- /* 
- ** $Id: lcode.c $ 
- ** Code generator for Lua 
- ** See Copyright Notice in lua.h 
- */ 
-   
- #define lcode_c 
- #define LUA_CORE 
-   
- #include "lprefix.h" 
-   
-   
- #include <float.h> 
- #include <limits.h> 
- #include <math.h> 
- #include <stdlib.h> 
-   
- #include "lua.h" 
-   
- #include "lcode.h" 
- #include "ldebug.h" 
- #include "ldo.h" 
- #include "lgc.h" 
- #include "llex.h" 
- #include "lmem.h" 
- #include "lobject.h" 
- #include "lopcodes.h" 
- #include "lparser.h" 
- #include "lstring.h" 
- #include "ltable.h" 
- #include "lvm.h" 
-   
-   
- /* Maximum number of registers in a Lua function (must fit in 8 bits) */ 
- #define MAXREGS         255 
-   
-   
- #define hasjumps(e)     ((e)->t != (e)->f) 
-   
-   
- static int codesJ (FuncState *fs, OpCode o, int sj, int k); 
-   
-   
-   
- /* semantic error */ 
- l_noret luaK_semerror (LexState *ls, const char *msg) { 
-   ls->t.token = 0;  /* remove "near <token>" from final message */ 
-   luaX_syntaxerror(ls, msg); 
- } 
-   
-   
- /* 
- ** If expression is a numeric constant, fills 'v' with its value 
- ** and returns 1. Otherwise, returns 0. 
- */ 
- static int tonumeral (const expdesc *e, TValue *v) { 
-   if (hasjumps(e)) 
-     return 0;  /* not a numeral */ 
-   switch (e->k) { 
-     case VKINT: 
-       if (v) setivalue(v, e->u.ival); 
-       return 1; 
-     case VKFLT: 
-       if (v) setfltvalue(v, e->u.nval); 
-       return 1; 
-     default: return 0; 
-   } 
- } 
-   
-   
- /* 
- ** Get the constant value from a constant expression 
- */ 
- static TValue *const2val (FuncState *fs, const expdesc *e) { 
-   lua_assert(e->k == VCONST); 
-   return &fs->ls->dyd->actvar.arr[e->u.info].k; 
- } 
-   
-   
- /* 
- ** If expression is a constant, fills 'v' with its value 
- ** and returns 1. Otherwise, returns 0. 
- */ 
- int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) { 
-   if (hasjumps(e)) 
-     return 0;  /* not a constant */ 
-   switch (e->k) { 
-     case VFALSE: 
-       setbfvalue(v); 
-       return 1; 
-     case VTRUE: 
-       setbtvalue(v); 
-       return 1; 
-     case VNIL: 
-       setnilvalue(v); 
-       return 1; 
-     case VKSTR: { 
-       setsvalue(fs->ls->L, v, e->u.strval); 
-       return 1; 
-     } 
-     case VCONST: { 
-       setobj(fs->ls->L, v, const2val(fs, e)); 
-       return 1; 
-     } 
-     default: return tonumeral(e, v); 
-   } 
- } 
-   
-   
- /* 
- ** Return the previous instruction of the current code. If there 
- ** may be a jump target between the current instruction and the 
- ** previous one, return an invalid instruction (to avoid wrong 
- ** optimizations). 
- */ 
- static Instruction *previousinstruction (FuncState *fs) { 
-   static const Instruction invalidinstruction = ~(Instruction)0; 
-   if (fs->pc > fs->lasttarget) 
-     return &fs->f->code[fs->pc - 1];  /* previous instruction */ 
-   else 
-     return cast(Instruction*, &invalidinstruction); 
- } 
-   
-   
- /* 
- ** Create a OP_LOADNIL instruction, but try to optimize: if the previous 
- ** instruction is also OP_LOADNIL and ranges are compatible, adjust 
- ** range of previous instruction instead of emitting a new one. (For 
- ** instance, 'local a; local b' will generate a single opcode.) 
- */ 
- void luaK_nil (FuncState *fs, int from, int n) { 
-   int l = from + n - 1;  /* last register to set nil */ 
-   Instruction *previous = previousinstruction(fs); 
-   if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */ 
-     int pfrom = GETARG_A(*previous);  /* get previous range */ 
-     int pl = pfrom + GETARG_B(*previous); 
-     if ((pfrom <= from && from <= pl + 1) || 
-         (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */ 
-       if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */ 
-       if (pl > l) l = pl;  /* l = max(l, pl) */ 
-       SETARG_A(*previous, from); 
-       SETARG_B(*previous, l - from); 
-       return; 
-     }  /* else go through */ 
-   } 
-   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */ 
- } 
-   
-   
- /* 
- ** Gets the destination address of a jump instruction. Used to traverse 
- ** a list of jumps. 
- */ 
- static int getjump (FuncState *fs, int pc) { 
-   int offset = GETARG_sJ(fs->f->code[pc]); 
-   if (offset == NO_JUMP)  /* point to itself represents end of list */ 
-     return NO_JUMP;  /* end of list */ 
-   else 
-     return (pc+1)+offset;  /* turn offset into absolute position */ 
- } 
-   
-   
- /* 
- ** Fix jump instruction at position 'pc' to jump to 'dest'. 
- ** (Jump addresses are relative in Lua) 
- */ 
- static void fixjump (FuncState *fs, int pc, int dest) { 
-   Instruction *jmp = &fs->f->code[pc]; 
-   int offset = dest - (pc + 1); 
-   lua_assert(dest != NO_JUMP); 
-   if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ)) 
-     luaX_syntaxerror(fs->ls, "control structure too long"); 
-   lua_assert(GET_OPCODE(*jmp) == OP_JMP); 
-   SETARG_sJ(*jmp, offset); 
- } 
-   
-   
- /* 
- ** Concatenate jump-list 'l2' into jump-list 'l1' 
- */ 
- void luaK_concat (FuncState *fs, int *l1, int l2) { 
-   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */ 
-   else if (*l1 == NO_JUMP)  /* no original list? */ 
-     *l1 = l2;  /* 'l1' points to 'l2' */ 
-   else { 
-     int list = *l1; 
-     int next; 
-     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */ 
-       list = next; 
-     fixjump(fs, list, l2);  /* last element links to 'l2' */ 
-   } 
- } 
-   
-   
- /* 
- ** Create a jump instruction and return its position, so its destination 
- ** can be fixed later (with 'fixjump'). 
- */ 
- int luaK_jump (FuncState *fs) { 
-   return codesJ(fs, OP_JMP, NO_JUMP, 0); 
- } 
-   
-   
- /* 
- ** Code a 'return' instruction 
- */ 
- void luaK_ret (FuncState *fs, int first, int nret) { 
-   OpCode op; 
-   switch (nret) { 
-     case 0: op = OP_RETURN0; break; 
-     case 1: op = OP_RETURN1; break; 
-     default: op = OP_RETURN; break; 
-   } 
-   luaK_codeABC(fs, op, first, nret + 1, 0); 
- } 
-   
-   
- /* 
- ** Code a "conditional jump", that is, a test or comparison opcode 
- ** followed by a jump. Return jump position. 
- */ 
- static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) { 
-   luaK_codeABCk(fs, op, A, B, C, k); 
-   return luaK_jump(fs); 
- } 
-   
-   
- /* 
- ** returns current 'pc' and marks it as a jump target (to avoid wrong 
- ** optimizations with consecutive instructions not in the same basic block). 
- */ 
- int luaK_getlabel (FuncState *fs) { 
-   fs->lasttarget = fs->pc; 
-   return fs->pc; 
- } 
-   
-   
- /* 
- ** Returns the position of the instruction "controlling" a given 
- ** jump (that is, its condition), or the jump itself if it is 
- ** unconditional. 
