?login_element?

Subversion Repositories NedoOS

Rev

Blame | Last modification | View Log | Download

  1. /*
  2. ** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6.  
  7. #define ltable_c
  8. #define LUA_CORE
  9.  
  10. #include "lprefix.h"
  11.  
  12.  
  13. /*
  14. ** Implementation of tables (aka arrays, objects, or hash tables).
  15. ** Tables keep its elements in two parts: an array part and a hash part.
  16. ** Non-negative integer keys are all candidates to be kept in the array
  17. ** part. The actual size of the array is the largest 'n' such that
  18. ** more than half the slots between 1 and n are in use.
  19. ** Hash uses a mix of chained scatter table with Brent's variation.
  20. ** A main invariant of these tables is that, if an element is not
  21. ** in its main position (i.e. the 'original' position that its hash gives
  22. ** to it), then the colliding element is in its own main position.
  23. ** Hence even when the load factor reaches 100%, performance remains good.
  24. */
  25.  
  26. #include <math.h>
  27. #include <limits.h>
  28.  
  29. #include "lua.h"
  30.  
  31. #include "ldebug.h"
  32. #include "ldo.h"
  33. #include "lgc.h"
  34. #include "lmem.h"
  35. #include "lobject.h"
  36. #include "lstate.h"
  37. #include "lstring.h"
  38. #include "ltable.h"
  39. #include "lvm.h"
  40.  
  41.  
  42. /*
  43. ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
  44. ** the largest integer such that MAXASIZE fits in an unsigned int.
  45. */
  46. #define MAXABITS        cast_int(sizeof(int) * CHAR_BIT - 1)
  47. #define MAXASIZE        (1u << MAXABITS)
  48.  
  49. /*
  50. ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
  51. ** integer such that 2^MAXHBITS fits in a signed int. (Note that the
  52. ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
  53. ** fits comfortably in an unsigned int.)
  54. */
  55. #define MAXHBITS        (MAXABITS - 1)
  56.  
  57.  
  58. #define hashpow2(t,n)           (gnode(t, lmod((n), sizenode(t))))
  59.  
  60. #define hashstr(t,str)          hashpow2(t, (str)->hash)
  61. #define hashboolean(t,p)        hashpow2(t, p)
  62. #define hashint(t,i)            hashpow2(t, i)
  63.  
  64.  
  65. /*
  66. ** for some types, it is better to avoid modulus by power of 2, as
  67. ** they tend to have many 2 factors.
  68. */
  69. #define hashmod(t,n)    (gnode(t, ((n) % ((sizenode(t)-1)|1))))
  70.  
  71.  
  72. #define hashpointer(t,p)        hashmod(t, point2uint(p))
  73.  
  74.  
  75. #define dummynode               (&dummynode_)
  76.  
  77. static const Node dummynode_ = {
  78.   {NILCONSTANT},  /* value */
  79.   {{NILCONSTANT, 0}}  /* key */
  80. };
  81.  
  82.  
  83. /*
  84. ** Hash for floating-point numbers.
  85. ** The main computation should be just
  86. **     n = frexp(n, &i); return (n * INT_MAX) + i
  87. ** but there are some numerical subtleties.
  88. ** In a two-complement representation, INT_MAX does not has an exact
  89. ** representation as a float, but INT_MIN does; because the absolute
  90. ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
  91. ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
  92. ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
  93. ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
  94. ** INT_MIN.
  95. */
  96. #if !defined(l_hashfloat)
  97. static int l_hashfloat (lua_Number n) {
  98.   int i;
  99.   lua_Integer ni;
  100.   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
  101.   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
  102.     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
  103.     return 0;
  104.   }
  105.   else {  /* normal case */
  106.     unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
  107.     return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
  108.   }
  109. }
  110. #endif
  111.  
  112.  
