- /* 
- ** $Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp $ 
- ** Code generator for Lua 
- ** See Copyright Notice in lua.h 
- */ 
-   
- #define lcode_c 
- #define LUA_CORE 
-   
- #include "lprefix.h" 
-   
-   
- #include <math.h> 
- #include <stdlib.h> 
-   
- #include "lua.h" 
-   
- #include "lcode.h" 
- #include "ldebug.h" 
- #include "ldo.h" 
- #include "lgc.h" 
- #include "llex.h" 
- #include "lmem.h" 
- #include "lobject.h" 
- #include "lopcodes.h" 
- #include "lparser.h" 
- #include "lstring.h" 
- #include "ltable.h" 
- #include "lvm.h" 
-   
-   
- /* Maximum number of registers in a Lua function (must fit in 8 bits) */ 
- #define MAXREGS         255 
-   
-   
- #define hasjumps(e)     ((e)->t != (e)->f) 
-   
-   
- /* 
- ** If expression is a numeric constant, fills 'v' with its value 
- ** and returns 1. Otherwise, returns 0. 
- */ 
- static int tonumeral(const expdesc *e, TValue *v) { 
-   if (hasjumps(e)) 
-     return 0;  /* not a numeral */ 
-   switch (e->k) { 
-     case VKINT: 
-       if (v) setivalue(v, e->u.ival); 
-       return 1; 
-     case VKFLT: 
-       if (v) setfltvalue(v, e->u.nval); 
-       return 1; 
-     default: return 0; 
-   } 
- } 
-   
-   
- /* 
- ** Create a OP_LOADNIL instruction, but try to optimize: if the previous 
- ** instruction is also OP_LOADNIL and ranges are compatible, adjust 
- ** range of previous instruction instead of emitting a new one. (For 
- ** instance, 'local a; local b' will generate a single opcode.) 
- */ 
- void luaK_nil (FuncState *fs, int from, int n) { 
-   Instruction *previous; 
-   int l = from + n - 1;  /* last register to set nil */ 
-   if (fs->pc > fs->lasttarget) {  /* no jumps to current position? */ 
-     previous = &fs->f->code[fs->pc-1]; 
-     if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */ 
-       int pfrom = GETARG_A(*previous);  /* get previous range */ 
-       int pl = pfrom + GETARG_B(*previous); 
-       if ((pfrom <= from && from <= pl + 1) || 
-           (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */ 
-         if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */ 
-         if (pl > l) l = pl;  /* l = max(l, pl) */ 
-         SETARG_A(*previous, from); 
-         SETARG_B(*previous, l - from); 
-         return; 
-       } 
-     }  /* else go through */ 
-   } 
-   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */ 
- } 
-   
-   
- /* 
- ** Gets the destination address of a jump instruction. Used to traverse 
- ** a list of jumps. 
- */ 
- static int getjump (FuncState *fs, int pc) { 
-   int offset = GETARG_sBx(fs->f->code[pc]); 
-   if (offset == NO_JUMP)  /* point to itself represents end of list */ 
-     return NO_JUMP;  /* end of list */ 
-   else 
-     return (pc+1)+offset;  /* turn offset into absolute position */ 
- } 
-   
-   
- /* 
- ** Fix jump instruction at position 'pc' to jump to 'dest'. 
- ** (Jump addresses are relative in Lua) 
- */ 
- static void fixjump (FuncState *fs, int pc, int dest) { 
-   Instruction *jmp = &fs->f->code[pc]; 
-   int offset = dest - (pc + 1); 
-   lua_assert(dest != NO_JUMP); 
-   if (abs(- offset ) >-  MAXARG_sBx )
 
-     luaX_syntaxerror(fs->ls, "control structure too long"); 
-   SETARG_sBx(*jmp, offset); 
- } 
-   
-   
- /* 
- ** Concatenate jump-list 'l2' into jump-list 'l1' 
- */ 
- void luaK_concat (FuncState *fs, int *l1, int l2) { 
-   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */ 
-   else if (*l1 == NO_JUMP)  /* no original list? */ 
-     *l1 = l2;  /* 'l1' points to 'l2' */ 
-   else { 
-     int list = *l1; 
-     int next; 
-     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */ 
-       list = next; 
-     fixjump(fs, list, l2);  /* last element links to 'l2' */ 
-   } 
- } 
-   
-   
- /* 
- ** Create a jump instruction and return its position, so its destination 
- ** can be fixed later (with 'fixjump'). If there are jumps to 
- ** this position (kept in 'jpc'), link them all together so that 
- ** 'patchlistaux' will fix all them directly to the final destination. 
- */ 
- int luaK_jump (FuncState *fs) { 
-   int jpc = fs->jpc;  /* save list of jumps to here */ 
-   int j; 
-   fs->jpc = NO_JUMP;  /* no more jumps to here */ 
-   j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP); 
-   luaK_concat(fs, &j, jpc);  /* keep them on hold */ 
-   return j; 
- } 
-   
-   
- /* 
- ** Code a 'return' instruction 
- */ 
- void luaK_ret (FuncState *fs, int first, int nret) { 
-   luaK_codeABC(fs, OP_RETURN, first, nret+1, 0); 
- } 
-   
-   
- /* 
- ** Code a "conditional jump", that is, a test or comparison opcode 
- ** followed by a jump. Return jump position. 