- */ 
- static Instruction *getjumpcontrol (FuncState *fs, int pc) { 
-   Instruction *pi = &fs->f->code[pc]; 
-   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) 
-     return pi-1; 
-   else 
-     return pi; 
- } 
-   
-   
- /* 
- ** Patch destination register for a TESTSET instruction. 
- ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). 
- ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination 
- ** register. Otherwise, change instruction to a simple 'TEST' (produces 
- ** no register value) 
- */ 
- static int patchtestreg (FuncState *fs, int node, int reg) { 
-   Instruction *i = getjumpcontrol(fs, node); 
-   if (GET_OPCODE(*i) != OP_TESTSET) 
-     return 0;  /* cannot patch other instructions */ 
-   if (reg != NO_REG && reg != GETARG_B(*i)) 
-     SETARG_A(*i, reg); 
-   else { 
-      /* no register to put value or register already has the value; 
-         change instruction to simple test */ 
-     *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i)); 
-   } 
-   return 1; 
- } 
-   
-   
- /* 
- ** Traverse a list of tests ensuring no one produces a value 
- */ 
- static void removevalues (FuncState *fs, int list) { 
-   for (; list != NO_JUMP; list = getjump(fs, list)) 
-       patchtestreg(fs, list, NO_REG); 
- } 
-   
-   
- /* 
- ** Traverse a list of tests, patching their destination address and 
- ** registers: tests producing values jump to 'vtarget' (and put their 
- ** values in 'reg'), other tests jump to 'dtarget'. 
- */ 
- static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, 
-                           int dtarget) { 
-   while (list != NO_JUMP) { 
-     int next = getjump(fs, list); 
-     if (patchtestreg(fs, list, reg)) 
-       fixjump(fs, list, vtarget); 
-     else 
-       fixjump(fs, list, dtarget);  /* jump to default target */ 
-     list = next; 
-   } 
- } 
-   
-   
- /* 
- ** Path all jumps in 'list' to jump to 'target'. 
- ** (The assert means that we cannot fix a jump to a forward address 
- ** because we only know addresses once code is generated.) 
- */ 
- void luaK_patchlist (FuncState *fs, int list, int target) { 
-   lua_assert(target <= fs->pc); 
-   patchlistaux(fs, list, target, NO_REG, target); 
- } 
-   
-   
- void luaK_patchtohere (FuncState *fs, int list) { 
-   int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */ 
-   luaK_patchlist(fs, list, hr); 
- } 
-   
-   
- /* limit for difference between lines in relative line info. */ 
- #define LIMLINEDIFF     0x80 
-   
-   
- /* 
- ** Save line info for a new instruction. If difference from last line 
- ** does not fit in a byte, of after that many instructions, save a new 
- ** absolute line info; (in that case, the special value 'ABSLINEINFO' 
- ** in 'lineinfo' signals the existence of this absolute information.) 
- ** Otherwise, store the difference from last line in 'lineinfo'. 
- */ 
- static void savelineinfo (FuncState *fs, Proto *f, int line) { 
-   int linedif = line - fs->previousline; 
-   int pc = fs->pc - 1;  /* last instruction coded */ 
-   if (abs(- linedif ) >=-  LIMLINEDIFF  ||-  fs ->- iwthabs ++ >=-  MAXIWTHABS ) {
 
-     luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo, 
-                     f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines"); 
-     f->abslineinfo[fs->nabslineinfo].pc = pc; 
-     f->abslineinfo[fs->nabslineinfo++].line = line; 
-     linedif = ABSLINEINFO;  /* signal that there is absolute information */ 
-     fs->iwthabs = 1;  /* restart counter */ 
-   } 
-   luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte, 
-                   MAX_INT, "opcodes"); 
-   f->lineinfo[pc] = linedif; 
-   fs->previousline = line;  /* last line saved */ 
- } 
-   
-   
- /* 
- ** Remove line information from the last instruction. 
- ** If line information for that instruction is absolute, set 'iwthabs' 
- ** above its max to force the new (replacing) instruction to have 
- ** absolute line info, too. 
- */ 
- static void removelastlineinfo (FuncState *fs) { 
-   Proto *f = fs->f; 
-   int pc = fs->pc - 1;  /* last instruction coded */ 
-   if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */ 
-     fs->previousline -= f->lineinfo[pc];  /* correct last line saved */ 
-     fs->iwthabs--;  /* undo previous increment */ 
-   } 
-   else {  /* absolute line information */ 
-     lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc); 
-     fs->nabslineinfo--;  /* remove it */ 
-     fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */ 
-   } 
- } 
-   
-   
- /* 
- ** Remove the last instruction created, correcting line information 
- ** accordingly. 
- */ 
- static void removelastinstruction (FuncState *fs) { 
-   removelastlineinfo(fs); 
-   fs->pc--; 
- } 
-   
-   
- /* 
- ** Emit instruction 'i', checking for array sizes and saving also its 
- ** line information. Return 'i' position. 
- */ 
- int luaK_code (FuncState *fs, Instruction i) { 
-   Proto *f = fs->f; 
-   /* put new instruction in code array */ 
-   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, 
-                   MAX_INT, "opcodes"); 
-   f->code[fs->pc++] = i; 
-   savelineinfo(fs, f, fs->ls->lastline); 
-   return fs->pc - 1;  /* index of new instruction */ 
- } 
-   
-   
- /* 
- ** Format and emit an 'iABC' instruction. (Assertions check consistency 
- ** of parameters versus opcode.) 
- */ 
- int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) { 
-   lua_assert(getOpMode(o) == iABC); 
-   lua_assert(a <= MAXARG_A && b <= MAXARG_B && 
-              c <= MAXARG_C && (k & ~1) == 0); 
-   return luaK_code(fs, CREATE_ABCk(o, a, b, c, k)); 
- } 
-   
-   
- /* 
- ** Format and emit an 'iABx' instruction. 
- */ 
- int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { 
-   lua_assert(getOpMode(o) == iABx); 
-   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); 
-   return luaK_code(fs, CREATE_ABx(o, a, bc)); 
- } 
-   
-   
- /* 
- ** Format and emit an 'iAsBx' instruction. 
- */ 
- int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) { 
-   unsigned int b = bc + OFFSET_sBx; 
-   lua_assert(getOpMode(o) == iAsBx); 
-   lua_assert(a <= MAXARG_A && b <= MAXARG_Bx); 
-   return luaK_code(fs, CREATE_ABx(o, a, b)); 
- } 
-   
-   
- /* 
- ** Format and emit an 'isJ' instruction. 
- */ 
- static int codesJ (FuncState *fs, OpCode o, int sj, int k) { 
-   unsigned int j = sj + OFFSET_sJ; 
-   lua_assert(getOpMode(o) == isJ); 
-   lua_assert(j <= MAXARG_sJ && (k & ~1) == 0); 
-   return luaK_code(fs, CREATE_sJ(o, j, k)); 
- } 
-   
-   
- /* 
- ** Emit an "extra argument" instruction (format 'iAx') 
- */ 
- static int codeextraarg (FuncState *fs, int a) { 
-   lua_assert(a <= MAXARG_Ax); 
-   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); 
- } 
-   
-   
- /* 
- ** Emit a "load constant" instruction, using either 'OP_LOADK' 
- ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' 
- ** instruction with "extra argument". 
