- /* 
- ** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $ 
- ** Lua tables (hash) 
- ** See Copyright Notice in lua.h 
- */ 
-   
- #define ltable_c 
- #define LUA_CORE 
-   
- #include "lprefix.h" 
-   
-   
- /* 
- ** Implementation of tables (aka arrays, objects, or hash tables). 
- ** Tables keep its elements in two parts: an array part and a hash part. 
- ** Non-negative integer keys are all candidates to be kept in the array 
- ** part. The actual size of the array is the largest 'n' such that 
- ** more than half the slots between 1 and n are in use. 
- ** Hash uses a mix of chained scatter table with Brent's variation. 
- ** A main invariant of these tables is that, if an element is not 
- ** in its main position (i.e. the 'original' position that its hash gives 
- ** to it), then the colliding element is in its own main position. 
- ** Hence even when the load factor reaches 100%, performance remains good. 
- */ 
-   
- #include <math.h> 
- #include <limits.h> 
-   
- #include "lua.h" 
-   
- #include "ldebug.h" 
- #include "ldo.h" 
- #include "lgc.h" 
- #include "lmem.h" 
- #include "lobject.h" 
- #include "lstate.h" 
- #include "lstring.h" 
- #include "ltable.h" 
- #include "lvm.h" 
-   
-   
- /* 
- ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is 
- ** the largest integer such that MAXASIZE fits in an unsigned int. 
- */ 
- #define MAXABITS        cast_int(sizeof(int) * CHAR_BIT - 1) 
- #define MAXASIZE        (1u << MAXABITS) 
-   
- /* 
- ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest 
- ** integer such that 2^MAXHBITS fits in a signed int. (Note that the 
- ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still 
- ** fits comfortably in an unsigned int.) 
- */ 
- #define MAXHBITS        (MAXABITS - 1) 
-   
-   
- #define hashpow2(t,n)           (gnode(t, lmod((n), sizenode(t)))) 
-   
- #define hashstr(t,str)          hashpow2(t, (str)->hash) 
- #define hashboolean(t,p)        hashpow2(t, p) 
- #define hashint(t,i)            hashpow2(t, i) 
-   
-   
- /* 
- ** for some types, it is better to avoid modulus by power of 2, as 
- ** they tend to have many 2 factors. 
- */ 
- #define hashmod(t,n)    (gnode(t, ((n) % ((sizenode(t)-1)|1)))) 
-   
-   
- #define hashpointer(t,p)        hashmod(t, point2uint(p)) 
-   
-   
- #define dummynode               (&dummynode_) 
-   
- static const Node dummynode_ = { 
-   {NILCONSTANT},  /* value */ 
-   {{NILCONSTANT, 0}}  /* key */ 
- }; 
-   
-   
- /* 
- ** Hash for floating-point numbers. 
- ** The main computation should be just 
- **     n = frexp(n, &i); return (n * INT_MAX) + i 
- ** but there are some numerical subtleties. 
- ** In a two-complement representation, INT_MAX does not has an exact 
- ** representation as a float, but INT_MIN does; because the absolute 
- ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the 
- ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal 
- ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when 
- ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with 
- ** INT_MIN. 
- */ 
- #if !defined(l_hashfloat) 
- static int l_hashfloat (lua_Number n) { 
-   int i; 
-   lua_Integer ni; 
-   n  =-  l_mathop (frexp)(- n , &- i ) * -- cast_num (- INT_MIN );
-   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */ 
-     lua_assert (- luai_numisnan (- n ) ||-  l_mathop (fabs)(- n ) ==-  cast_num (- HUGE_VAL ));
-     return 0; 
-   } 
-   else {  /* normal case */ 
-     unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni); 
-     return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u); 
-   } 
- } 
- #endif 
-   
-   
- /* 
- ** returns the 'main' position of an element in a table (that is, the index 
- ** of its hash value) 
- */ 
- static Node *mainposition (const Table *t, const TValue *key) { 
-   switch (ttype(key)) { 
-     case LUA_TNUMINT: 
-       return hashint(t, ivalue(key)); 
-     case LUA_TNUMFLT: 
-       return hashmod(t, l_hashfloat(fltvalue(key))); 
-     case LUA_TSHRSTR: 
-       return hashstr(t, tsvalue(key)); 
-     case LUA_TLNGSTR: 
-       return hashpow2(t, luaS_hashlongstr(tsvalue(key))); 
-     case LUA_TBOOLEAN: 
-       return hashboolean(t, bvalue(key)); 
-     case LUA_TLIGHTUSERDATA: 
-       return hashpointer(t, pvalue(key)); 
-     case LUA_TLCF: 
-       return hashpointer(t, fvalue(key)); 
-     default: 
-       lua_assert(!ttisdeadkey(key)); 
-       return hashpointer(t, gcvalue(key)); 
-   } 
- } 
-   
-   
- /* 
- ** returns the index for 'key' if 'key' is an appropriate key to live in 
- ** the array part of the table, 0 otherwise. 