  113. /*
  114. ** returns the 'main' position of an element in a table (that is, the index
  115. ** of its hash value)
  116. */
  117. static Node *mainposition (const Table *t, const TValue *key) {
  118.   switch (ttype(key)) {
  119.     case LUA_TNUMINT:
  120.       return hashint(t, ivalue(key));
  121.     case LUA_TNUMFLT:
  122.       return hashmod(t, l_hashfloat(fltvalue(key)));
  123.     case LUA_TSHRSTR:
  124.       return hashstr(t, tsvalue(key));
  125.     case LUA_TLNGSTR:
  126.       return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
  127.     case LUA_TBOOLEAN:
  128.       return hashboolean(t, bvalue(key));
  129.     case LUA_TLIGHTUSERDATA:
  130.       return hashpointer(t, pvalue(key));
  131.     case LUA_TLCF:
  132.       return hashpointer(t, fvalue(key));
  133.     default:
  134.       lua_assert(!ttisdeadkey(key));
  135.       return hashpointer(t, gcvalue(key));
  136.   }
  137. }
  138.  
  139.  
  140. /*
  141. ** returns the index for 'key' if 'key' is an appropriate key to live in
  142. ** the array part of the table, 0 otherwise.
  143. */
  144. static unsigned int arrayindex (const TValue *key) {
  145.   if (ttisinteger(key)) {
  146.     lua_Integer k = ivalue(key);
  147.     if (0 < k && (lua_Unsigned)k <= MAXASIZE)
  148.       return cast(unsigned int, k);  /* 'key' is an appropriate array index */
  149.   }
  150.   return 0;  /* 'key' did not match some condition */
  151. }
  152.  
  153.  
  154. /*
  155. ** returns the index of a 'key' for table traversals. First goes all
  156. ** elements in the array part, then elements in the hash part. The
  157. ** beginning of a traversal is signaled by 0.
  158. */
  159. static unsigned int findindex (lua_State *L, Table *t, StkId key) {
  160.   unsigned int i;
  161.   if (ttisnil(key)) return 0;  /* first iteration */
  162.   i = arrayindex(key);
  163.   if (i != 0 && i <= t->sizearray)  /* is 'key' inside array part? */
  164.     return i;  /* yes; that's the index */
  165.   else {
  166.     int nx;
  167.     Node *n = mainposition(t, key);
  168.     for (;;) {  /* check whether 'key' is somewhere in the chain */
  169.       /* key may be dead already, but it is ok to use it in 'next' */
  170.       if (luaV_rawequalobj(gkey(n), key) ||
  171.             (ttisdeadkey(gkey(n)) && iscollectable(key) &&
  172.              deadvalue(gkey(n)) == gcvalue(key))) {
  173.         i = cast_int(n - gnode(t, 0));  /* key index in hash table */
  174.         /* hash elements are numbered after array ones */
  175.         return (i + 1) + t->sizearray;
  176.       }
  177.       nx = gnext(n);
  178.       if (nx == 0)
  179.         luaG_runerror(L, "invalid key to 'next'");  /* key not found */
  180.       else n += nx;
  181.     }
  182.   }
  183. }
  184.  
  185.  
  186. int luaH_next (lua_State *L, Table *t, StkId key) {
  187.   unsigned int i = findindex(L, t, key);  /* find original element */
  188.   for (; i < t->sizearray; i++) {  /* try first array part */
  189.     if (!ttisnil(&t->array[i])) {  /* a non-nil value? */
  190.       setivalue(key, i + 1);
  191.       setobj2s(L, key+1, &t->array[i]);
  192.       return 1;
  193.     }
  194.   }
  195.   for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) {  /* hash part */
  196.     if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */
  197.       setobj2s(L, key, gkey(gnode(t, i)));
  198.       setobj2s(L, key+1, gval(gnode(t, i)));
  199.       return 1;
  200.     }
  201.   }
  202.   return 0;  /* no more elements */
  203. }
  204.  
  205.  
  206. /*
  207. ** {=============================================================
  208. ** Rehash
  209. ** ==============================================================
  210. */
  211.  
  212. /*
  213. ** Compute the optimal size for the array part of table 't'. 'nums' is a
  214. ** "count array" where 'nums[i]' is the number of integers in the table
  215. ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
  216. ** integer keys in the table and leaves with the number of keys that
  217. ** will go to the array part; return the optimal size.