- */ 
- static int luaK_codek (FuncState *fs, int reg, int k) { 
-   if (k <= MAXARG_Bx) 
-     return luaK_codeABx(fs, OP_LOADK, reg, k); 
-   else { 
-     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); 
-     codeextraarg(fs, k); 
-     return p; 
-   } 
- } 
-   
-   
- /* 
- ** Check register-stack level, keeping track of its maximum size 
- ** in field 'maxstacksize' 
- */ 
- void luaK_checkstack (FuncState *fs, int n) { 
-   int newstack = fs->freereg + n; 
-   if (newstack > fs->f->maxstacksize) { 
-     if (newstack >= MAXREGS) 
-       luaX_syntaxerror(fs->ls, 
-         "function or expression needs too many registers"); 
-     fs->f->maxstacksize = cast_byte(newstack); 
-   } 
- } 
-   
-   
- /* 
- ** Reserve 'n' registers in register stack 
- */ 
- void luaK_reserveregs (FuncState *fs, int n) { 
-   luaK_checkstack(fs, n); 
-   fs->freereg += n; 
- } 
-   
-   
- /* 
- ** Free register 'reg', if it is neither a constant index nor 
- ** a local variable. 
- ) 
- */ 
- static void freereg (FuncState *fs, int reg) { 
-   if (reg >= luaY_nvarstack(fs)) { 
-     fs->freereg--; 
-     lua_assert(reg == fs->freereg); 
-   } 
- } 
-   
-   
- /* 
- ** Free two registers in proper order 
- */ 
- static void freeregs (FuncState *fs, int r1, int r2) { 
-   if (r1 > r2) { 
-     freereg(fs, r1); 
-     freereg(fs, r2); 
-   } 
-   else { 
-     freereg(fs, r2); 
-     freereg(fs, r1); 
-   } 
- } 
-   
-   
- /* 
- ** Free register used by expression 'e' (if any) 
- */ 
- static void freeexp (FuncState *fs, expdesc *e) { 
-   if (e->k == VNONRELOC) 
-     freereg(fs, e->u.info); 
- } 
-   
-   
- /* 
- ** Free registers used by expressions 'e1' and 'e2' (if any) in proper 
- ** order. 
- */ 
- static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { 
-   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; 
-   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; 
-   freeregs(fs, r1, r2); 
- } 
-   
-   
- /* 
- ** Add constant 'v' to prototype's list of constants (field 'k'). 
- ** Use scanner's table to cache position of constants in constant list 
- ** and try to reuse constants. Because some values should not be used 
- ** as keys (nil cannot be a key, integer keys can collapse with float 
- ** keys), the caller must provide a useful 'key' for indexing the cache. 
- ** Note that all functions share the same table, so entering or exiting 
- ** a function can make some indices wrong. 
- */ 
- static int addk (FuncState *fs, TValue *key, TValue *v) { 
-   TValue val; 
-   lua_State *L = fs->ls->L; 
-   Proto *f = fs->f; 
-   const TValue *idx = luaH_get(fs->ls->h, key);  /* query scanner table */ 
-   int k, oldsize; 
-   if (ttisinteger(idx)) {  /* is there an index there? */ 
-     k = cast_int(ivalue(idx)); 
-     /* correct value? (warning: must distinguish floats from integers!) */ 
-     if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) && 
-                       luaV_rawequalobj(&f->k[k], v)) 
-       return k;  /* reuse index */ 
-   } 
-   /* constant not found; create a new entry */ 
-   oldsize = f->sizek; 
-   k = fs->nk; 
-   /* numerical value does not need GC barrier; 
-      table has no metatable, so it does not need to invalidate cache */ 
-   setivalue(&val, k); 
-   luaH_finishset(L, fs->ls->h, key, idx, &val); 
-   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); 
-   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); 
-   setobj(L, &f->k[k], v); 
-   fs->nk++; 
-   luaC_barrier(L, f, v); 
-   return k; 
- } 
-   
-   
- /* 
- ** Add a string to list of constants and return its index. 
- */ 
- static int stringK (FuncState *fs, TString *s) { 
-   TValue o; 
-   setsvalue(fs->ls->L, &o, s); 
-   return addk(fs, &o, &o);  /* use string itself as key */ 
- } 
-   
-   
- /* 
- ** Add an integer to list of constants and return its index. 
- */ 
- static int luaK_intK (FuncState *fs, lua_Integer n) { 
-   TValue o; 
-   setivalue(&o, n); 
-   return addk(fs, &o, &o);  /* use integer itself as key */ 
- } 
-   
- /* 
- ** Add a float to list of constants and return its index. Floats 
- ** with integral values need a different key, to avoid collision 
- ** with actual integers. To that, we add to the number its smaller 
- ** power-of-two fraction that is still significant in its scale. 
- ** For doubles, that would be 1/2^52. 
- ** (This method is not bulletproof: there may be another float 
- ** with that value, and for floats larger than 2^53 the result is 
- ** still an integer. At worst, this only wastes an entry with 
- ** a duplicate.) 
- */ 
- static int luaK_numberK (FuncState *fs, lua_Number r) { 
-   TValue o; 
-   lua_Integer ik; 
-   setfltvalue(&o, r); 
-   if (!luaV_flttointeger(r, &ik, F2Ieq))  /* not an integral value? */ 
-     return addk(fs, &o, &o);  /* use number itself as key */ 
-   else {  /* must build an alternative key */ 
-     const int nbm = l_floatatt(MANT_DIG); 
-     const-  lua_Number q  =-  l_mathop (ldexp)(- l_mathop (1.0), -- nbm  + 1);
 
-     const lua_Number k = (ik == 0) ? q : r + r*q;  /* new key */ 
-     TValue kv; 
-     setfltvalue(&kv, k); 
-     /* result is not an integral value, unless value is too large */ 
-     lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) || 
-                 l_mathop (fabs)(- r ) >=-  l_mathop (1e6));
-     return addk(fs, &kv, &o); 
-   } 
- } 
-   
-   
- /* 
- ** Add a false to list of constants and return its index. 
- */ 
- static int boolF (FuncState *fs) { 
-   TValue o; 
-   setbfvalue(&o); 
-   return addk(fs, &o, &o);  /* use boolean itself as key */ 
- } 
-   
-   
- /* 
- ** Add a true to list of constants and return its index. 
- */ 
- static int boolT (FuncState *fs) { 
-   TValue o; 
-   setbtvalue(&o); 
-   return addk(fs, &o, &o);  /* use boolean itself as key */ 
- } 
-   
-   
- /* 
- ** Add nil to list of constants and return its index. 
- */ 
- static int nilK (FuncState *fs) { 
-   TValue k, v; 
-   setnilvalue(&v); 
-   /* cannot use nil as key; instead use table itself to represent nil */ 
-   sethvalue(fs->ls->L, &k, fs->ls->h); 
-   return addk(fs, &k, &v); 
- } 
-   
-   
- /* 
- ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to 
- ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of 
- ** overflows in the hidden addition inside 'int2sC'. 
- */ 
- static int fitsC (lua_Integer i) { 
-   return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C)); 
- } 
-   
-   
- /* 
- ** Check whether 'i' can be stored in an 'sBx' operand. 