- */ 
- static unsigned int arrayindex (const TValue *key) { 
-   if (ttisinteger(key)) { 
-     lua_Integer k = ivalue(key); 
-     if (0 < k && (lua_Unsigned)k <= MAXASIZE) 
-       return cast(unsigned int, k);  /* 'key' is an appropriate array index */ 
-   } 
-   return 0;  /* 'key' did not match some condition */ 
- } 
-   
-   
- /* 
- ** returns the index of a 'key' for table traversals. First goes all 
- ** elements in the array part, then elements in the hash part. The 
- ** beginning of a traversal is signaled by 0. 
- */ 
- static unsigned int findindex (lua_State *L, Table *t, StkId key) { 
-   unsigned int i; 
-   if (ttisnil(key)) return 0;  /* first iteration */ 
-   i = arrayindex(key); 
-   if (i != 0 && i <= t->sizearray)  /* is 'key' inside array part? */ 
-     return i;  /* yes; that's the index */ 
-   else { 
-     int nx; 
-     Node *n = mainposition(t, key); 
-     for (;;) {  /* check whether 'key' is somewhere in the chain */ 
-       /* key may be dead already, but it is ok to use it in 'next' */ 
-       if (luaV_rawequalobj(gkey(n), key) || 
-             (ttisdeadkey(gkey(n)) && iscollectable(key) && 
-              deadvalue(gkey(n)) == gcvalue(key))) { 
-         i = cast_int(n - gnode(t, 0));  /* key index in hash table */ 
-         /* hash elements are numbered after array ones */ 
-         return (i + 1) + t->sizearray; 
-       } 
-       nx = gnext(n); 
-       if (nx == 0) 
-         luaG_runerror(L, "invalid key to 'next'");  /* key not found */ 
-       else n += nx; 
-     } 
-   } 
- } 
-   
-   
- int luaH_next (lua_State *L, Table *t, StkId key) { 
-   unsigned int i = findindex(L, t, key);  /* find original element */ 
-   for (; i < t->sizearray; i++) {  /* try first array part */ 
-     if (!ttisnil(&t->array[i])) {  /* a non-nil value? */ 
-       setivalue(key, i + 1); 
-       setobj2s(L, key+1, &t->array[i]); 
-       return 1; 
-     } 
-   } 
-   for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) {  /* hash part */ 
-     if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */ 
-       setobj2s(L, key, gkey(gnode(t, i))); 
-       setobj2s(L, key+1, gval(gnode(t, i))); 
-       return 1; 
-     } 
-   } 
-   return 0;  /* no more elements */ 
- } 
-   
-   
- /* 
- ** {============================================================= 
- ** Rehash 
- ** ============================================================== 
- */ 
-   
- /* 
- ** Compute the optimal size for the array part of table 't'. 'nums' is a 
- ** "count array" where 'nums[i]' is the number of integers in the table 
- ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of 
- ** integer keys in the table and leaves with the number of keys that 
- ** will go to the array part; return the optimal size. 
