- /* 
- ** $Id: lmathlib.c $ 
- ** Standard mathematical library 
- ** See Copyright Notice in lua.h 
- */ 
-   
- #define lmathlib_c 
- #define LUA_LIB 
-   
- #include "lprefix.h" 
-   
-   
- #include <float.h> 
- #include <limits.h> 
- #include <math.h> 
- #include <stdlib.h> 
- #include <time.h> 
-   
- #include "lua.h" 
-   
- #include "lauxlib.h" 
- #include "lualib.h" 
-   
-   
- #undef PI 
- #define PI      (l_mathop(3.141592653589793238462643383279502884)) 
-   
-   
- static int math_abs (lua_State *L) { 
-   if (lua_isinteger(L, 1)) { 
-     lua_Integer n = lua_tointeger(L, 1); 
-     if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); 
-     lua_pushinteger(L, n); 
-   } 
-   else 
-     lua_pushnumber (- L ,-  l_mathop (fabs)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_sin (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (sin)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_cos (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (cos)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_tan (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (tan)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_asin (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (asin)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_acos (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (acos)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_atan (lua_State *L) { 
-   lua_Number y = luaL_checknumber(L, 1); 
-   lua_Number x = luaL_optnumber(L, 2, 1); 
-   lua_pushnumber (- L ,-  l_mathop (atan2)(- y ,-  x ));
-   return 1; 
- } 
-   
-   
- static int math_toint (lua_State *L) { 
-   int valid; 
-   lua_Integer n = lua_tointegerx(L, 1, &valid); 
-   if (l_likely(valid)) 
-     lua_pushinteger(L, n); 
-   else { 
-     luaL_checkany(L, 1); 
-     luaL_pushfail(L);  /* value is not convertible to integer */ 
-   } 
-   return 1; 
- } 
-   
-   
- static void pushnumint (lua_State *L, lua_Number d) { 
-   lua_Integer n; 
-   if (lua_numbertointeger(d, &n))  /* does 'd' fit in an integer? */ 
-     lua_pushinteger(L, n);  /* result is integer */ 
-   else 
-     lua_pushnumber(L, d);  /* result is float */ 
- } 
-   
-   
- static int math_floor (lua_State *L) { 
-   if (lua_isinteger(L, 1)) 
-     lua_settop(L, 1);  /* integer is its own floor */ 
-   else { 
-     lua_Number d  =-  l_mathop (floor)(- luaL_checknumber (- L , 1));
-     pushnumint(L, d); 
-   } 
-   return 1; 
- } 
-   
-   
- static int math_ceil (lua_State *L) { 
-   if (lua_isinteger(L, 1)) 
-     lua_settop(L, 1);  /* integer is its own ceil */ 
-   else { 
-     lua_Number d  =-  l_mathop (ceil)(- luaL_checknumber (- L , 1));
-     pushnumint(L, d); 
-   } 
-   return 1; 
- } 
-   
-   
- static int math_fmod (lua_State *L) { 
-   if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { 
-     lua_Integer d = lua_tointeger(L, 2); 
-     if ((lua_Unsigned)d + 1u <= 1u) {  /* special cases: -1 or 0 */ 
-       luaL_argcheck(L, d != 0, 2, "zero"); 
-       lua_pushinteger(L, 0);  /* avoid overflow with 0x80000... / -1 */ 
-     } 
-     else 
-       lua_pushinteger(L, lua_tointeger(L, 1) % d); 
-   } 
-   else 
-     lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), 
-                                      luaL_checknumber(L, 2))); 
-   return 1; 
- } 
-   
-   
- /* 
- ** next function does not use 'modf', avoiding problems with 'double*' 
- ** (which is not compatible with 'float*') when lua_Number is not 
- ** 'double'. 