- */ 
- static int condjump (FuncState *fs, OpCode op, int A, int B, int C) { 
-   luaK_codeABC(fs, op, A, B, C); 
-   return luaK_jump(fs); 
- } 
-   
-   
- /* 
- ** returns current 'pc' and marks it as a jump target (to avoid wrong 
- ** optimizations with consecutive instructions not in the same basic block). 
- */ 
- int luaK_getlabel (FuncState *fs) { 
-   fs->lasttarget = fs->pc; 
-   return fs->pc; 
- } 
-   
-   
- /* 
- ** Returns the position of the instruction "controlling" a given 
- ** jump (that is, its condition), or the jump itself if it is 
- ** unconditional. 
- */ 
- static Instruction *getjumpcontrol (FuncState *fs, int pc) { 
-   Instruction *pi = &fs->f->code[pc]; 
-   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) 
-     return pi-1; 
-   else 
-     return pi; 
- } 
-   
-   
- /* 
- ** Patch destination register for a TESTSET instruction. 
- ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). 
- ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination 
- ** register. Otherwise, change instruction to a simple 'TEST' (produces 
- ** no register value) 
- */ 
- static int patchtestreg (FuncState *fs, int node, int reg) { 
-   Instruction *i = getjumpcontrol(fs, node); 
-   if (GET_OPCODE(*i) != OP_TESTSET) 
-     return 0;  /* cannot patch other instructions */ 
-   if (reg != NO_REG && reg != GETARG_B(*i)) 
-     SETARG_A(*i, reg); 
-   else { 
-      /* no register to put value or register already has the value; 
-         change instruction to simple test */ 
-     *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i)); 
-   } 
-   return 1; 
- } 
-   
-   
- /* 
- ** Traverse a list of tests ensuring no one produces a value 
- */ 
- static void removevalues (FuncState *fs, int list) { 
-   for (; list != NO_JUMP; list = getjump(fs, list)) 
-       patchtestreg(fs, list, NO_REG); 
- } 
-   
-   
- /* 
- ** Traverse a list of tests, patching their destination address and 
- ** registers: tests producing values jump to 'vtarget' (and put their 
- ** values in 'reg'), other tests jump to 'dtarget'. 
- */ 
- static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, 
-                           int dtarget) { 
-   while (list != NO_JUMP) { 
-     int next = getjump(fs, list); 
-     if (patchtestreg(fs, list, reg)) 
-       fixjump(fs, list, vtarget); 
-     else 
-       fixjump(fs, list, dtarget);  /* jump to default target */ 
-     list = next; 
-   } 
- } 
-   
-   
- /* 
- ** Ensure all pending jumps to current position are fixed (jumping 
- ** to current position with no values) and reset list of pending 
- ** jumps 
- */ 
- static void dischargejpc (FuncState *fs) { 
-   patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc); 
-   fs->jpc = NO_JUMP; 
- } 
-   
-   
- /* 
- ** Add elements in 'list' to list of pending jumps to "here" 
- ** (current position) 
- */ 
- void luaK_patchtohere (FuncState *fs, int list) { 
-   luaK_getlabel(fs);  /* mark "here" as a jump target */ 
-   luaK_concat(fs, &fs->jpc, list); 
- } 
-   
-   
- /* 
- ** Path all jumps in 'list' to jump to 'target'. 
- ** (The assert means that we cannot fix a jump to a forward address 
- ** because we only know addresses once code is generated.) 
- */ 
- void luaK_patchlist (FuncState *fs, int list, int target) { 
-   if (target == fs->pc)  /* 'target' is current position? */ 
-     luaK_patchtohere(fs, list);  /* add list to pending jumps */ 
-   else { 
-     lua_assert(target < fs->pc); 
-     patchlistaux(fs, list, target, NO_REG, target); 
-   } 
- } 
-   
-   
- /* 
- ** Path all jumps in 'list' to close upvalues up to given 'level' 
- ** (The assertion checks that jumps either were closing nothing 
- ** or were closing higher levels, from inner blocks.) 
- */ 
- void luaK_patchclose (FuncState *fs, int list, int level) { 
-   level++;  /* argument is +1 to reserve 0 as non-op */ 
-   for (; list != NO_JUMP; list = getjump(fs, list)) { 
-     lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP && 
-                 (GETARG_A(fs->f->code[list]) == 0 || 
-                  GETARG_A(fs->f->code[list]) >= level)); 
-     SETARG_A(fs->f->code[list], level); 
-   } 
- } 
-   
-   
- /* 
- ** Emit instruction 'i', checking for array sizes and saving also its 
- ** line information. Return 'i' position. 
- */ 
- static int luaK_code (FuncState *fs, Instruction i) { 
-   Proto *f = fs->f; 
-   dischargejpc(fs);  /* 'pc' will change */ 
-   /* put new instruction in code array */ 
-   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, 
-                   MAX_INT, "opcodes"); 
-   f->code[fs->pc] = i; 
-   /* save corresponding line information */ 
-   luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int, 
-                   MAX_INT, "opcodes"); 
-   f->lineinfo[fs->pc] = fs->ls->lastline; 
-   return fs->pc++; 
- } 
-   
-   
- /* 
- ** Format and emit an 'iABC' instruction. (Assertions check consistency 
- ** of parameters versus opcode.) 