- */ 
- static int fitsBx (lua_Integer i) { 
-   return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx); 
- } 
-   
-   
- void luaK_int (FuncState *fs, int reg, lua_Integer i) { 
-   if (fitsBx(i)) 
-     luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i)); 
-   else 
-     luaK_codek(fs, reg, luaK_intK(fs, i)); 
- } 
-   
-   
- static void luaK_float (FuncState *fs, int reg, lua_Number f) { 
-   lua_Integer fi; 
-   if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi)) 
-     luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi)); 
-   else 
-     luaK_codek(fs, reg, luaK_numberK(fs, f)); 
- } 
-   
-   
- /* 
- ** Convert a constant in 'v' into an expression description 'e' 
- */ 
- static void const2exp (TValue *v, expdesc *e) { 
-   switch (ttypetag(v)) { 
-     case LUA_VNUMINT: 
-       e->k = VKINT; e->u.ival = ivalue(v); 
-       break; 
-     case LUA_VNUMFLT: 
-       e->k = VKFLT; e->u.nval = fltvalue(v); 
-       break; 
-     case LUA_VFALSE: 
-       e->k = VFALSE; 
-       break; 
-     case LUA_VTRUE: 
-       e->k = VTRUE; 
-       break; 
-     case LUA_VNIL: 
-       e->k = VNIL; 
-       break; 
-     case LUA_VSHRSTR:  case LUA_VLNGSTR: 
-       e->k = VKSTR; e->u.strval = tsvalue(v); 
-       break; 
-     default: lua_assert(0); 
-   } 
- } 
-   
-   
- /* 
- ** Fix an expression to return the number of results 'nresults'. 
- ** 'e' must be a multi-ret expression (function call or vararg). 
- */ 
- void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { 
-   Instruction *pc = &getinstruction(fs, e); 
-   if (e->k == VCALL)  /* expression is an open function call? */ 
-     SETARG_C(*pc, nresults + 1); 
-   else { 
-     lua_assert(e->k == VVARARG); 
-     SETARG_C(*pc, nresults + 1); 
-     SETARG_A(*pc, fs->freereg); 
-     luaK_reserveregs(fs, 1); 
-   } 
- } 
-   
-   
- /* 
- ** Convert a VKSTR to a VK 
- */ 
- static void str2K (FuncState *fs, expdesc *e) { 
-   lua_assert(e->k == VKSTR); 
-   e->u.info = stringK(fs, e->u.strval); 
-   e->k = VK; 
- } 
-   
-   
- /* 
- ** Fix an expression to return one result. 
- ** If expression is not a multi-ret expression (function call or 
- ** vararg), it already returns one result, so nothing needs to be done. 
- ** Function calls become VNONRELOC expressions (as its result comes 
- ** fixed in the base register of the call), while vararg expressions 
- ** become VRELOC (as OP_VARARG puts its results where it wants). 
- ** (Calls are created returning one result, so that does not need 
- ** to be fixed.) 
- */ 
- void luaK_setoneret (FuncState *fs, expdesc *e) { 
-   if (e->k == VCALL) {  /* expression is an open function call? */ 
-     /* already returns 1 value */ 
-     lua_assert(GETARG_C(getinstruction(fs, e)) == 2); 
-     e->k = VNONRELOC;  /* result has fixed position */ 
-     e->u.info = GETARG_A(getinstruction(fs, e)); 
-   } 
-   else if (e->k == VVARARG) { 
-     SETARG_C(getinstruction(fs, e), 2); 
-     e->k = VRELOC;  /* can relocate its simple result */ 
-   } 
- } 
-   
-   
- /* 
- ** Ensure that expression 'e' is not a variable (nor a <const>). 
- ** (Expression still may have jump lists.) 
- */ 
- void luaK_dischargevars (FuncState *fs, expdesc *e) { 
-   switch (e->k) { 
-     case VCONST: { 
-       const2exp(const2val(fs, e), e); 
-       break; 
-     } 
-     case VLOCAL: {  /* already in a register */ 
-       e->u.info = e->u.var.ridx; 
-       e->k = VNONRELOC;  /* becomes a non-relocatable value */ 
-       break; 
-     } 
-     case VUPVAL: {  /* move value to some (pending) register */ 
-       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); 
-       e->k = VRELOC; 
-       break; 
-     } 
-     case VINDEXUP: { 
-       e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx); 
-       e->k = VRELOC; 
-       break; 
-     } 
-     case VINDEXI: { 
-       freereg(fs, e->u.ind.t); 
-       e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx); 
-       e->k = VRELOC; 
-       break; 
-     } 
-     case VINDEXSTR: { 
-       freereg(fs, e->u.ind.t); 
-       e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx); 
-       e->k = VRELOC; 
-       break; 
-     } 
-     case VINDEXED: { 
-       freeregs(fs, e->u.ind.t, e->u.ind.idx); 
-       e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx); 
-       e->k = VRELOC; 
-       break; 
-     } 
-     case VVARARG: case VCALL: { 
-       luaK_setoneret(fs, e); 
-       break; 
-     } 
-     default: break;  /* there is one value available (somewhere) */ 
-   } 
- } 
-   
-   
- /* 
- ** Ensure expression value is in register 'reg', making 'e' a 
- ** non-relocatable expression. 
- ** (Expression still may have jump lists.) 
- */ 
- static void discharge2reg (FuncState *fs, expdesc *e, int reg) { 
-   luaK_dischargevars(fs, e); 
-   switch (e->k) { 
-     case VNIL: { 
-       luaK_nil(fs, reg, 1); 
-       break; 
-     } 
-     case VFALSE: { 
-       luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0); 
-       break; 
-     } 
-     case VTRUE: { 
-       luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0); 
-       break; 
-     } 
-     case VKSTR: { 
-       str2K(fs, e); 
-     }  /* FALLTHROUGH */ 
-     case VK: { 
-       luaK_codek(fs, reg, e->u.info); 
-       break; 
-     } 
-     case VKFLT: { 
-       luaK_float(fs, reg, e->u.nval); 
-       break; 
-     } 
-     case VKINT: { 
-       luaK_int(fs, reg, e->u.ival); 
-       break; 
-     } 
-     case VRELOC: { 
-       Instruction *pc = &getinstruction(fs, e); 
-       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */ 
-       break; 
-     } 
-     case VNONRELOC: { 
-       if (reg != e->u.info) 
-         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); 
-       break; 
-     } 
-     default: { 
-       lua_assert(e->k == VJMP); 
-       return;  /* nothing to do... */ 
-     } 
-   } 
-   e->u.info = reg; 
-   e->k = VNONRELOC; 
- } 
-   
-   
- /* 
- ** Ensure expression value is in a register, making 'e' a 
- ** non-relocatable expression. 
- ** (Expression still may have jump lists.) 
- */ 
- static void discharge2anyreg (FuncState *fs, expdesc *e) { 
-   if (e->k != VNONRELOC) {  /* no fixed register yet? */ 
-     luaK_reserveregs(fs, 1);  /* get a register */ 
-     discharge2reg(fs, e, fs->freereg-1);  /* put value there */ 
-   } 
- } 
-   
-   
- static int code_loadbool (FuncState *fs, int A, OpCode op) { 
-   luaK_getlabel(fs);  /* those instructions may be jump targets */ 
-   return luaK_codeABC(fs, op, A, 0, 0); 
- } 
-   
-   
- /* 
- ** check whether list has any jump that do not produce a value 
- ** or produce an inverted value 
- */ 
- static int need_value (FuncState *fs, int list) { 
-   for (; list != NO_JUMP; list = getjump(fs, list)) { 
-     Instruction i = *getjumpcontrol(fs, list); 
-     if (GET_OPCODE(i) != OP_TESTSET) return 1; 
-   } 
-   return 0;  /* not found */ 
- } 
-   
-   
- /* 
- ** Ensures final expression result (which includes results from its 
- ** jump lists) is in register 'reg'. 
- ** If expression has jumps, need to patch these jumps either to 
- ** its final position or to "load" instructions (for those tests 
- ** that do not produce values). 
