 
-   
- #define SIZE_OP         6 
-   
- #define POS_OP          0 
- #define POS_A           (POS_OP + SIZE_OP) 
- #define POS_C           (POS_A + SIZE_A) 
- #define POS_B           (POS_C + SIZE_C) 
- #define POS_Bx          POS_C 
- #define POS_Ax          POS_A 
-   
-   
- /* 
- ** limits for opcode arguments. 
- ** we use (signed) int to manipulate most arguments, 
- ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) 
- */ 
- #if SIZE_Bx < LUAI_BITSINT-1 
- #define MAXARG_Bx        ((1<<SIZE_Bx)-1) 
- #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */ 
- #else 
- #define MAXARG_Bx        MAX_INT 
- #define MAXARG_sBx        MAX_INT 
- #endif 
-   
- #if SIZE_Ax < LUAI_BITSINT-1 
- #define MAXARG_Ax       ((1<<SIZE_Ax)-1) 
- #else 
- #define MAXARG_Ax       MAX_INT 
- #endif 
-   
-   
- #define MAXARG_A        ((1<<SIZE_A)-1) 
- #define MAXARG_B        ((1<<SIZE_B)-1) 
- #define MAXARG_C        ((1<<SIZE_C)-1) 
-   
-   
- /* creates a mask with `n' 1 bits at position `p' */ 
- #define MASK1(n,p)      ((~((~(Instruction)0)<<(n)))<<(p)) 
-   
- /* creates a mask with `n' 0 bits at position `p' */ 
- #define MASK0(n,p)      (~MASK1(n,p)) 
-   
- /* 
- ** the following macros help to manipulate instructions 
- */ 
-   
- #define GET_OPCODE(i)   (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) 
- #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ 
-                 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) 
-   
- #define getarg(i,pos,size)      (cast(int, ((i)>>pos) & MASK1(size,0))) 
- #define setarg(i,v,pos,size)    ((i) = (((i)&MASK0(size,pos)) | \ 
-                 ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) 
-   
- #define GETARG_A(i)     getarg(i, POS_A, SIZE_A) 
- #define SETARG_A(i,v)   setarg(i, v, POS_A, SIZE_A) 
-   
- #define GETARG_B(i)     getarg(i, POS_B, SIZE_B) 
- #define SETARG_B(i,v)   setarg(i, v, POS_B, SIZE_B) 
-   
- #define GETARG_C(i)     getarg(i, POS_C, SIZE_C) 
- #define SETARG_C(i,v)   setarg(i, v, POS_C, SIZE_C) 
-   
- #define GETARG_Bx(i)    getarg(i, POS_Bx, SIZE_Bx) 
- #define SETARG_Bx(i,v)  setarg(i, v, POS_Bx, SIZE_Bx) 
-   
- #define GETARG_Ax(i)    getarg(i, POS_Ax, SIZE_Ax) 
- #define SETARG_Ax(i,v)  setarg(i, v, POS_Ax, SIZE_Ax) 
-   
- #define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx) 
- #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) 
-   
-   
- #define CREATE_ABC(o,a,b,c)     ((cast(Instruction, o)<<POS_OP) \ 
-                         | (cast(Instruction, a)<<POS_A) \ 
-                         | (cast(Instruction, b)<<POS_B) \ 
-                         | (cast(Instruction, c)<<POS_C)) 
-   
- #define CREATE_ABx(o,a,bc)      ((cast(Instruction, o)<<POS_OP) \ 
-                         | (cast(Instruction, a)<<POS_A) \ 
-                         | (cast(Instruction, bc)<<POS_Bx)) 
-   
- #define CREATE_Ax(o,a)          ((cast(Instruction, o)<<POS_OP) \ 
-                         | (cast(Instruction, a)<<POS_Ax)) 
-   
-   
- /* 
- ** Macros to operate RK indices 
- */ 
-   
- /* this bit 1 means constant (0 means register) */ 
- #define BITRK           (1 << (SIZE_B - 1)) 
-   
- /* test whether value is a constant */ 
- #define ISK(x)          ((x) & BITRK) 
-   
- /* gets the index of the constant */ 
- #define INDEXK(r)       ((int)(r) & ~BITRK) 
-   
- #define MAXINDEXRK      (BITRK - 1) 
-   
- /* code a constant index as a RK value */ 
- #define RKASK(x)        ((x) | BITRK) 
-   
-   
- /* 
- ** invalid register that fits in 8 bits 
- */ 
- #define NO_REG          MAXARG_A 
-   
-   
- /* 
- ** R(x) - register 
- ** Kst(x) - constant (in constant table) 
- ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) 
- */ 
-   
-   
- /* 
- ** grep "ORDER OP" if you change these enums 
- */ 
-   
- typedef enum { 
- /*---------------------------------------------------------------------- 
- name            args    description 
- ------------------------------------------------------------------------*/ 
- OP_MOVE,/*      A B     R(A) := R(B)                                    */ 
- OP_LOADK,/*     A Bx    R(A) := Kst(Bx)                                 */ 
- OP_LOADKX,/*    A       R(A) := Kst(extra arg)                          */ 
- OP_LOADBOOL,/*  A B C   R(A) := (Bool)B; if (C) pc++                    */ 
- OP_LOADNIL,/*   A B     R(A), R(A+1), ..., R(A+B) := nil                */ 
- OP_GETUPVAL,/*  A B     R(A) := UpValue[B]                              */ 
-   
- OP_GETTABUP,/*  A B C   R(A) := UpValue[B][RK(C)]                       */ 
- OP_GETTABLE,/*  A B C   R(A) := R(B)[RK(C)]                             */ 
-   