- */ 
- static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { 
-   int i; 
-   unsigned int twotoi;  /* 2^i (candidate for optimal size) */ 
-   unsigned int a = 0;  /* number of elements smaller than 2^i */ 
-   unsigned int na = 0;  /* number of elements to go to array part */ 
-   unsigned int optimal = 0;  /* optimal size for array part */ 
-   /* loop while keys can fill more than half of total size */ 
-   for (i = 0, twotoi = 1; 
-        twotoi > 0 && *pna > twotoi / 2; 
-        i++, twotoi *= 2) { 
-     if (nums[i] > 0) { 
-       a += nums[i]; 
-       if (a > twotoi/2) {  /* more than half elements present? */ 
-         optimal = twotoi;  /* optimal size (till now) */ 
-         na = a;  /* all elements up to 'optimal' will go to array part */ 
-       } 
-     } 
-   } 
-   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); 
-   *pna = na; 
-   return optimal; 
- } 
-   
-   
- static int countint (const TValue *key, unsigned int *nums) { 
-   unsigned int k = arrayindex(key); 
-   if (k != 0) {  /* is 'key' an appropriate array index? */ 
-     nums[luaO_ceillog2(k)]++;  /* count as such */ 
-     return 1; 
-   } 
-   else 
-     return 0; 
- } 
-   
-   
- /* 
- ** Count keys in array part of table 't': Fill 'nums[i]' with 
- ** number of keys that will go into corresponding slice and return 
- ** total number of non-nil keys. 
- */ 
- static unsigned int numusearray (const Table *t, unsigned int *nums) { 
-   int lg; 
-   unsigned int ttlg;  /* 2^lg */ 
-   unsigned int ause = 0;  /* summation of 'nums' */ 
-   unsigned int i = 1;  /* count to traverse all array keys */ 
-   /* traverse each slice */ 
-   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { 
-     unsigned int lc = 0;  /* counter */ 
-     unsigned int lim = ttlg; 
-     if (lim > t->sizearray) { 
-       lim = t->sizearray;  /* adjust upper limit */ 
-       if (i > lim) 
-         break;  /* no more elements to count */ 
-     } 
-     /* count elements in range (2^(lg - 1), 2^lg] */ 
-     for (; i <= lim; i++) { 
-       if (!ttisnil(&t->array[i-1])) 
-         lc++; 
-     } 
-     nums[lg] += lc; 
-     ause += lc; 
-   } 
-   return ause; 
- } 
-   
-   
- static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { 
-   int totaluse = 0;  /* total number of elements */ 
-   int ause = 0;  /* elements added to 'nums' (can go to array part) */ 
-   int i = sizenode(t); 
-   while (i--) { 
-     Node *n = &t->node[i]; 
-     if (!ttisnil(gval(n))) { 
-       ause += countint(gkey(n), nums); 
-       totaluse++; 
-     } 
-   } 
-   *pna += ause; 
-   return totaluse; 
- } 
-   
-   
- static void setarrayvector (lua_State *L, Table *t, unsigned int size) { 
-   unsigned int i; 
-   luaM_reallocvector(L, t->array, t->sizearray, size, TValue); 
-   for (i=t->sizearray; i<size; i++) 
-      setnilvalue(&t->array[i]); 
-   t->sizearray = size; 
- } 
-   
-   
- static void setnodevector (lua_State *L, Table *t, unsigned int size) { 
-   if (size == 0) {  /* no elements to hash part? */ 
-     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */ 
-     t->lsizenode = 0; 
-     t->lastfree = NULL;  /* signal that it is using dummy node */ 
-   } 
-   else { 
-     int i; 
-     int lsize = luaO_ceillog2(size); 
-     if (lsize > MAXHBITS) 
-       luaG_runerror(L, "table overflow"); 
-     size = twoto(lsize); 
-     t->node = luaM_newvector(L, size, Node); 
-     for (i = 0; i < (int)size; i++) { 
-       Node *n = gnode(t, i); 
-       gnext(n) = 0; 
-       setnilvalue(wgkey(n)); 
-       setnilvalue(gval(n)); 
-     } 
-     t->lsizenode = cast_byte(lsize); 
-     t->lastfree = gnode(t, size);  /* all positions are free */ 
-   } 
- } 
-   
-   
- typedef struct { 
-   Table *t; 
-   unsigned int nhsize; 
- } AuxsetnodeT; 
-   
-   
- static void auxsetnode (lua_State *L, void *ud) { 
-   AuxsetnodeT *asn = cast(AuxsetnodeT *, ud); 