- */ 
- int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) { 
-   lua_assert(getOpMode(o) == iABC); 
-   lua_assert(getBMode(o) != OpArgN || b == 0); 
-   lua_assert(getCMode(o) != OpArgN || c == 0); 
-   lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C); 
-   return luaK_code(fs, CREATE_ABC(o, a, b, c)); 
- } 
-   
-   
- /* 
- ** Format and emit an 'iABx' instruction. 
- */ 
- int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { 
-   lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx); 
-   lua_assert(getCMode(o) == OpArgN); 
-   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); 
-   return luaK_code(fs, CREATE_ABx(o, a, bc)); 
- } 
-   
-   
- /* 
- ** Emit an "extra argument" instruction (format 'iAx') 
- */ 
- static int codeextraarg (FuncState *fs, int a) { 
-   lua_assert(a <= MAXARG_Ax); 
-   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); 
- } 
-   
-   
- /* 
- ** Emit a "load constant" instruction, using either 'OP_LOADK' 
- ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' 
- ** instruction with "extra argument". 
- */ 
- int luaK_codek (FuncState *fs, int reg, int k) { 
-   if (k <= MAXARG_Bx) 
-     return luaK_codeABx(fs, OP_LOADK, reg, k); 
-   else { 
-     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); 
-     codeextraarg(fs, k); 
-     return p; 
-   } 
- } 
-   
-   
- /* 
- ** Check register-stack level, keeping track of its maximum size 
- ** in field 'maxstacksize' 
- */ 
- void luaK_checkstack (FuncState *fs, int n) { 
-   int newstack = fs->freereg + n; 
-   if (newstack > fs->f->maxstacksize) { 
-     if (newstack >= MAXREGS) 
-       luaX_syntaxerror(fs->ls, 
-         "function or expression needs too many registers"); 
-     fs->f->maxstacksize = cast_byte(newstack); 
-   } 
- } 
-   
-   
- /* 
- ** Reserve 'n' registers in register stack 
- */ 
- void luaK_reserveregs (FuncState *fs, int n) { 
-   luaK_checkstack(fs, n); 
-   fs->freereg += n; 
- } 
-   
-   
- /* 
- ** Free register 'reg', if it is neither a constant index nor 
- ** a local variable. 
- ) 
- */ 
- static void freereg (FuncState *fs, int reg) { 
-   if (!ISK(reg) && reg >= fs->nactvar) { 
-     fs->freereg--; 
-     lua_assert(reg == fs->freereg); 
-   } 
- } 
-   
-   
- /* 
- ** Free register used by expression 'e' (if any) 
- */ 
- static void freeexp (FuncState *fs, expdesc *e) { 
-   if (e->k == VNONRELOC) 
-     freereg(fs, e->u.info); 
- } 
-   
-   
- /* 
- ** Free registers used by expressions 'e1' and 'e2' (if any) in proper 
- ** order. 
- */ 
- static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { 
-   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; 
-   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; 
-   if (r1 > r2) { 
-     freereg(fs, r1); 
-     freereg(fs, r2); 
-   } 
-   else { 
-     freereg(fs, r2); 
-     freereg(fs, r1); 
-   } 
- } 
-   
-   
- /* 
- ** Add constant 'v' to prototype's list of constants (field 'k'). 
- ** Use scanner's table to cache position of constants in constant list 
- ** and try to reuse constants. Because some values should not be used 
- ** as keys (nil cannot be a key, integer keys can collapse with float 
- ** keys), the caller must provide a useful 'key' for indexing the cache. 
- */ 
- static int addk (FuncState *fs, TValue *key, TValue *v) { 
-   lua_State *L = fs->ls->L; 
-   Proto *f = fs->f; 
-   TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */ 
-   int k, oldsize; 
-   if (ttisinteger(idx)) {  /* is there an index there? */ 
-     k = cast_int(ivalue(idx)); 
-     /* correct value? (warning: must distinguish floats from integers!) */ 
-     if (k < fs->nk && ttype(&f->k[k]) == ttype(v) && 
-                       luaV_rawequalobj(&f->k[k], v)) 
-       return k;  /* reuse index */ 
-   } 
-   /* constant not found; create a new entry */ 
-   oldsize = f->sizek; 
-   k = fs->nk; 
-   /* numerical value does not need GC barrier; 
-      table has no metatable, so it does not need to invalidate cache */ 
-   setivalue(idx, k); 
-   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); 
-   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); 
-   setobj(L, &f->k[k], v); 
-   fs->nk++; 
-   luaC_barrier(L, f, v); 
-   return k; 
- } 
-   
-   
- /* 
- ** Add a string to list of constants and return its index. 
- */ 
- int luaK_stringK (FuncState *fs, TString *s) { 
-   TValue o; 
-   setsvalue(fs->ls->L, &o, s); 
-   return addk(fs, &o, &o);  /* use string itself as key */ 
- } 
-   
-   
- /* 
- ** Add an integer to list of constants and return its index. 