- */ 
- static int math_modf (lua_State *L) { 
-   if (lua_isinteger(L ,1)) { 
-     lua_settop(L, 1);  /* number is its own integer part */ 
-     lua_pushnumber(L, 0);  /* no fractional part */ 
-   } 
-   else { 
-     lua_Number n = luaL_checknumber(L, 1); 
-     /* integer part (rounds toward zero) */ 
-     lua_Number ip  = (- n  < 0) ?-  l_mathop (ceil)(- n ) :-  l_mathop (floor)(- n );
-     pushnumint(L, ip); 
-     /* fractional part (test needed for inf/-inf) */ 
-     lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); 
-   } 
-   return 2; 
- } 
-   
-   
- static int math_sqrt (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (sqrt)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
-   
- static int math_ult (lua_State *L) { 
-   lua_Integer a = luaL_checkinteger(L, 1); 
-   lua_Integer b = luaL_checkinteger(L, 2); 
-   lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); 
-   return 1; 
- } 
-   
- static int math_log (lua_State *L) { 
-   lua_Number x = luaL_checknumber(L, 1); 
-   lua_Number res; 
-   if (lua_isnoneornil(L, 2)) 
-   else { 
-     lua_Number base = luaL_checknumber(L, 2); 
- #if !defined(LUA_USE_C89) 
-     if (base == l_mathop(2.0)) 
-       res = l_mathop(log2)(x); 
-     else 
- #endif 
-     if (base == l_mathop(10.0)) 
-       res  =-  l_mathop (log10)(- x );
-     else 
-       res  =-  l_mathop (log)(- x )/- l_mathop (log)(- base );
-   } 
-   lua_pushnumber(L, res); 
-   return 1; 
- } 
-   
- static int math_exp (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (exp)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_deg (lua_State *L) { 
-   lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); 
-   return 1; 
- } 
-   
- static int math_rad (lua_State *L) { 
-   lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); 
-   return 1; 
- } 
-   
-   
- static int math_min (lua_State *L) { 
-   int n = lua_gettop(L);  /* number of arguments */ 
-   int imin = 1;  /* index of current minimum value */ 
-   int i; 
-   luaL_argcheck(L, n >= 1, 1, "value expected"); 
-   for (i = 2; i <= n; i++) { 
-     if (lua_compare(L, i, imin, LUA_OPLT)) 
-       imin = i; 
-   } 
-   lua_pushvalue(L, imin); 
-   return 1; 
- } 
-   
-   
- static int math_max (lua_State *L) { 
-   int n = lua_gettop(L);  /* number of arguments */ 
-   int imax = 1;  /* index of current maximum value */ 
-   int i; 
-   luaL_argcheck(L, n >= 1, 1, "value expected"); 
-   for (i = 2; i <= n; i++) { 
-     if (lua_compare(L, imax, i, LUA_OPLT)) 
-       imax = i; 
-   } 
-   lua_pushvalue(L, imax); 
-   return 1; 
- } 
-   
-   
- static int math_type (lua_State *L) { 
-   if (lua_type(L, 1) == LUA_TNUMBER) 
-     lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); 
-   else { 
-     luaL_checkany(L, 1); 
-     luaL_pushfail(L); 
-   } 
-   return 1; 
- } 
-   
-   
-   
- /* 
- ** {================================================================== 
- ** Pseudo-Random Number Generator based on 'xoshiro256**'. 
- ** =================================================================== 
- */ 
-   
- /* number of binary digits in the mantissa of a float */ 
- #define FIGS    l_floatatt(MANT_DIG) 
-   
- #if FIGS > 64 
- /* there are only 64 random bits; use them all */ 
- #undef FIGS 
- #define FIGS    64 
- #endif 
-   
-   
- /* 
- ** LUA_RAND32 forces the use of 32-bit integers in the implementation 
- ** of the PRN generator (mainly for testing). 
- */ 
- #if !defined(LUA_RAND32) && !defined(Rand64) 
-   
- /* try to find an integer type with at least 64 bits */ 
-   
- #if (ULONG_MAX >> 31 >> 31) >= 3 
-   
- /* 'long' has at least 64 bits */ 
- #define Rand64          unsigned long 
-   
- #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) 
-   
- /* there is a 'long long' type (which must have at least 64 bits) */ 
- #define Rand64          unsigned long long 
-   
- #elif (LUA_MAXUNSIGNED >> 31 >> 31) >= 3 
-   
- /* 'lua_Integer' has at least 64 bits */ 
- #define Rand64          lua_Unsigned 
-   
- #endif 
-   
- #endif 
-   
-   
- #if defined(Rand64)  /* { */ 
-   
- /* 
- ** Standard implementation, using 64-bit integers. 
- ** If 'Rand64' has more than 64 bits, the extra bits do not interfere 
- ** with the 64 initial bits, except in a right shift. Moreover, the 
- ** final result has to discard the extra bits. 
- */ 
-   
- /* avoid using extra bits when needed */ 
- #define trim64(x)       ((x) & 0xffffffffffffffffu) 
-   
-   
- /* rotate left 'x' by 'n' bits */ 
- static Rand64 rotl (Rand64 x, int n) { 
-   return (x << n) | (trim64(x) >> (64 - n)); 
- } 
-   
- static Rand64 nextrand (Rand64 *state) { 
-   Rand64 state0 = state[0]; 
-   Rand64 state1 = state[1]; 
-   Rand64 state2 = state[2] ^ state0; 
-   Rand64 state3 = state[3] ^ state1; 
-   Rand64 res = rotl(state1 * 5, 7) * 9; 
-   state[0] = state0 ^ state3; 
-   state[1] = state1 ^ state2; 
-   state[2] = state2 ^ (state1 << 17); 
-   state[3] = rotl(state3, 45); 
-   return res; 
- } 
-   
-   
- /* must take care to not shift stuff by more than 63 slots */ 
-   
-   
- /* 
- ** Convert bits from a random integer into a float in the 
- ** interval [0,1), getting the higher FIG bits from the 
- ** random unsigned integer and converting that to a float. 