  218. */
  219. static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
  220.   int i;
  221.   unsigned int twotoi;  /* 2^i (candidate for optimal size) */
  222.   unsigned int a = 0;  /* number of elements smaller than 2^i */
  223.   unsigned int na = 0;  /* number of elements to go to array part */
  224.   unsigned int optimal = 0;  /* optimal size for array part */
  225.   /* loop while keys can fill more than half of total size */
  226.   for (i = 0, twotoi = 1;
  227.        twotoi > 0 && *pna > twotoi / 2;
  228.        i++, twotoi *= 2) {
  229.     if (nums[i] > 0) {
  230.       a += nums[i];
  231.       if (a > twotoi/2) {  /* more than half elements present? */
  232.         optimal = twotoi;  /* optimal size (till now) */
  233.         na = a;  /* all elements up to 'optimal' will go to array part */
  234.       }
  235.     }
  236.   }
  237.   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
  238.   *pna = na;
  239.   return optimal;
  240. }
  241.  
  242.  
  243. static int countint (const TValue *key, unsigned int *nums) {
  244.   unsigned int k = arrayindex(key);
  245.   if (k != 0) {  /* is 'key' an appropriate array index? */
  246.     nums[luaO_ceillog2(k)]++;  /* count as such */
  247.     return 1;
  248.   }
  249.   else
  250.     return 0;
  251. }
  252.  
  253.  
  254. /*
  255. ** Count keys in array part of table 't': Fill 'nums[i]' with
  256. ** number of keys that will go into corresponding slice and return
  257. ** total number of non-nil keys.
  258. */
  259. static unsigned int numusearray (const Table *t, unsigned int *nums) {
  260.   int lg;
  261.   unsigned int ttlg;  /* 2^lg */
  262.   unsigned int ause = 0;  /* summation of 'nums' */
  263.   unsigned int i = 1;  /* count to traverse all array keys */
  264.   /* traverse each slice */
  265.   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
  266.     unsigned int lc = 0;  /* counter */
  267.     unsigned int lim = ttlg;
  268.     if (lim > t->sizearray) {
  269.       lim = t->sizearray;  /* adjust upper limit */
  270.       if (i > lim)
  271.         break;  /* no more elements to count */
  272.     }
  273.     /* count elements in range (2^(lg - 1), 2^lg] */
  274.     for (; i <= lim; i++) {
  275.       if (!ttisnil(&t->array[i-1]))
  276.         lc++;
  277.     }
  278.     nums[lg] += lc;
  279.     ause += lc;
  280.   }
  281.   return ause;
  282. }
  283.  
  284.  
  285. static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
  286.   int totaluse = 0;  /* total number of elements */
  287.   int ause = 0;  /* elements added to 'nums' (can go to array part) */
  288.   int i = sizenode(t);
  289.   while (i--) {
  290.     Node *n = &t->node[i];
  291.     if (!ttisnil(gval(n))) {
  292.       ause += countint(gkey(n), nums);
  293.       totaluse++;
  294.     }
  295.   }
  296.   *pna += ause;
  297.   return totaluse;
  298. }
  299.  
  300.  
  301. static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
  302.   unsigned int i;
  303.   luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
  304.   for (i=t->sizearray; i<size; i++)
  305.      setnilvalue(&t->array[i]);
  306.   t->sizearray = size;
  307. }
  308.  
  309.  
  310. static void setnodevector (lua_State *L, Table *t, unsigned int size) {
  311.   if (size == 0) {  /* no elements to hash part? */
  312.     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
  313.     t->lsizenode = 0;
  314.     t->lastfree = NULL;  /* signal that it is using dummy node */
  315.   }
  316.   else {
  317.     int i;
  318.     int lsize = luaO_ceillog2(size);
  319.     if (lsize > MAXHBITS)
  320.       luaG_runerror(L, "table overflow");
  321.     size = twoto(lsize);
  322.     t->node = luaM_newvector(L, size, Node);
  323.     for (i = 0; i < (int)size; i++) {
  324.       Node *n = gnode(t, i);
  325.       gnext(n) = 0;
  326.       setnilvalue(wgkey(n));
  327.       setnilvalue(gval(n));
  328.     }
  329.     t->lsizenode = cast_byte(lsize);
  330.     t->lastfree = gnode(t, size);  /* all positions are free */
  331.   }
  332. }
  333.  
  334.  
  335. typedef struct {
  336.   Table *t;
  337.   unsigned int nhsize;
  338. } AuxsetnodeT;
  339.  
  340.  