- ** Integers use userdata as keys to avoid collision with floats with 
- ** same value; conversion to 'void*' is used only for hashing, so there 
- ** are no "precision" problems. 
- */ 
- int luaK_intK (FuncState *fs, lua_Integer n) { 
-   TValue k, o; 
-   setpvalue(&k, cast(void*, cast(size_t, n))); 
-   setivalue(&o, n); 
-   return addk(fs, &k, &o); 
- } 
-   
- /* 
- ** Add a float to list of constants and return its index. 
- */ 
- static int luaK_numberK (FuncState *fs, lua_Number r) { 
-   TValue o; 
-   setfltvalue(&o, r); 
-   return addk(fs, &o, &o);  /* use number itself as key */ 
- } 
-   
-   
- /* 
- ** Add a boolean to list of constants and return its index. 
- */ 
- static int boolK (FuncState *fs, int b) { 
-   TValue o; 
-   setbvalue(&o, b); 
-   return addk(fs, &o, &o);  /* use boolean itself as key */ 
- } 
-   
-   
- /* 
- ** Add nil to list of constants and return its index. 
- */ 
- static int nilK (FuncState *fs) { 
-   TValue k, v; 
-   setnilvalue(&v); 
-   /* cannot use nil as key; instead use table itself to represent nil */ 
-   sethvalue(fs->ls->L, &k, fs->ls->h); 
-   return addk(fs, &k, &v); 
- } 
-   
-   
- /* 
- ** Fix an expression to return the number of results 'nresults'. 
- ** Either 'e' is a multi-ret expression (function call or vararg) 
- ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that). 
- */ 
- void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { 
-   if (e->k == VCALL) {  /* expression is an open function call? */ 
-     SETARG_C(getinstruction(fs, e), nresults + 1); 
-   } 
-   else if (e->k == VVARARG) { 
-     Instruction *pc = &getinstruction(fs, e); 
-     SETARG_B(*pc, nresults + 1); 
-     SETARG_A(*pc, fs->freereg); 
-     luaK_reserveregs(fs, 1); 
-   } 
-   else lua_assert(nresults == LUA_MULTRET); 
- } 
-   
-   
- /* 
- ** Fix an expression to return one result. 
- ** If expression is not a multi-ret expression (function call or 
- ** vararg), it already returns one result, so nothing needs to be done. 
- ** Function calls become VNONRELOC expressions (as its result comes 
- ** fixed in the base register of the call), while vararg expressions 
- ** become VRELOCABLE (as OP_VARARG puts its results where it wants). 
- ** (Calls are created returning one result, so that does not need 
- ** to be fixed.) 
- */ 
- void luaK_setoneret (FuncState *fs, expdesc *e) { 
-   if (e->k == VCALL) {  /* expression is an open function call? */ 
-     /* already returns 1 value */ 
-     lua_assert(GETARG_C(getinstruction(fs, e)) == 2); 
-     e->k = VNONRELOC;  /* result has fixed position */ 
-     e->u.info = GETARG_A(getinstruction(fs, e)); 
-   } 
-   else if (e->k == VVARARG) { 
-     SETARG_B(getinstruction(fs, e), 2); 
-     e->k = VRELOCABLE;  /* can relocate its simple result */ 
-   } 
- } 
-   
-   
- /* 
- ** Ensure that expression 'e' is not a variable. 
- */ 
- void luaK_dischargevars (FuncState *fs, expdesc *e) { 
-   switch (e->k) { 
-     case VLOCAL: {  /* already in a register */ 
-       e->k = VNONRELOC;  /* becomes a non-relocatable value */ 
-       break; 
-     } 
-     case VUPVAL: {  /* move value to some (pending) register */ 
-       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); 
-       e->k = VRELOCABLE; 
-       break; 
-     } 
-     case VINDEXED: { 
-       OpCode op; 
-       freereg(fs, e->u.ind.idx); 
-       if (e->u.ind.vt == VLOCAL) {  /* is 't' in a register? */ 
-         freereg(fs, e->u.ind.t); 
-         op = OP_GETTABLE; 
-       } 
-       else { 
-         lua_assert(e->u.ind.vt == VUPVAL); 
-         op = OP_GETTABUP;  /* 't' is in an upvalue */ 
-       } 
-       e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx); 
-       e->k = VRELOCABLE; 
-       break; 
-     } 
-     case VVARARG: case VCALL: { 
-       luaK_setoneret(fs, e); 
-       break; 
-     } 
-     default: break;  /* there is one value available (somewhere) */ 
-   } 
- } 
-   
-   
- /* 
- ** Ensures expression value is in register 'reg' (and therefore 
- ** 'e' will become a non-relocatable expression). 