-   setnodevector(L, asn->t, asn->nhsize); 
- } 
-   
-   
- void luaH_resize (lua_State *L, Table *t, unsigned int nasize, 
-                                           unsigned int nhsize) { 
-   unsigned int i; 
-   int j; 
-   AuxsetnodeT asn; 
-   unsigned int oldasize = t->sizearray; 
-   int oldhsize = allocsizenode(t); 
-   Node *nold = t->node;  /* save old hash ... */ 
-   if (nasize > oldasize)  /* array part must grow? */ 
-     setarrayvector(L, t, nasize); 
-   /* create new hash part with appropriate size */ 
-   asn.t = t; asn.nhsize = nhsize; 
-   if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) {  /* mem. error? */ 
-     setarrayvector(L, t, oldasize);  /* array back to its original size */ 
-     luaD_throw(L, LUA_ERRMEM);  /* rethrow memory error */ 
-   } 
-   if (nasize < oldasize) {  /* array part must shrink? */ 
-     t->sizearray = nasize; 
-     /* re-insert elements from vanishing slice */ 
-     for (i=nasize; i<oldasize; i++) { 
-       if (!ttisnil(&t->array[i])) 
-         luaH_setint(L, t, i + 1, &t->array[i]); 
-     } 
-     /* shrink array */ 
-     luaM_reallocvector(L, t->array, oldasize, nasize, TValue); 
-   } 
-   /* re-insert elements from hash part */ 
-   for (j = oldhsize - 1; j >= 0; j--) { 
-     Node *old = nold + j; 
-     if (!ttisnil(gval(old))) { 
-       /* doesn't need barrier/invalidate cache, as entry was 
-          already present in the table */ 
-       setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); 
-     } 
-   } 
-   if (oldhsize > 0)  /* not the dummy node? */ 
-     luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */ 
- } 
-   
-   
- void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { 
-   int nsize = allocsizenode(t); 
-   luaH_resize(L, t, nasize, nsize); 
- } 
-   
- /* 
- ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i 
- */ 
- static void rehash (lua_State *L, Table *t, const TValue *ek) { 
-   unsigned int asize;  /* optimal size for array part */ 
-   unsigned int na;  /* number of keys in the array part */ 
-   unsigned int nums[MAXABITS + 1]; 
-   int i; 
-   int totaluse; 
-   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */ 
-   na = numusearray(t, nums);  /* count keys in array part */ 
-   totaluse = na;  /* all those keys are integer keys */ 
-   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */ 
-   /* count extra key */ 
-   na += countint(ek, nums); 
-   totaluse++; 
-   /* compute new size for array part */ 
-   asize = computesizes(nums, &na); 
-   /* resize the table to new computed sizes */ 
-   luaH_resize(L, t, asize, totaluse - na); 
- } 
-   
-   
-   
- /* 
- ** }============================================================= 
- */ 
-   
-   
- Table *luaH_new (lua_State *L) { 
-   GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table)); 
-   Table *t = gco2t(o); 
-   t->metatable = NULL; 
-   t->flags = cast_byte(~0); 
-   t->array = NULL; 
-   t->sizearray = 0; 
-   setnodevector(L, t, 0); 
-   return t; 
- } 
-   
-   
- void luaH_free (lua_State *L, Table *t) { 
-   if (!isdummy(t)) 
-     luaM_freearray(L, t->node, cast(size_t, sizenode(t))); 
-   luaM_freearray(L, t->array, t->sizearray); 
-   luaM_free(L, t); 
- } 
-   
-   
- static Node *getfreepos (Table *t) { 
-   if (!isdummy(t)) { 
-     while (t->lastfree > t->node) { 
-       t->lastfree--; 
-       if (ttisnil(gkey(t->lastfree))) 
-         return t->lastfree; 
-     } 
-   } 
-   return NULL;  /* could not find a free place */ 
- } 
-   
-   
-   
- /* 
- ** inserts a new key into a hash table; first, check whether key's main 
- ** position is free. If not, check whether colliding node is in its main 
- ** position or not: if it is not, move colliding node to an empty place and 
- ** put new key in its main position; otherwise (colliding node is in its main 
- ** position), new key goes to an empty position. 