  341. static void auxsetnode (lua_State *L, void *ud) {
  342.   AuxsetnodeT *asn = cast(AuxsetnodeT *, ud);
  343.   setnodevector(L, asn->t, asn->nhsize);
  344. }
  345.  
  346.  
  347. void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
  348.                                           unsigned int nhsize) {
  349.   unsigned int i;
  350.   int j;
  351.   AuxsetnodeT asn;
  352.   unsigned int oldasize = t->sizearray;
  353.   int oldhsize = allocsizenode(t);
  354.   Node *nold = t->node;  /* save old hash ... */
  355.   if (nasize > oldasize)  /* array part must grow? */
  356.     setarrayvector(L, t, nasize);
  357.   /* create new hash part with appropriate size */
  358.   asn.t = t; asn.nhsize = nhsize;
  359.   if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) {  /* mem. error? */
  360.     setarrayvector(L, t, oldasize);  /* array back to its original size */
  361.     luaD_throw(L, LUA_ERRMEM);  /* rethrow memory error */
  362.   }
  363.   if (nasize < oldasize) {  /* array part must shrink? */
  364.     t->sizearray = nasize;
  365.     /* re-insert elements from vanishing slice */
  366.     for (i=nasize; i<oldasize; i++) {
  367.       if (!ttisnil(&t->array[i]))
  368.         luaH_setint(L, t, i + 1, &t->array[i]);
  369.     }
  370.     /* shrink array */
  371.     luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
  372.   }
  373.   /* re-insert elements from hash part */
  374.   for (j = oldhsize - 1; j >= 0; j--) {
  375.     Node *old = nold + j;
  376.     if (!ttisnil(gval(old))) {
  377.       /* doesn't need barrier/invalidate cache, as entry was
  378.          already present in the table */
  379.       setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
  380.     }
  381.   }
  382.   if (oldhsize > 0)  /* not the dummy node? */
  383.     luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */
  384. }
  385.  
  386.  
  387. void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
  388.   int nsize = allocsizenode(t);
  389.   luaH_resize(L, t, nasize, nsize);
  390. }
  391.  
  392. /*
  393. ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
  394. */
  395. static void rehash (lua_State *L, Table *t, const TValue *ek) {
  396.   unsigned int asize;  /* optimal size for array part */
  397.   unsigned int na;  /* number of keys in the array part */
  398.   unsigned int nums[MAXABITS + 1];
  399.   int i;
  400.   int totaluse;
  401.   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
  402.   na = numusearray(t, nums);  /* count keys in array part */
  403.   totaluse = na;  /* all those keys are integer keys */
  404.   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
  405.   /* count extra key */
  406.   na += countint(ek, nums);
  407.   totaluse++;
  408.   /* compute new size for array part */
  409.   asize = computesizes(nums, &na);
  410.   /* resize the table to new computed sizes */
  411.   luaH_resize(L, t, asize, totaluse - na);
  412. }
  413.  
  414.  
  415.  
  416. /*
  417. ** }=============================================================
  418. */
  419.  
  420.  
  421. Table *luaH_new (lua_State *L) {
  422.   GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
  423.   Table *t = gco2t(o);
  424.   t->metatable = NULL;
  425.   t->flags = cast_byte(~0);
  426.   t->array = NULL;
  427.   t->sizearray = 0;
  428.   setnodevector(L, t, 0);
  429.   return t;
  430. }
  431.  
  432.  
  433. void luaH_free (lua_State *L, Table *t) {
  434.   if (!isdummy(t))
  435.     luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
  436.   luaM_freearray(L, t->array, t->sizearray);
  437.   luaM_free(L, t);
  438. }
  439.  
  440.  
  441. static Node *getfreepos (Table *t) {
  442.   if (!isdummy(t)) {
  443.     while (t->lastfree > t->node) {
  444.       t->lastfree--;
  445.       if (ttisnil(gkey(t->lastfree)))
  446.         return t->lastfree;
  447.     }
  448.   }
  449.   return NULL;  /* could not find a free place */
  450. }
  451.  
  452.  
  453.  
  454. /*
  455. ** inserts a new key into a hash table; first, check whether key's main
  456. ** position is free. If not, check whether colliding node is in its main
  457. ** position or not: if it is not, move colliding node to an empty place and
  458. ** put new key in its main position; otherwise (colliding node is in its main
  459. ** position), new key goes to an empty position.