- */ 
- static void discharge2reg (FuncState *fs, expdesc *e, int reg) { 
-   luaK_dischargevars(fs, e); 
-   switch (e->k) { 
-     case VNIL: { 
-       luaK_nil(fs, reg, 1); 
-       break; 
-     } 
-     case VFALSE: case VTRUE: { 
-       luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0); 
-       break; 
-     } 
-     case VK: { 
-       luaK_codek(fs, reg, e->u.info); 
-       break; 
-     } 
-     case VKFLT: { 
-       luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval)); 
-       break; 
-     } 
-     case VKINT: { 
-       luaK_codek(fs, reg, luaK_intK(fs, e->u.ival)); 
-       break; 
-     } 
-     case VRELOCABLE: { 
-       Instruction *pc = &getinstruction(fs, e); 
-       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */ 
-       break; 
-     } 
-     case VNONRELOC: { 
-       if (reg != e->u.info) 
-         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); 
-       break; 
-     } 
-     default: { 
-       lua_assert(e->k == VJMP); 
-       return;  /* nothing to do... */ 
-     } 
-   } 
-   e->u.info = reg; 
-   e->k = VNONRELOC; 
- } 
-   
-   
- /* 
- ** Ensures expression value is in any register. 
- */ 
- static void discharge2anyreg (FuncState *fs, expdesc *e) { 
-   if (e->k != VNONRELOC) {  /* no fixed register yet? */ 
-     luaK_reserveregs(fs, 1);  /* get a register */ 
-     discharge2reg(fs, e, fs->freereg-1);  /* put value there */ 
-   } 
- } 
-   
-   
- static int code_loadbool (FuncState *fs, int A, int b, int jump) { 
-   luaK_getlabel(fs);  /* those instructions may be jump targets */ 
-   return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump); 
- } 
-   
-   
- /* 
- ** check whether list has any jump that do not produce a value 
- ** or produce an inverted value 
- */ 
- static int need_value (FuncState *fs, int list) { 
-   for (; list != NO_JUMP; list = getjump(fs, list)) { 
-     Instruction i = *getjumpcontrol(fs, list); 
-     if (GET_OPCODE(i) != OP_TESTSET) return 1; 
-   } 
-   return 0;  /* not found */ 
- } 
-   
-   
- /* 
- ** Ensures final expression result (including results from its jump 
- ** lists) is in register 'reg'. 
- ** If expression has jumps, need to patch these jumps either to 
- ** its final position or to "load" instructions (for those tests 
- ** that do not produce values). 
- */ 
- static void exp2reg (FuncState *fs, expdesc *e, int reg) { 
-   discharge2reg(fs, e, reg); 
-   if (e->k == VJMP)  /* expression itself is a test? */ 
-     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */ 
-   if (hasjumps(e)) { 
-     int final;  /* position after whole expression */ 
-     int p_f = NO_JUMP;  /* position of an eventual LOAD false */ 
-     int p_t = NO_JUMP;  /* position of an eventual LOAD true */ 
-     if (need_value(fs, e->t) || need_value(fs, e->f)) { 
-       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); 
-       p_f = code_loadbool(fs, reg, 0, 1); 
-       p_t = code_loadbool(fs, reg, 1, 0); 
-       luaK_patchtohere(fs, fj); 
-     } 
-     final = luaK_getlabel(fs); 
-     patchlistaux(fs, e->f, final, reg, p_f); 
-     patchlistaux(fs, e->t, final, reg, p_t); 
-   } 
-   e->f = e->t = NO_JUMP; 
-   e->u.info = reg; 
-   e->k = VNONRELOC; 
- } 
-   
-   
- /* 
- ** Ensures final expression result (including results from its jump 
- ** lists) is in next available register. 
- */ 
- void luaK_exp2nextreg (FuncState *fs, expdesc *e) { 
-   luaK_dischargevars(fs, e); 
-   freeexp(fs, e); 
-   luaK_reserveregs(fs, 1); 
-   exp2reg(fs, e, fs->freereg - 1); 
- } 
-   
-   
- /* 
- ** Ensures final expression result (including results from its jump 
- ** lists) is in some (any) register and return that register. 
- */ 
- int luaK_exp2anyreg (FuncState *fs, expdesc *e) { 
-   luaK_dischargevars(fs, e); 
-   if (e->k == VNONRELOC) {  /* expression already has a register? */ 
-     if (!hasjumps(e))  /* no jumps? */ 
-       return e->u.info;  /* result is already in a register */ 
-     if (e->u.info >= fs->nactvar) {  /* reg. is not a local? */ 
-       exp2reg(fs, e, e->u.info);  /* put final result in it */ 
-       return e->u.info; 
-     } 
-   } 
-   luaK_exp2nextreg(fs, e);  /* otherwise, use next available register */ 
-   return e->u.info; 
- } 
-   
-   
- /* 
- ** Ensures final expression result is either in a register or in an 
- ** upvalue. 
- */ 
- void luaK_exp2anyregup (FuncState *fs, expdesc *e) { 
-   if (e->k != VUPVAL || hasjumps(e)) 
-     luaK_exp2anyreg(fs, e); 
- } 
-   
-   
- /* 
- ** Ensures final expression result is either in a register or it is 
- ** a constant. 
- */ 
- void luaK_exp2val (FuncState *fs, expdesc *e) { 
-   if (hasjumps(e)) 
-     luaK_exp2anyreg(fs, e); 
-   else 
-     luaK_dischargevars(fs, e); 
- } 
-   
-   
- /* 
- ** Ensures final expression result is in a valid R/K index 
- ** (that is, it is either in a register or in 'k' with an index 
- ** in the range of R/K indices). 