- */ 
- TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { 
-   Node *mp; 
-   TValue aux; 
-   if (ttisnil(key)) luaG_runerror(L, "table index is nil"); 
-   else if (ttisfloat(key)) { 
-     lua_Integer k; 
-     if (luaV_tointeger(key, &k, 0)) {  /* does index fit in an integer? */ 
-       setivalue(&aux, k); 
-       key = &aux;  /* insert it as an integer */ 
-     } 
-     else if (luai_numisnan(fltvalue(key))) 
-       luaG_runerror(L, "table index is NaN"); 
-   } 
-   mp = mainposition(t, key); 
-   if (!ttisnil(gval(mp)) || isdummy(t)) {  /* main position is taken? */ 
-     Node *othern; 
-     Node *f = getfreepos(t);  /* get a free place */ 
-     if (f == NULL) {  /* cannot find a free place? */ 
-       rehash(L, t, key);  /* grow table */ 
-       /* whatever called 'newkey' takes care of TM cache */ 
-       return luaH_set(L, t, key);  /* insert key into grown table */ 
-     } 
-     lua_assert(!isdummy(t)); 
-     othern = mainposition(t, gkey(mp)); 
-     if (othern != mp) {  /* is colliding node out of its main position? */ 
-       /* yes; move colliding node into free position */ 
-       while (othern + gnext(othern) != mp)  /* find previous */ 
-         othern += gnext(othern); 
-       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */ 
-       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */ 
-       if (gnext(mp) != 0) { 
-         gnext(f) += cast_int(mp - f);  /* correct 'next' */ 
-         gnext(mp) = 0;  /* now 'mp' is free */ 
-       } 
-       setnilvalue(gval(mp)); 
-     } 
-     else {  /* colliding node is in its own main position */ 
-       /* new node will go into free position */ 
-       if (gnext(mp) != 0) 
-         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */ 
-       else lua_assert(gnext(f) == 0); 
-       gnext(mp) = cast_int(f - mp); 
-       mp = f; 
-     } 
-   } 
-   setnodekey(L, &mp->i_key, key); 
-   luaC_barrierback(L, t, key); 
-   lua_assert(ttisnil(gval(mp))); 
-   return gval(mp); 
- } 
-   
-   
- /* 
- ** search function for integers 
- */ 
- const TValue *luaH_getint (Table *t, lua_Integer key) { 
-   /* (1 <= key && key <= t->sizearray) */ 
-   if (l_castS2U(key) - 1 < t->sizearray) 
-     return &t->array[key - 1]; 
-   else { 
-     Node *n = hashint(t, key); 
-     for (;;) {  /* check whether 'key' is somewhere in the chain */ 
-       if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key) 
-         return gval(n);  /* that's it */ 
-       else { 
-         int nx = gnext(n); 
-         if (nx == 0) break; 
-         n += nx; 
-       } 
-     } 
-     return luaO_nilobject; 
-   } 
- } 
-   
-   
- /* 
- ** search function for short strings 
- */ 
- const TValue *luaH_getshortstr (Table *t, TString *key) { 
-   Node *n = hashstr(t, key); 
-   lua_assert(key->tt == LUA_TSHRSTR); 
-   for (;;) {  /* check whether 'key' is somewhere in the chain */ 
-     const TValue *k = gkey(n); 
-     if (ttisshrstring(k) && eqshrstr(tsvalue(k), key)) 
-       return gval(n);  /* that's it */ 
-     else { 
-       int nx = gnext(n); 
-       if (nx == 0) 
-         return luaO_nilobject;  /* not found */ 
-       n += nx; 
-     } 
-   } 
- } 
-   
-   
- /* 
- ** "Generic" get version. (Not that generic: not valid for integers, 
- ** which may be in array part, nor for floats with integral values.) 