  460. */
  461. TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
  462.   Node *mp;
  463.   TValue aux;
  464.   if (ttisnil(key)) luaG_runerror(L, "table index is nil");
  465.   else if (ttisfloat(key)) {
  466.     lua_Integer k;
  467.     if (luaV_tointeger(key, &k, 0)) {  /* does index fit in an integer? */
  468.       setivalue(&aux, k);
  469.       key = &aux;  /* insert it as an integer */
  470.     }
  471.     else if (luai_numisnan(fltvalue(key)))
  472.       luaG_runerror(L, "table index is NaN");
  473.   }
  474.   mp = mainposition(t, key);
  475.   if (!ttisnil(gval(mp)) || isdummy(t)) {  /* main position is taken? */
  476.     Node *othern;
  477.     Node *f = getfreepos(t);  /* get a free place */
  478.     if (f == NULL) {  /* cannot find a free place? */
  479.       rehash(L, t, key);  /* grow table */
  480.       /* whatever called 'newkey' takes care of TM cache */
  481.       return luaH_set(L, t, key);  /* insert key into grown table */
  482.     }
  483.     lua_assert(!isdummy(t));
  484.     othern = mainposition(t, gkey(mp));
  485.     if (othern != mp) {  /* is colliding node out of its main position? */
  486.       /* yes; move colliding node into free position */
  487.       while (othern + gnext(othern) != mp)  /* find previous */
  488.         othern += gnext(othern);
  489.       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
  490.       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
  491.       if (gnext(mp) != 0) {
  492.         gnext(f) += cast_int(mp - f);  /* correct 'next' */
  493.         gnext(mp) = 0;  /* now 'mp' is free */
  494.       }
  495.       setnilvalue(gval(mp));
  496.     }
  497.     else {  /* colliding node is in its own main position */
  498.       /* new node will go into free position */
  499.       if (gnext(mp) != 0)
  500.         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
  501.       else lua_assert(gnext(f) == 0);
  502.       gnext(mp) = cast_int(f - mp);
  503.       mp = f;
  504.     }
  505.   }
  506.   setnodekey(L, &mp->i_key, key);
  507.   luaC_barrierback(L, t, key);
  508.   lua_assert(ttisnil(gval(mp)));
  509.   return gval(mp);
  510. }
  511.  
  512.  
  513. /*
  514. ** search function for integers
  515. */
  516. const TValue *luaH_getint (Table *t, lua_Integer key) {
  517.   /* (1 <= key && key <= t->sizearray) */
  518.   if (l_castS2U(key) - 1 < t->sizearray)
  519.     return &t->array[key - 1];
  520.   else {
  521.     Node *n = hashint(t, key);
  522.     for (;;) {  /* check whether 'key' is somewhere in the chain */
  523.       if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
  524.         return gval(n);  /* that's it */
  525.       else {
  526.         int nx = gnext(n);
  527.         if (nx == 0) break;
  528.         n += nx;
  529.       }
  530.     }
  531.     return luaO_nilobject;
  532.   }
  533. }
  534.  
  535.  
  536. /*
  537. ** search function for short strings
  538. */
  539. const TValue *luaH_getshortstr (Table *t, TString *key) {
  540.   Node *n = hashstr(t, key);
  541.   lua_assert(key->tt == LUA_TSHRSTR);
  542.   for (;;) {  /* check whether 'key' is somewhere in the chain */
  543.     const TValue *k = gkey(n);
  544.     if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
  545.       return gval(n);  /* that's it */
  546.     else {
  547.       int nx = gnext(n);
  548.       if (nx == 0)
  549.         return luaO_nilobject;  /* not found */
  550.       n += nx;
  551.     }
  552.   }
  553. }
  554.  
  555.  
  556. /*
  557. ** "Generic" get version. (Not that generic: not valid for integers,
  558. ** which may be in array part, nor for floats with integral values.)
  559. */
  560. static const TValue *getgeneric (Table *t, const TValue *key) {
  561.   Node *n = mainposition(t, key);
  562.   for (;;) {  /* check whether 'key' is somewhere in the chain */
  563.     if (luaV_rawequalobj(gkey(n), key))
  564.       return gval(n);  /* that's it */
  565.     else {
  566.       int nx = gnext(n);
  567.       if (nx == 0)
  568.         return luaO_nilobject;  /* not found */
  569.       n += nx;
  570.     }
  571.   }
  572. }
  573.  