- ** Returns R/K index. 
- */ 
- int luaK_exp2RK (FuncState *fs, expdesc *e) { 
-   luaK_exp2val(fs, e); 
-   switch (e->k) {  /* move constants to 'k' */ 
-     case VTRUE: e->u.info = boolK(fs, 1); goto vk; 
-     case VFALSE: e->u.info = boolK(fs, 0); goto vk; 
-     case VNIL: e->u.info = nilK(fs); goto vk; 
-     case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk; 
-     case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk; 
-     case VK: 
-      vk: 
-       e->k = VK; 
-       if (e->u.info <= MAXINDEXRK)  /* constant fits in 'argC'? */ 
-         return RKASK(e->u.info); 
-       else break; 
-     default: break; 
-   } 
-   /* not a constant in the right range: put it in a register */ 
-   return luaK_exp2anyreg(fs, e); 
- } 
-   
-   
- /* 
- ** Generate code to store result of expression 'ex' into variable 'var'. 
- */ 
- void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { 
-   switch (var->k) { 
-     case VLOCAL: { 
-       freeexp(fs, ex); 
-       exp2reg(fs, ex, var->u.info);  /* compute 'ex' into proper place */ 
-       return; 
-     } 
-     case VUPVAL: { 
-       int e = luaK_exp2anyreg(fs, ex); 
-       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); 
-       break; 
-     } 
-     case VINDEXED: { 
-       OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP; 
-       int e = luaK_exp2RK(fs, ex); 
-       luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e); 
-       break; 
-     } 
-     default: lua_assert(0);  /* invalid var kind to store */ 
-   } 
-   freeexp(fs, ex); 
- } 
-   
-   
- /* 
- ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). 
- */ 
- void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { 
-   int ereg; 
-   luaK_exp2anyreg(fs, e); 
-   ereg = e->u.info;  /* register where 'e' was placed */ 
-   freeexp(fs, e); 
-   e->u.info = fs->freereg;  /* base register for op_self */ 
-   e->k = VNONRELOC;  /* self expression has a fixed register */ 
-   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */ 
-   luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key)); 
-   freeexp(fs, key); 
- } 
-   
-   
- /* 
- ** Negate condition 'e' (where 'e' is a comparison). 
- */ 
- static void negatecondition (FuncState *fs, expdesc *e) { 
-   Instruction *pc = getjumpcontrol(fs, e->u.info); 
-   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && 
-                                            GET_OPCODE(*pc) != OP_TEST); 
-   SETARG_A(*pc, !(GETARG_A(*pc))); 
- } 
-   
-   
- /* 
- ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' 
- ** is true, code will jump if 'e' is true.) Return jump position. 
- ** Optimize when 'e' is 'not' something, inverting the condition 
- ** and removing the 'not'. 
- */ 
- static int jumponcond (FuncState *fs, expdesc *e, int cond) { 
-   if (e->k == VRELOCABLE) { 
-     Instruction ie = getinstruction(fs, e); 
-     if (GET_OPCODE(ie) == OP_NOT) { 
-       fs->pc--;  /* remove previous OP_NOT */ 
-       return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond); 
-     } 
-     /* else go through */ 
-   } 
-   discharge2anyreg(fs, e); 
-   freeexp(fs, e); 
-   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond); 
- } 
-   
-   
- /* 
- ** Emit code to go through if 'e' is true, jump otherwise. 
- */ 
- void luaK_goiftrue (FuncState *fs, expdesc *e) { 
-   int pc;  /* pc of new jump */ 
-   luaK_dischargevars(fs, e); 
-   switch (e->k) { 
-     case VJMP: {  /* condition? */ 
-       negatecondition(fs, e);  /* jump when it is false */ 
-       pc = e->u.info;  /* save jump position */ 
-       break; 
-     } 
-     case VK: case VKFLT: case VKINT: case VTRUE: { 
-       pc = NO_JUMP;  /* always true; do nothing */ 
-       break; 
-     } 
-     default: { 
-       pc = jumponcond(fs, e, 0);  /* jump when false */ 
-       break; 
-     } 
-   } 
-   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */ 
-   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */ 
-   e->t = NO_JUMP; 
- } 
-   
-   
- /* 
- ** Emit code to go through if 'e' is false, jump otherwise. 
- */ 
- void luaK_goiffalse (FuncState *fs, expdesc *e) { 
-   int pc;  /* pc of new jump */ 
-   luaK_dischargevars(fs, e); 
-   switch (e->k) { 
-     case VJMP: { 
-       pc = e->u.info;  /* already jump if true */ 
-       break; 
-     } 
-     case VNIL: case VFALSE: { 
-       pc = NO_JUMP;  /* always false; do nothing */ 
-       break; 
-     } 
-     default: { 
-       pc = jumponcond(fs, e, 1);  /* jump if true */ 
-       break; 
-     } 
-   } 
-   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */ 
-   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */ 
-   e->f = NO_JUMP; 
- } 
-   
-   
- /* 
- ** Code 'not e', doing constant folding. 