- */ 
- static void exp2reg (FuncState *fs, expdesc *e, int reg) { 
-   discharge2reg(fs, e, reg); 
-   if (e->k == VJMP)  /* expression itself is a test? */ 
-     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */ 
-   if (hasjumps(e)) { 
-     int final;  /* position after whole expression */ 
-     int p_f = NO_JUMP;  /* position of an eventual LOAD false */ 
-     int p_t = NO_JUMP;  /* position of an eventual LOAD true */ 
-     if (need_value(fs, e->t) || need_value(fs, e->f)) { 
-       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); 
-       p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */ 
-       p_t = code_loadbool(fs, reg, OP_LOADTRUE); 
-       /* jump around these booleans if 'e' is not a test */ 
-       luaK_patchtohere(fs, fj); 
-     } 
-     final = luaK_getlabel(fs); 
-     patchlistaux(fs, e->f, final, reg, p_f); 
-     patchlistaux(fs, e->t, final, reg, p_t); 
-   } 
-   e->f = e->t = NO_JUMP; 
-   e->u.info = reg; 
-   e->k = VNONRELOC; 
- } 
-   
-   
- /* 
- ** Ensures final expression result is in next available register. 
- */ 
- void luaK_exp2nextreg (FuncState *fs, expdesc *e) { 
-   luaK_dischargevars(fs, e); 
-   freeexp(fs, e); 
-   luaK_reserveregs(fs, 1); 
-   exp2reg(fs, e, fs->freereg - 1); 
- } 
-   
-   
- /* 
- ** Ensures final expression result is in some (any) register 
- ** and return that register. 
- */ 
- int luaK_exp2anyreg (FuncState *fs, expdesc *e) { 
-   luaK_dischargevars(fs, e); 
-   if (e->k == VNONRELOC) {  /* expression already has a register? */ 
-     if (!hasjumps(e))  /* no jumps? */ 
-       return e->u.info;  /* result is already in a register */ 
-     if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */ 
-       exp2reg(fs, e, e->u.info);  /* put final result in it */ 
-       return e->u.info; 
-     } 
-     /* else expression has jumps and cannot change its register 
-        to hold the jump values, because it is a local variable. 
-        Go through to the default case. */ 
-   } 
-   luaK_exp2nextreg(fs, e);  /* default: use next available register */ 
-   return e->u.info; 
- } 
-   
-   
- /* 
- ** Ensures final expression result is either in a register 
- ** or in an upvalue. 
- */ 
- void luaK_exp2anyregup (FuncState *fs, expdesc *e) { 
-   if (e->k != VUPVAL || hasjumps(e)) 
-     luaK_exp2anyreg(fs, e); 
- } 
-   
-   
- /* 
- ** Ensures final expression result is either in a register 
- ** or it is a constant. 
- */ 
- void luaK_exp2val (FuncState *fs, expdesc *e) { 
-   if (hasjumps(e)) 
-     luaK_exp2anyreg(fs, e); 
-   else 
-     luaK_dischargevars(fs, e); 
- } 
-   
-   
- /* 
- ** Try to make 'e' a K expression with an index in the range of R/K 
- ** indices. Return true iff succeeded. 
- */ 
- static int luaK_exp2K (FuncState *fs, expdesc *e) { 
-   if (!hasjumps(e)) { 
-     int info; 
-     switch (e->k) {  /* move constants to 'k' */ 
-       case VTRUE: info = boolT(fs); break; 
-       case VFALSE: info = boolF(fs); break; 
-       case VNIL: info = nilK(fs); break; 
-       case VKINT: info = luaK_intK(fs, e->u.ival); break; 
-       case VKFLT: info = luaK_numberK(fs, e->u.nval); break; 
-       case VKSTR: info = stringK(fs, e->u.strval); break; 
-       case VK: info = e->u.info; break; 
-       default: return 0;  /* not a constant */ 
-     } 
-     if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */ 
-       e->k = VK;  /* make expression a 'K' expression */ 
-       e->u.info = info; 
-       return 1; 
-     } 
-   } 
-   /* else, expression doesn't fit; leave it unchanged */ 
-   return 0; 
- } 
-   
-   
- /* 
- ** Ensures final expression result is in a valid R/K index 
- ** (that is, it is either in a register or in 'k' with an index 
- ** in the range of R/K indices). 
- ** Returns 1 iff expression is K. 
- */ 
- int luaK_exp2RK (FuncState *fs, expdesc *e) { 
-   if (luaK_exp2K(fs, e)) 
-     return 1; 
-   else {  /* not a constant in the right range: put it in a register */ 
-     luaK_exp2anyreg(fs, e); 
-     return 0; 
-   } 
- } 
-   
-   
- static void codeABRK (FuncState *fs, OpCode o, int a, int b, 
-                       expdesc *ec) { 
-   int k = luaK_exp2RK(fs, ec); 
-   luaK_codeABCk(fs, o, a, b, ec->u.info, k); 
- } 
-   
-   
- /* 
- ** Generate code to store result of expression 'ex' into variable 'var'. 
- */ 
- void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { 
-   switch (var->k) { 
-     case VLOCAL: { 
-       freeexp(fs, ex); 
-       exp2reg(fs, ex, var->u.var.ridx);  /* compute 'ex' into proper place */ 
-       return; 
-     } 
-     case VUPVAL: { 
-       int e = luaK_exp2anyreg(fs, ex); 
-       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); 
-       break; 
-     } 
-     case VINDEXUP: { 
-       codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex); 
-       break; 
-     } 
-     case VINDEXI: { 
-       codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex); 
-       break; 
-     } 
-     case VINDEXSTR: { 
-       codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex); 
-       break; 
-     } 
-     case VINDEXED: { 
-       codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex); 
-       break; 
-     } 
-     default: lua_assert(0);  /* invalid var kind to store */ 
-   } 
-   freeexp(fs, ex); 
- } 
-   
-   
- /* 
- ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). 
- */ 
- void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { 
-   int ereg; 
-   luaK_exp2anyreg(fs, e); 
-   ereg = e->u.info;  /* register where 'e' was placed */ 
-   freeexp(fs, e); 
-   e->u.info = fs->freereg;  /* base register for op_self */ 
-   e->k = VNONRELOC;  /* self expression has a fixed register */ 
-   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */ 
-   codeABRK(fs, OP_SELF, e->u.info, ereg, key); 
-   freeexp(fs, key); 
- } 
-   
-   
- /* 
- ** Negate condition 'e' (where 'e' is a comparison). 
- */ 
- static void negatecondition (FuncState *fs, expdesc *e) { 
-   Instruction *pc = getjumpcontrol(fs, e->u.info); 
-   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && 
-                                            GET_OPCODE(*pc) != OP_TEST); 
-   SETARG_k(*pc, (GETARG_k(*pc) ^ 1)); 
- } 
-   
-   
- /* 
- ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' 
- ** is true, code will jump if 'e' is true.) Return jump position. 
- ** Optimize when 'e' is 'not' something, inverting the condition 
- ** and removing the 'not'. 
- */ 
- static int jumponcond (FuncState *fs, expdesc *e, int cond) { 
-   if (e->k == VRELOC) { 
-     Instruction ie = getinstruction(fs, e); 
-     if (GET_OPCODE(ie) == OP_NOT) { 
-       removelastinstruction(fs);  /* remove previous OP_NOT */ 
-       return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond); 
-     } 
-     /* else go through */ 
-   } 
-   discharge2anyreg(fs, e); 
-   freeexp(fs, e); 
-   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond); 
- } 
-   
-   
- /* 
- ** Emit code to go through if 'e' is true, jump otherwise. 