  574.  
  575. const TValue *luaH_getstr (Table *t, TString *key) {
  576.   if (key->tt == LUA_TSHRSTR)
  577.     return luaH_getshortstr(t, key);
  578.   else {  /* for long strings, use generic case */
  579.     TValue ko;
  580.     setsvalue(cast(lua_State *, NULL), &ko, key);
  581.     return getgeneric(t, &ko);
  582.   }
  583. }
  584.  
  585.  
  586. /*
  587. ** main search function
  588. */
  589. const TValue *luaH_get (Table *t, const TValue *key) {
  590.   switch (ttype(key)) {
  591.     case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
  592.     case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
  593.     case LUA_TNIL: return luaO_nilobject;
  594.     case LUA_TNUMFLT: {
  595.       lua_Integer k;
  596.       if (luaV_tointeger(key, &k, 0)) /* index is int? */
  597.         return luaH_getint(t, k);  /* use specialized version */
  598.       /* else... */
  599.     }  /* FALLTHROUGH */
  600.     default:
  601.       return getgeneric(t, key);
  602.   }
  603. }
  604.  
  605.  
  606. /*
  607. ** beware: when using this function you probably need to check a GC
  608. ** barrier and invalidate the TM cache.
  609. */
  610. TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
  611.   const TValue *p = luaH_get(t, key);
  612.   if (p != luaO_nilobject)
  613.     return cast(TValue *, p);
  614.   else return luaH_newkey(L, t, key);
  615. }
  616.  
  617.  
  618. void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
  619.   const TValue *p = luaH_getint(t, key);
  620.   TValue *cell;
  621.   if (p != luaO_nilobject)
  622.     cell = cast(TValue *, p);
  623.   else {
  624.     TValue k;
  625.     setivalue(&k, key);
  626.     cell = luaH_newkey(L, t, &k);
  627.   }
  628.   setobj2t(L, cell, value);
  629. }
  630.  
  631.  
  632. static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) {
  633.   lua_Unsigned i = j;  /* i is zero or a present index */
  634.   j++;
  635.   /* find 'i' and 'j' such that i is present and j is not */
  636.   while (!ttisnil(luaH_getint(t, j))) {
  637.     i = j;
  638.     if (j > l_castS2U(LUA_MAXINTEGER) / 2) {  /* overflow? */
  639.       /* table was built with bad purposes: resort to linear search */
  640.       i = 1;
  641.       while (!ttisnil(luaH_getint(t, i))) i++;
  642.       return i - 1;
  643.     }
  644.     j *= 2;
  645.   }
  646.   /* now do a binary search between them */
  647.   while (j - i > 1) {
  648.     lua_Unsigned m = (i+j)/2;
  649.     if (ttisnil(luaH_getint(t, m))) j = m;
  650.     else i = m;
  651.   }
  652.   return i;
  653. }
  654.  
  655.  
  656. /*
  657. ** Try to find a boundary in table 't'. A 'boundary' is an integer index
  658. ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
  659. */
  660. lua_Unsigned luaH_getn (Table *t) {
  661.   unsigned int j = t->sizearray;
  662.   if (j > 0 && ttisnil(&t->array[j - 1])) {
  663.     /* there is a boundary in the array part: (binary) search for it */
  664.     unsigned int i = 0;
  665.     while (j - i > 1) {
  666.       unsigned int m = (i+j)/2;
  667.       if (ttisnil(&t->array[m - 1])) j = m;
  668.       else i = m;
  669.     }
  670.     return i;
  671.   }
  672.   /* else must find a boundary in hash part */
  673.   else if (isdummy(t))  /* hash part is empty? */
  674.     return j;  /* that is easy... */
  675.   else return unbound_search(t, j);
  676. }
  677.  
  678.  
  679.  
  680. #if defined(LUA_DEBUG)
  681.  
  682. Node *luaH_mainposition (const Table *t, const TValue *key) {
  683.   return mainposition(t, key);
  684. }
  685.  
  686. int luaH_isdummy (const Table *t) { return isdummy(t); }
  687.  
  688. #endif
  689.