- */ 
- static void codenot (FuncState *fs, expdesc *e) { 
-   luaK_dischargevars(fs, e); 
-   switch (e->k) { 
-     case VNIL: case VFALSE: { 
-       e->k = VTRUE;  /* true == not nil == not false */ 
-       break; 
-     } 
-     case VK: case VKFLT: case VKINT: case VTRUE: { 
-       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */ 
-       break; 
-     } 
-     case VJMP: { 
-       negatecondition(fs, e); 
-       break; 
-     } 
-     case VRELOCABLE: 
-     case VNONRELOC: { 
-       discharge2anyreg(fs, e); 
-       freeexp(fs, e); 
-       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); 
-       e->k = VRELOCABLE; 
-       break; 
-     } 
-     default: lua_assert(0);  /* cannot happen */ 
-   } 
-   /* interchange true and false lists */ 
-   { int temp = e->f; e->f = e->t; e->t = temp; } 
-   removevalues(fs, e->f);  /* values are useless when negated */ 
-   removevalues(fs, e->t); 
- } 
-   
-   
- /* 
- ** Create expression 't[k]'. 't' must have its final result already in a 
- ** register or upvalue. 
- */ 
- void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { 
-   lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL)); 
-   t->u.ind.t = t->u.info;  /* register or upvalue index */ 
-   t->u.ind.idx = luaK_exp2RK(fs, k);  /* R/K index for key */ 
-   t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL; 
-   t->k = VINDEXED; 
- } 
-   
-   
- /* 
- ** Return false if folding can raise an error. 
- ** Bitwise operations need operands convertible to integers; division 
- ** operations cannot have 0 as divisor. 
- */ 
- static int validop (int op, TValue *v1, TValue *v2) { 
-   switch (op) { 
-     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: 
-     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */ 
-       lua_Integer i; 
-       return (tointeger(v1, &i) && tointeger(v2, &i)); 
-     } 
-     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */ 
-       return (nvalue(v2) != 0); 
-     default: return 1;  /* everything else is valid */ 
-   } 
- } 
-   
-   
- /* 
- ** Try to "constant-fold" an operation; return 1 iff successful. 
- ** (In this case, 'e1' has the final result.) 
- */ 
- static int constfolding (FuncState *fs, int op, expdesc *e1, 
-                                                 const expdesc *e2) { 
-   TValue v1, v2, res; 
-   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) 
-     return 0;  /* non-numeric operands or not safe to fold */ 
-   luaO_arith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */ 
-   if (ttisinteger(&res)) { 
-     e1->k = VKINT; 
-     e1->u.ival = ivalue(&res); 
-   } 
-   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ 
-     lua_Number n = fltvalue(&res); 
-     if (luai_numisnan(n) || n == 0) 
-       return 0; 
-     e1->k = VKFLT; 
-     e1->u.nval = n; 
-   } 
-   return 1; 
- } 
-   
-   
- /* 
- ** Emit code for unary expressions that "produce values" 
- ** (everything but 'not'). 
- ** Expression to produce final result will be encoded in 'e'. 
- */ 
- static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { 
-   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */ 
-   freeexp(fs, e); 
-   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */ 
-   e->k = VRELOCABLE;  /* all those operations are relocatable */ 
-   luaK_fixline(fs, line); 
- } 
-   
-   
- /* 
- ** Emit code for binary expressions that "produce values" 
- ** (everything but logical operators 'and'/'or' and comparison 
- ** operators). 
- ** Expression to produce final result will be encoded in 'e1'. 
- ** Because 'luaK_exp2RK' can free registers, its calls must be 
- ** in "stack order" (that is, first on 'e2', which may have more 
- ** recent registers to be released). 
- */ 
- static void codebinexpval (FuncState *fs, OpCode op, 
-                            expdesc *e1, expdesc *e2, int line) { 
-   int rk2 = luaK_exp2RK(fs, e2);  /* both operands are "RK" */ 
-   int rk1 = luaK_exp2RK(fs, e1); 
-   freeexps(fs, e1, e2); 
-   e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2);  /* generate opcode */ 
-   e1->k = VRELOCABLE;  /* all those operations are relocatable */ 
-   luaK_fixline(fs, line); 
- } 
-   
-   
- /* 
- ** Emit code for comparisons. 
- ** 'e1' was already put in R/K form by 'luaK_infix'. 
- */ 
- static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { 
-   int rk1 = (e1->k == VK) ? RKASK(e1->u.info) 
-                           : check_exp(e1->k == VNONRELOC, e1->u.info); 
-   int rk2 = luaK_exp2RK(fs, e2); 
-   freeexps(fs, e1, e2); 
-   switch (opr) { 
-     case OPR_NE: {  /* '(a ~= b)' ==> 'not (a == b)' */ 
-       e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2); 
-       break; 
-     } 
-     case OPR_GT: case OPR_GE: { 
-       /* '(a > b)' ==> '(b < a)';  '(a >= b)' ==> '(b <= a)' */ 
-       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); 
-       e1->u.info = condjump(fs, op, 1, rk2, rk1);  /* invert operands */ 
-       break; 
-     } 
-     default: {  /* '==', '<', '<=' use their own opcodes */ 
-       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); 
-       e1->u.info = condjump(fs, op, 1, rk1, rk2); 
-       break; 
-     } 
-   } 
-   e1->k = VJMP; 
- } 
-   
-   
- /* 
- ** Apply prefix operation 'op' to expression 'e'. 