- */ 
- void luaK_goiftrue (FuncState *fs, expdesc *e) { 
-   int pc;  /* pc of new jump */ 
-   luaK_dischargevars(fs, e); 
-   switch (e->k) { 
-     case VJMP: {  /* condition? */ 
-       negatecondition(fs, e);  /* jump when it is false */ 
-       pc = e->u.info;  /* save jump position */ 
-       break; 
-     } 
-     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { 
-       pc = NO_JUMP;  /* always true; do nothing */ 
-       break; 
-     } 
-     default: { 
-       pc = jumponcond(fs, e, 0);  /* jump when false */ 
-       break; 
-     } 
-   } 
-   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */ 
-   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */ 
-   e->t = NO_JUMP; 
- } 
-   
-   
- /* 
- ** Emit code to go through if 'e' is false, jump otherwise. 
- */ 
- void luaK_goiffalse (FuncState *fs, expdesc *e) { 
-   int pc;  /* pc of new jump */ 
-   luaK_dischargevars(fs, e); 
-   switch (e->k) { 
-     case VJMP: { 
-       pc = e->u.info;  /* already jump if true */ 
-       break; 
-     } 
-     case VNIL: case VFALSE: { 
-       pc = NO_JUMP;  /* always false; do nothing */ 
-       break; 
-     } 
-     default: { 
-       pc = jumponcond(fs, e, 1);  /* jump if true */ 
-       break; 
-     } 
-   } 
-   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */ 
-   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */ 
-   e->f = NO_JUMP; 
- } 
-   
-   
- /* 
- ** Code 'not e', doing constant folding. 
- */ 
- static void codenot (FuncState *fs, expdesc *e) { 
-   switch (e->k) { 
-     case VNIL: case VFALSE: { 
-       e->k = VTRUE;  /* true == not nil == not false */ 
-       break; 
-     } 
-     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { 
-       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */ 
-       break; 
-     } 
-     case VJMP: { 
-       negatecondition(fs, e); 
-       break; 
-     } 
-     case VRELOC: 
-     case VNONRELOC: { 
-       discharge2anyreg(fs, e); 
-       freeexp(fs, e); 
-       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); 
-       e->k = VRELOC; 
-       break; 
-     } 
-     default: lua_assert(0);  /* cannot happen */ 
-   } 
-   /* interchange true and false lists */ 
-   { int temp = e->f; e->f = e->t; e->t = temp; } 
-   removevalues(fs, e->f);  /* values are useless when negated */ 
-   removevalues(fs, e->t); 
- } 
-   
-   
- /* 
- ** Check whether expression 'e' is a small literal string 
- */ 
- static int isKstr (FuncState *fs, expdesc *e) { 
-   return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B && 
-           ttisshrstring(&fs->f->k[e->u.info])); 
- } 
-   
- /* 
- ** Check whether expression 'e' is a literal integer. 
- */ 
- int luaK_isKint (expdesc *e) { 
-   return (e->k == VKINT && !hasjumps(e)); 
- } 
-   
-   
- /* 
- ** Check whether expression 'e' is a literal integer in 
- ** proper range to fit in register C 
- */ 
- static int isCint (expdesc *e) { 
-   return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C)); 
- } 
-   
-   
- /* 
- ** Check whether expression 'e' is a literal integer in 
- ** proper range to fit in register sC 
- */ 
- static int isSCint (expdesc *e) { 
-   return luaK_isKint(e) && fitsC(e->u.ival); 
- } 
-   
-   
- /* 
- ** Check whether expression 'e' is a literal integer or float in 
- ** proper range to fit in a register (sB or sC). 
- */ 
- static int isSCnumber (expdesc *e, int *pi, int *isfloat) { 
-   lua_Integer i; 
-   if (e->k == VKINT) 
-     i = e->u.ival; 
-   else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq)) 
-     *isfloat = 1; 
-   else 
-     return 0;  /* not a number */ 
-   if (!hasjumps(e) && fitsC(i)) { 
-     *pi = int2sC(cast_int(i)); 
-     return 1; 
-   } 
-   else 
-     return 0; 
- } 
-   
-   
- /* 
- ** Create expression 't[k]'. 't' must have its final result already in a 
- ** register or upvalue. Upvalues can only be indexed by literal strings. 
- ** Keys can be literal strings in the constant table or arbitrary 
- ** values in registers. 
- */ 
- void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { 
-   if (k->k == VKSTR) 
-     str2K(fs, k); 
-   lua_assert(!hasjumps(t) && 
-              (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL)); 
-   if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */ 
-     luaK_exp2anyreg(fs, t);  /* put it in a register */ 
-   if (t->k == VUPVAL) { 
-     t->u.ind.t = t->u.info;  /* upvalue index */ 
-     t->u.ind.idx = k->u.info;  /* literal string */ 
-     t->k = VINDEXUP; 
-   } 
-   else { 
-     /* register index of the table */ 
-     t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info; 
-     if (isKstr(fs, k)) { 
-       t->u.ind.idx = k->u.info;  /* literal string */ 
-       t->k = VINDEXSTR; 
-     } 
-     else if (isCint(k)) { 
-       t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */ 
-       t->k = VINDEXI; 
-     } 
-     else { 
-       t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */ 
-       t->k = VINDEXED; 
-     } 
-   } 
- } 
-   
-   
- /* 
- ** Return false if folding can raise an error. 
- ** Bitwise operations need operands convertible to integers; division 
- ** operations cannot have 0 as divisor. 
- */ 
- static int validop (int op, TValue *v1, TValue *v2) { 
-   switch (op) { 
-     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: 
-     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */ 
-       lua_Integer i; 
-       return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) && 
-               luaV_tointegerns(v2, &i, LUA_FLOORN2I)); 
-     } 
-     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */ 
-       return (nvalue(v2) != 0); 
-     default: return 1;  /* everything else is valid */ 
-   } 
- } 
-   
-   
- /* 
- ** Try to "constant-fold" an operation; return 1 iff successful. 
- ** (In this case, 'e1' has the final result.) 
- */ 
- static int constfolding (FuncState *fs, int op, expdesc *e1, 
-                                         const expdesc *e2) { 
-   TValue v1, v2, res; 
-   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) 
-     return 0;  /* non-numeric operands or not safe to fold */ 
-   luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */ 
-   if (ttisinteger(&res)) { 
-     e1->k = VKINT; 
-     e1->u.ival = ivalue(&res); 
-   } 
-   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ 
-     lua_Number n = fltvalue(&res); 
-     if (luai_numisnan(n) || n == 0) 
-       return 0; 
-     e1->k = VKFLT; 
-     e1->u.nval = n; 
-   } 
-   return 1; 
- } 
-   
-   
- /* 
- ** Emit code for unary expressions that "produce values" 
- ** (everything but 'not'). 
- ** Expression to produce final result will be encoded in 'e'. 
- */ 
- static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { 
-   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */ 
-   freeexp(fs, e); 
-   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */ 
-   e->k = VRELOC;  /* all those operations are relocatable */ 
-   luaK_fixline(fs, line); 
- } 
-   
-   
- /* 
- ** Emit code for binary expressions that "produce values" 
- ** (everything but logical operators 'and'/'or' and comparison 
- ** operators). 
- ** Expression to produce final result will be encoded in 'e1'. 
- */ 
- static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2, 
-                              OpCode op, int v2, int flip, int line, 
-                              OpCode mmop, TMS event) { 
-   int v1 = luaK_exp2anyreg(fs, e1); 
-   int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0); 
-   freeexps(fs, e1, e2); 
-   e1->u.info = pc; 
-   e1->k = VRELOC;  /* all those operations are relocatable */ 
-   luaK_fixline(fs, line); 
-   luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */ 
-   luaK_fixline(fs, line); 
- } 
-   
-   
- /* 
- ** Emit code for binary expressions that "produce values" over 
- ** two registers. 