- */ 
- static const TValue *getgeneric (Table *t, const TValue *key) { 
-   Node *n = mainposition(t, key); 
-   for (;;) {  /* check whether 'key' is somewhere in the chain */ 
-     if (luaV_rawequalobj(gkey(n), key)) 
-       return gval(n);  /* that's it */ 
-     else { 
-       int nx = gnext(n); 
-       if (nx == 0) 
-         return luaO_nilobject;  /* not found */ 
-       n += nx; 
-     } 
-   } 
- } 
-   
-   
- const TValue *luaH_getstr (Table *t, TString *key) { 
-   if (key->tt == LUA_TSHRSTR) 
-     return luaH_getshortstr(t, key); 
-   else {  /* for long strings, use generic case */ 
-     TValue ko; 
-     setsvalue(cast(lua_State *, NULL), &ko, key); 
-     return getgeneric(t, &ko); 
-   } 
- } 
-   
-   
- /* 
- ** main search function 
- */ 
- const TValue *luaH_get (Table *t, const TValue *key) { 
-   switch (ttype(key)) { 
-     case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key)); 
-     case LUA_TNUMINT: return luaH_getint(t, ivalue(key)); 
-     case LUA_TNIL: return luaO_nilobject; 
-     case LUA_TNUMFLT: { 
-       lua_Integer k; 
-       if (luaV_tointeger(key, &k, 0)) /* index is int? */ 
-         return luaH_getint(t, k);  /* use specialized version */ 
-       /* else... */ 
-     }  /* FALLTHROUGH */ 
-     default: 
-       return getgeneric(t, key); 
-   } 
- } 
-   
-   
- /* 
- ** beware: when using this function you probably need to check a GC 
- ** barrier and invalidate the TM cache. 
- */ 
- TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { 
-   const TValue *p = luaH_get(t, key); 
-   if (p != luaO_nilobject) 
-     return cast(TValue *, p); 
-   else return luaH_newkey(L, t, key); 
- } 
-   
-   
- void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { 
-   const TValue *p = luaH_getint(t, key); 
-   TValue *cell; 
-   if (p != luaO_nilobject) 
-     cell = cast(TValue *, p); 
-   else { 
-     TValue k; 
-     setivalue(&k, key); 
-     cell = luaH_newkey(L, t, &k); 
-   } 
-   setobj2t(L, cell, value); 
- } 
-   
-   
- static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) { 
-   lua_Unsigned i = j;  /* i is zero or a present index */ 
-   j++; 
-   /* find 'i' and 'j' such that i is present and j is not */ 
-   while (!ttisnil(luaH_getint(t, j))) { 
-     i = j; 
-     if (j > l_castS2U(LUA_MAXINTEGER) / 2) {  /* overflow? */ 
-       /* table was built with bad purposes: resort to linear search */ 
-       i = 1; 
-       while (!ttisnil(luaH_getint(t, i))) i++; 
-       return i - 1; 
-     } 
-     j *= 2; 
-   } 
-   /* now do a binary search between them */ 
-   while (j - i > 1) { 
-     lua_Unsigned m = (i+j)/2; 
-     if (ttisnil(luaH_getint(t, m))) j = m; 
-     else i = m; 
-   } 
-   return i; 
- } 
-   
-   
- /* 
- ** Try to find a boundary in table 't'. A 'boundary' is an integer index 
- ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). 
- */ 
- lua_Unsigned luaH_getn (Table *t) { 
-   unsigned int j = t->sizearray; 
-   if (j > 0 && ttisnil(&t->array[j - 1])) { 
-     /* there is a boundary in the array part: (binary) search for it */ 
-     unsigned int i = 0; 
-     while (j - i > 1) { 
-       unsigned int m = (i+j)/2; 
-       if (ttisnil(&t->array[m - 1])) j = m; 
-       else i = m; 
-     } 
-     return i; 
-   } 
-   /* else must find a boundary in hash part */ 
-   else if (isdummy(t))  /* hash part is empty? */ 
-     return j;  /* that is easy... */ 
-   else return unbound_search(t, j); 
- } 
-   
-   
-   
- #if defined(LUA_DEBUG) 
-   
- Node *luaH_mainposition (const Table *t, const TValue *key) { 
-   return mainposition(t, key); 
- } 
-   
- int luaH_isdummy (const Table *t) { return isdummy(t); } 
-   
- #endif 
-