- */ 
- void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { 
-   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; 
-   switch (op) { 
-     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */ 
-       if (constfolding(fs, op + LUA_OPUNM, e, &ef)) 
-         break; 
-       /* FALLTHROUGH */ 
-     case OPR_LEN: 
-       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); 
-       break; 
-     case OPR_NOT: codenot(fs, e); break; 
-     default: lua_assert(0); 
-   } 
- } 
-   
-   
- /* 
- ** Process 1st operand 'v' of binary operation 'op' before reading 
- ** 2nd operand. 
- */ 
- void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { 
-   switch (op) { 
-     case OPR_AND: { 
-       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */ 
-       break; 
-     } 
-     case OPR_OR: { 
-       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */ 
-       break; 
-     } 
-     case OPR_CONCAT: { 
-       luaK_exp2nextreg(fs, v);  /* operand must be on the 'stack' */ 
-       break; 
-     } 
-     case OPR_ADD: case OPR_SUB: 
-     case OPR_MUL: case OPR_DIV: case OPR_IDIV: 
-     case OPR_MOD: case OPR_POW: 
-     case OPR_BAND: case OPR_BOR: case OPR_BXOR: 
-     case OPR_SHL: case OPR_SHR: { 
-       if (!tonumeral(v, NULL)) 
-         luaK_exp2RK(fs, v); 
-       /* else keep numeral, which may be folded with 2nd operand */ 
-       break; 
-     } 
-     default: { 
-       luaK_exp2RK(fs, v); 
-       break; 
-     } 
-   } 
- } 
-   
-   
- /* 
- ** Finalize code for binary operation, after reading 2nd operand. 
- ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because 
- ** concatenation is right associative), merge second CONCAT into first 
- ** one. 
- */ 
- void luaK_posfix (FuncState *fs, BinOpr op, 
-                   expdesc *e1, expdesc *e2, int line) { 
-   switch (op) { 
-     case OPR_AND: { 
-       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luK_infix' */ 
-       luaK_dischargevars(fs, e2); 
-       luaK_concat(fs, &e2->f, e1->f); 
-       *e1 = *e2; 
-       break; 
-     } 
-     case OPR_OR: { 
-       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luK_infix' */ 
-       luaK_dischargevars(fs, e2); 
-       luaK_concat(fs, &e2->t, e1->t); 
-       *e1 = *e2; 
-       break; 
-     } 
-     case OPR_CONCAT: { 
-       luaK_exp2val(fs, e2); 
-       if (e2->k == VRELOCABLE && 
-           GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) { 
-         lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1); 
-         freeexp(fs, e1); 
-         SETARG_B(getinstruction(fs, e2), e1->u.info); 
-         e1->k = VRELOCABLE; e1->u.info = e2->u.info; 
-       } 
-       else { 
-         luaK_exp2nextreg(fs, e2);  /* operand must be on the 'stack' */ 
-         codebinexpval(fs, OP_CONCAT, e1, e2, line); 
-       } 
-       break; 
-     } 
-     case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV: 
-     case OPR_IDIV: case OPR_MOD: case OPR_POW: 
-     case OPR_BAND: case OPR_BOR: case OPR_BXOR: 
-     case OPR_SHL: case OPR_SHR: { 
-       if (!constfolding(fs, op + LUA_OPADD, e1, e2)) 
-         codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line); 
-       break; 
-     } 
-     case OPR_EQ: case OPR_LT: case OPR_LE: 
-     case OPR_NE: case OPR_GT: case OPR_GE: { 
-       codecomp(fs, op, e1, e2); 
-       break; 
-     } 
-     default: lua_assert(0); 
-   } 
- } 
-   
-   
- /* 
- ** Change line information associated with current position. 
- */ 
- void luaK_fixline (FuncState *fs, int line) { 
-   fs->f->lineinfo[fs->pc - 1] = line; 
- } 
-   
-   
- /* 
- ** Emit a SETLIST instruction. 
- ** 'base' is register that keeps table; 
- ** 'nelems' is #table plus those to be stored now; 
- ** 'tostore' is number of values (in registers 'base + 1',...) to add to 
- ** table (or LUA_MULTRET to add up to stack top). 
- */ 
- void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { 
-   int c =  (nelems - 1)/LFIELDS_PER_FLUSH + 1; 
-   int b = (tostore == LUA_MULTRET) ? 0 : tostore; 
-   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); 
-   if (c <= MAXARG_C) 
-     luaK_codeABC(fs, OP_SETLIST, base, b, c); 
-   else if (c <= MAXARG_Ax) { 
-     luaK_codeABC(fs, OP_SETLIST, base, b, 0); 
-     codeextraarg(fs, c); 
-   } 
-   else 
-     luaX_syntaxerror(fs->ls, "constructor too long"); 
-   fs->freereg = base + 1;  /* free registers with list values */ 
- } 
-   
-