- */ 
- static void codebinexpval (FuncState *fs, OpCode op, 
-                            expdesc *e1, expdesc *e2, int line) { 
-   int v2 = luaK_exp2anyreg(fs, e2);  /* both operands are in registers */ 
-   lua_assert(OP_ADD <= op && op <= OP_SHR); 
-   finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, 
-                   cast(TMS, (op - OP_ADD) + TM_ADD)); 
- } 
-   
-   
- /* 
- ** Code binary operators with immediate operands. 
- */ 
- static void codebini (FuncState *fs, OpCode op, 
-                        expdesc *e1, expdesc *e2, int flip, int line, 
-                        TMS event) { 
-   int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */ 
-   lua_assert(e2->k == VKINT); 
-   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event); 
- } 
-   
-   
- /* Try to code a binary operator negating its second operand. 
- ** For the metamethod, 2nd operand must keep its original value. 
- */ 
- static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2, 
-                              OpCode op, int line, TMS event) { 
-   if (!luaK_isKint(e2)) 
-     return 0;  /* not an integer constant */ 
-   else { 
-     lua_Integer i2 = e2->u.ival; 
-     if (!(fitsC(i2) && fitsC(-i2))) 
-       return 0;  /* not in the proper range */ 
-     else {  /* operating a small integer constant */ 
-       int v2 = cast_int(i2); 
-       finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event); 
-       /* correct metamethod argument */ 
-       SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2)); 
-       return 1;  /* successfully coded */ 
-     } 
-   } 
- } 
-   
-   
- static void swapexps (expdesc *e1, expdesc *e2) { 
-   expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */ 
- } 
-   
-   
- /* 
- ** Code arithmetic operators ('+', '-', ...). If second operand is a 
- ** constant in the proper range, use variant opcodes with K operands. 
- */ 
- static void codearith (FuncState *fs, BinOpr opr, 
-                        expdesc *e1, expdesc *e2, int flip, int line) { 
-   TMS event = cast(TMS, opr + TM_ADD); 
-   if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) {  /* K operand? */ 
-     int v2 = e2->u.info;  /* K index */ 
-     OpCode op = cast(OpCode, opr + OP_ADDK); 
-     finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event); 
-   } 
-   else {  /* 'e2' is neither an immediate nor a K operand */ 
-     OpCode op = cast(OpCode, opr + OP_ADD); 
-     if (flip) 
-       swapexps(e1, e2);  /* back to original order */ 
-     codebinexpval(fs, op, e1, e2, line);  /* use standard operators */ 
-   } 
- } 
-   
-   
- /* 
- ** Code commutative operators ('+', '*'). If first operand is a 
- ** numeric constant, change order of operands to try to use an 
- ** immediate or K operator. 
- */ 
- static void codecommutative (FuncState *fs, BinOpr op, 
-                              expdesc *e1, expdesc *e2, int line) { 
-   int flip = 0; 
-   if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */ 
-     swapexps(e1, e2);  /* change order */ 
-     flip = 1; 
-   } 
-   if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */ 
-     codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD); 
-   else 
-     codearith(fs, op, e1, e2, flip, line); 
- } 
-   
-   
- /* 
- ** Code bitwise operations; they are all associative, so the function 
- ** tries to put an integer constant as the 2nd operand (a K operand). 
- */ 
- static void codebitwise (FuncState *fs, BinOpr opr, 
-                          expdesc *e1, expdesc *e2, int line) { 
-   int flip = 0; 
-   int v2; 
-   OpCode op; 
-   if (e1->k == VKINT && luaK_exp2RK(fs, e1)) { 
-     swapexps(e1, e2);  /* 'e2' will be the constant operand */ 
-     flip = 1; 
-   } 
-   else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) {  /* no constants? */ 
-     op = cast(OpCode, opr + OP_ADD); 
-     codebinexpval(fs, op, e1, e2, line);  /* all-register opcodes */ 
-     return; 
-   } 
-   v2 = e2->u.info;  /* index in K array */ 
-   op = cast(OpCode, opr + OP_ADDK); 
-   lua_assert(ttisinteger(&fs->f->k[v2])); 
-   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, 
-                   cast(TMS, opr + TM_ADD)); 
- } 
-   
-   
- /* 
- ** Emit code for order comparisons. When using an immediate operand, 
- ** 'isfloat' tells whether the original value was a float. 
- */ 
- static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) { 
-   int r1, r2; 
-   int im; 
-   int isfloat = 0; 
-   if (isSCnumber(e2, &im, &isfloat)) { 
-     /* use immediate operand */ 
-     r1 = luaK_exp2anyreg(fs, e1); 
-     r2 = im; 
-     op = cast(OpCode, (op - OP_LT) + OP_LTI); 
-   } 
-   else if (isSCnumber(e1, &im, &isfloat)) { 
-     /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */ 
-     r1 = luaK_exp2anyreg(fs, e2); 
-     r2 = im; 
-     op = (op == OP_LT) ? OP_GTI : OP_GEI; 
-   } 
-   else {  /* regular case, compare two registers */ 
-     r1 = luaK_exp2anyreg(fs, e1); 
-     r2 = luaK_exp2anyreg(fs, e2); 
-   } 
-   freeexps(fs, e1, e2); 
-   e1->u.info = condjump(fs, op, r1, r2, isfloat, 1); 
-   e1->k = VJMP; 
- } 
-   
-   
- /* 
- ** Emit code for equality comparisons ('==', '~='). 
- ** 'e1' was already put as RK by 'luaK_infix'. 
- */ 
- static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { 
-   int r1, r2; 
-   int im; 
-   int isfloat = 0;  /* not needed here, but kept for symmetry */ 
-   OpCode op; 
-   if (e1->k != VNONRELOC) { 
-     lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT); 
-     swapexps(e1, e2); 
-   } 
-   r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */ 
-   if (isSCnumber(e2, &im, &isfloat)) { 
-     op = OP_EQI; 
-     r2 = im;  /* immediate operand */ 
-   } 
-   else if (luaK_exp2RK(fs, e2)) {  /* 1st expression is constant? */ 
-     op = OP_EQK; 
-     r2 = e2->u.info;  /* constant index */ 
-   } 
-   else { 
-     op = OP_EQ;  /* will compare two registers */ 
-     r2 = luaK_exp2anyreg(fs, e2); 
-   } 
-   freeexps(fs, e1, e2); 
-   e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ)); 
-   e1->k = VJMP; 
- } 
-   
-   
- /* 
- ** Apply prefix operation 'op' to expression 'e'. 
- */ 
- void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { 
-   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; 
-   luaK_dischargevars(fs, e); 
-   switch (op) { 
-     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */ 
-       if (constfolding(fs, op + LUA_OPUNM, e, &ef)) 
-         break; 
-       /* else */ /* FALLTHROUGH */ 
-     case OPR_LEN: 
-       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); 
-       break; 
-     case OPR_NOT: codenot(fs, e); break; 
-     default: lua_assert(0); 
-   } 
- } 
-   
-   
- /* 
- ** Process 1st operand 'v' of binary operation 'op' before reading 
- ** 2nd operand. 