- OP_SETTABUP,/*  A B C   UpValue[A][RK(B)] := RK(C)                      */ 
- OP_SETUPVAL,/*  A B     UpValue[B] := R(A)                              */ 
- OP_SETTABLE,/*  A B C   R(A)[RK(B)] := RK(C)                            */ 
-   
- OP_NEWTABLE,/*  A B C   R(A) := {} (size = B,C)                         */ 
-   
- OP_SELF,/*      A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]             */ 
-   
- OP_ADD,/*       A B C   R(A) := RK(B) + RK(C)                           */ 
- OP_SUB,/*       A B C   R(A) := RK(B) - RK(C)                           */ 
- OP_MUL,/*       A B C   R(A) := RK(B) * RK(C)                           */ 
- OP_DIV,/*       A B C   R(A) := RK(B) / RK(C)                           */ 
- OP_MOD,/*       A B C   R(A) := RK(B) % RK(C)                           */ 
- OP_POW,/*       A B C   R(A) := RK(B) ^ RK(C)                           */ 
- OP_UNM,/*       A B     R(A) := -R(B)                                   */ 
- OP_NOT,/*       A B     R(A) := not R(B)                                */ 
- OP_LEN,/*       A B     R(A) := length of R(B)                          */ 
-   
- OP_CONCAT,/*    A B C   R(A) := R(B).. ... ..R(C)                       */ 
-   
- OP_JMP,/*       A sBx   pc+=sBx; if (A) close all upvalues >= R(A - 1)  */ 
- OP_EQ,/*        A B C   if ((RK(B) == RK(C)) ~= A) then pc++            */ 
- OP_LT,/*        A B C   if ((RK(B) <  RK(C)) ~= A) then pc++            */ 
- OP_LE,/*        A B C   if ((RK(B) <= RK(C)) ~= A) then pc++            */ 
-   
- OP_TEST,/*      A C     if not (R(A) <=> C) then pc++                   */ 
- OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++     */ 
-   
- OP_CALL,/*      A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ 
- OP_TAILCALL,/*  A B C   return R(A)(R(A+1), ... ,R(A+B-1))              */ 
- OP_RETURN,/*    A B     return R(A), ... ,R(A+B-2)      (see note)      */ 
-   
- OP_FORLOOP,/*   A sBx   R(A)+=R(A+2); 
-                         if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ 
- OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx                           */ 
-   
- OP_TFORCALL,/*  A C     R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));  */ 
- OP_TFORLOOP,/*  A sBx   if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ 
-   
- OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B        */ 
-   
- OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx])                     */ 
-   
- OP_VARARG,/*    A B     R(A), R(A+1), ..., R(A+B-2) = vararg            */ 
-   
- OP_EXTRAARG/*   Ax      extra (larger) argument for previous opcode     */ 
- } OpCode; 
-   
-   
- #define NUM_OPCODES     (cast(int, OP_EXTRAARG) + 1) 
-   
-   
-   
- /*=========================================================================== 
-   Notes: 
-   (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is 
-   set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, 
-   OP_SETLIST) may use `top'. 
-   
-   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and 
-   set top (like in OP_CALL with C == 0). 
-   
-   (*) In OP_RETURN, if (B == 0) then return up to `top'. 
-   
-   (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next 
-   'instruction' is EXTRAARG(real C). 
-   
-   (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. 
-   
-   (*) For comparisons, A specifies what condition the test should accept 
-   (true or false). 
-   
-   (*) All `skips' (pc++) assume that next instruction is a jump. 
-   
- ===========================================================================*/ 
-   
-   
- /* 
- ** masks for instruction properties. The format is: 
- ** bits 0-1: op mode 
- ** bits 2-3: C arg mode 
- ** bits 4-5: B arg mode 
- ** bit 6: instruction set register A 
- ** bit 7: operator is a test (next instruction must be a jump) 
- */ 
-   
- enum OpArgMask { 
-   OpArgN,  /* argument is not used */ 
-   OpArgU,  /* argument is used */ 
-   OpArgR,  /* argument is a register or a jump offset */ 
-   OpArgK   /* argument is a constant or register/constant */ 
- }; 
-   
- LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; 
-   
- #define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3)) 
- #define getBMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) 
- #define getCMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) 
- #define testAMode(m)    (luaP_opmodes[m] & (1 << 6)) 
- #define testTMode(m)    (luaP_opmodes[m] & (1 << 7)) 
-   
-   
- LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */ 
-   
-   
- /* number of list items to accumulate before a SETLIST instruction */ 
- #define LFIELDS_PER_FLUSH       50 
-   
-   
- #endif 
-