- */ 
- void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { 
-   luaK_dischargevars(fs, v); 
-   switch (op) { 
-     case OPR_AND: { 
-       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */ 
-       break; 
-     } 
-     case OPR_OR: { 
-       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */ 
-       break; 
-     } 
-     case OPR_CONCAT: { 
-       luaK_exp2nextreg(fs, v);  /* operand must be on the stack */ 
-       break; 
-     } 
-     case OPR_ADD: case OPR_SUB: 
-     case OPR_MUL: case OPR_DIV: case OPR_IDIV: 
-     case OPR_MOD: case OPR_POW: 
-     case OPR_BAND: case OPR_BOR: case OPR_BXOR: 
-     case OPR_SHL: case OPR_SHR: { 
-       if (!tonumeral(v, NULL)) 
-         luaK_exp2anyreg(fs, v); 
-       /* else keep numeral, which may be folded with 2nd operand */ 
-       break; 
-     } 
-     case OPR_EQ: case OPR_NE: { 
-       if (!tonumeral(v, NULL)) 
-         luaK_exp2RK(fs, v); 
-       /* else keep numeral, which may be an immediate operand */ 
-       break; 
-     } 
-     case OPR_LT: case OPR_LE: 
-     case OPR_GT: case OPR_GE: { 
-       int dummy, dummy2; 
-       if (!isSCnumber(v, &dummy, &dummy2)) 
-         luaK_exp2anyreg(fs, v); 
-       /* else keep numeral, which may be an immediate operand */ 
-       break; 
-     } 
-     default: lua_assert(0); 
-   } 
- } 
-   
- /* 
- ** Create code for '(e1 .. e2)'. 
- ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))', 
- ** because concatenation is right associative), merge both CONCATs. 
- */ 
- static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) { 
-   Instruction *ie2 = previousinstruction(fs); 
-   if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */ 
-     int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */ 
-     lua_assert(e1->u.info + 1 == GETARG_A(*ie2)); 
-     freeexp(fs, e2); 
-     SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */ 
-     SETARG_B(*ie2, n + 1);  /* will concatenate one more element */ 
-   } 
-   else {  /* 'e2' is not a concatenation */ 
-     luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */ 
-     freeexp(fs, e2); 
-     luaK_fixline(fs, line); 
-   } 
- } 
-   
-   
- /* 
- ** Finalize code for binary operation, after reading 2nd operand. 
- */ 
- void luaK_posfix (FuncState *fs, BinOpr opr, 
-                   expdesc *e1, expdesc *e2, int line) { 
-   luaK_dischargevars(fs, e2); 
-   if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2)) 
-     return;  /* done by folding */ 
-   switch (opr) { 
-     case OPR_AND: { 
-       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */ 
-       luaK_concat(fs, &e2->f, e1->f); 
-       *e1 = *e2; 
-       break; 
-     } 
-     case OPR_OR: { 
-       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */ 
-       luaK_concat(fs, &e2->t, e1->t); 
-       *e1 = *e2; 
-       break; 
-     } 
-     case OPR_CONCAT: {  /* e1 .. e2 */ 
-       luaK_exp2nextreg(fs, e2); 
-       codeconcat(fs, e1, e2, line); 
-       break; 
-     } 
-     case OPR_ADD: case OPR_MUL: { 
-       codecommutative(fs, opr, e1, e2, line); 
-       break; 
-     } 
-     case OPR_SUB: { 
-       if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB)) 
-         break; /* coded as (r1 + -I) */ 
-       /* ELSE */ 
-     }  /* FALLTHROUGH */ 
-     case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: { 
-       codearith(fs, opr, e1, e2, 0, line); 
-       break; 
-     } 
-     case OPR_BAND: case OPR_BOR: case OPR_BXOR: { 
-       codebitwise(fs, opr, e1, e2, line); 
-       break; 
-     } 
-     case OPR_SHL: { 
-       if (isSCint(e1)) { 
-         swapexps(e1, e2); 
-         codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */ 
-       } 
-       else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) { 
-         /* coded as (r1 >> -I) */; 
-       } 
-       else  /* regular case (two registers) */ 
-        codebinexpval(fs, OP_SHL, e1, e2, line); 
-       break; 
-     } 
-     case OPR_SHR: { 
-       if (isSCint(e2)) 
-         codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */ 
-       else  /* regular case (two registers) */ 
-         codebinexpval(fs, OP_SHR, e1, e2, line); 
-       break; 
-     } 
-     case OPR_EQ: case OPR_NE: { 
-       codeeq(fs, opr, e1, e2); 
-       break; 
-     } 
-     case OPR_LT: case OPR_LE: { 
-       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); 
-       codeorder(fs, op, e1, e2); 
-       break; 
-     } 
-     case OPR_GT: case OPR_GE: { 
-       /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */ 
-       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); 
-       swapexps(e1, e2); 
-       codeorder(fs, op, e1, e2); 
-       break; 
-     } 
-     default: lua_assert(0); 
-   } 
- } 
-   
-   
- /* 
- ** Change line information associated with current position, by removing 
- ** previous info and adding it again with new line. 
- */ 
- void luaK_fixline (FuncState *fs, int line) { 
-   removelastlineinfo(fs); 
-   savelineinfo(fs, fs->f, line); 
- } 
-   
-   
- void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) { 
-   Instruction *inst = &fs->f->code[pc]; 
-   int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */ 
-   int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */ 
-   int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */ 
-   int k = (extra > 0);  /* true iff needs extra argument */ 
-   *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k); 
-   *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra); 
- } 
-   
-   
- /* 
- ** Emit a SETLIST instruction. 
- ** 'base' is register that keeps table; 
- ** 'nelems' is #table plus those to be stored now; 
- ** 'tostore' is number of values (in registers 'base + 1',...) to add to 
- ** table (or LUA_MULTRET to add up to stack top). 
- */ 
- void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { 
-   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); 
-   if (tostore == LUA_MULTRET) 
-     tostore = 0; 
-   if (nelems <= MAXARG_C) 
-     luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems); 
-   else { 
-     int extra = nelems / (MAXARG_C + 1); 
-     nelems %= (MAXARG_C + 1); 
-     luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1); 
-     codeextraarg(fs, extra); 
-   } 
-   fs->freereg = base + 1;  /* free registers with list values */ 
- } 
-   
-   
- /* 
- ** return the final target of a jump (skipping jumps to jumps) 
- */ 
- static int finaltarget (Instruction *code, int i) { 
-   int count; 
-   for (count = 0; count < 100; count++) {  /* avoid infinite loops */ 
-     Instruction pc = code[i]; 
-     if (GET_OPCODE(pc) != OP_JMP) 
-       break; 
-      else 
-        i += GETARG_sJ(pc) + 1; 
-   } 
-   return i; 
- } 
-   
-   
- /* 
- ** Do a final pass over the code of a function, doing small peephole 
- ** optimizations and adjustments. 
- */ 
- void luaK_finish (FuncState *fs) { 
-   int i; 
-   Proto *p = fs->f; 
-   for (i = 0; i < fs->pc; i++) { 
-     Instruction *pc = &p->code[i]; 
-     lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc)); 
-     switch (GET_OPCODE(*pc)) { 
-       case OP_RETURN0: case OP_RETURN1: { 
-         if (!(fs->needclose || p->is_vararg)) 
-           break;  /* no extra work */ 
-         /* else use OP_RETURN to do the extra work */ 
-         SET_OPCODE(*pc, OP_RETURN); 
-       }  /* FALLTHROUGH */ 
-       case OP_RETURN: case OP_TAILCALL: { 
-         if (fs->needclose) 
-           SETARG_k(*pc, 1);  /* signal that it needs to close */ 
-         if (p->is_vararg) 
-           SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */ 
-         break; 
-       } 
-       case OP_JMP: { 
-         int target = finaltarget(p->code, i); 
-         fixjump(fs, i, target); 
-         break; 
-       } 
-       default: break; 
-     } 
-   } 
- } 
-