- */ 
-   
- /* must throw out the extra (64 - FIGS) bits */ 
- #define shift64_FIG     (64 - FIGS) 
-   
- /* to scale to [0, 1), multiply by scaleFIG = 2^(-FIGS) */ 
- #define scaleFIG        (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) 
-   
- static lua_Number I2d (Rand64 x) { 
-   return (lua_Number)(trim64(x) >> shift64_FIG) * scaleFIG; 
- } 
-   
- /* convert a 'Rand64' to a 'lua_Unsigned' */ 
- #define I2UInt(x)       ((lua_Unsigned)trim64(x)) 
-   
- /* convert a 'lua_Unsigned' to a 'Rand64' */ 
- #define Int2I(x)        ((Rand64)(x)) 
-   
-   
- #else   /* no 'Rand64'   }{ */ 
-   
- /* get an integer with at least 32 bits */ 
- #if LUAI_IS32INT 
- typedef unsigned int lu_int32; 
- #else 
- typedef unsigned long lu_int32; 
- #endif 
-   
-   
- /* 
- ** Use two 32-bit integers to represent a 64-bit quantity. 
- */ 
- typedef struct Rand64 { 
-   lu_int32 h;  /* higher half */ 
-   lu_int32 l;  /* lower half */ 
- } Rand64; 
-   
-   
- /* 
- ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere 
- ** with the 32 initial bits, except in a right shift and comparisons. 
- ** Moreover, the final result has to discard the extra bits. 
- */ 
-   
- /* avoid using extra bits when needed */ 
- #define trim32(x)       ((x) & 0xffffffffu) 
-   
-   
- /* 
- ** basic operations on 'Rand64' values 
- */ 
-   
- /* build a new Rand64 value */ 
- static Rand64 packI (lu_int32 h, lu_int32 l) { 
-   Rand64 result; 
-   result.h = h; 
-   result.l = l; 
-   return result; 
- } 
-   
- /* return i << n */ 
- static Rand64 Ishl (Rand64 i, int n) { 
-   lua_assert(n > 0 && n < 32); 
-   return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); 
- } 
-   
- /* i1 ^= i2 */ 
- static void Ixor (Rand64 *i1, Rand64 i2) { 
-   i1->h ^= i2.h; 
-   i1->l ^= i2.l; 
- } 
-   
- /* return i1 + i2 */ 
- static Rand64 Iadd (Rand64 i1, Rand64 i2) { 
-   Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); 
-   if (trim32(result.l) < trim32(i1.l))  /* carry? */ 
-     result.h++; 
-   return result; 
- } 
-   
- /* return i * 5 */ 
- static Rand64 times5 (Rand64 i) { 
-   return Iadd(Ishl(i, 2), i);  /* i * 5 == (i << 2) + i */ 
- } 
-   
- /* return i * 9 */ 
- static Rand64 times9 (Rand64 i) { 
-   return Iadd(Ishl(i, 3), i);  /* i * 9 == (i << 3) + i */ 
- } 
-   
- /* return 'i' rotated left 'n' bits */ 
- static Rand64 rotl (Rand64 i, int n) { 
-   lua_assert(n > 0 && n < 32); 
-   return packI((i.h << n) | (trim32(i.l) >> (32 - n)), 
-                (trim32(i.h) >> (32 - n)) | (i.l << n)); 
- } 
-   
- /* for offsets larger than 32, rotate right by 64 - offset */ 
- static Rand64 rotl1 (Rand64 i, int n) { 
-   lua_assert(n > 32 && n < 64); 
-   n = 64 - n; 
-   return packI((trim32(i.h) >> n) | (i.l << (32 - n)), 
-                (i.h << (32 - n)) | (trim32(i.l) >> n)); 
- } 
-   
- /* 
- ** implementation of 'xoshiro256**' algorithm on 'Rand64' values 
- */ 
- static Rand64 nextrand (Rand64 *state) { 
-   Rand64 res = times9(rotl(times5(state[1]), 7)); 
-   Rand64 t = Ishl(state[1], 17); 
-   Ixor(&state[2], state[0]); 
-   Ixor(&state[3], state[1]); 
-   Ixor(&state[1], state[2]); 
-   Ixor(&state[0], state[3]); 
-   Ixor(&state[2], t); 
-   state[3] = rotl1(state[3], 45); 
-   return res; 
- } 
-   
-   
- /* 
- ** Converts a 'Rand64' into a float. 
- */ 
-   
- /* an unsigned 1 with proper type */ 
- #define UONE            ((lu_int32)1) 
-   
-   
- #if FIGS <= 32 
-   
- /* 2^(-FIGS) */ 
- #define scaleFIG       (l_mathop(0.5) / (UONE << (FIGS - 1))) 
-   
- /* 
- ** get up to 32 bits from higher half, shifting right to 
- ** throw out the extra bits. 
- */ 
- static lua_Number I2d (Rand64 x) { 
-   lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); 
-   return h * scaleFIG; 
- } 
-   
- #else   /* 32 < FIGS <= 64 */ 
-   
- /* must take care to not shift stuff by more than 31 slots */ 
-   
- /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ 
- #define scaleFIG  \ 
-     (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) 
-   
- /* 
- ** use FIGS - 32 bits from lower half, throwing out the other 
- ** (32 - (FIGS - 32)) = (64 - FIGS) bits 
- */ 
- #define shiftLOW        (64 - FIGS) 
-   
- /* 
- ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) 
- */ 
- #define shiftHI         ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) 
-   
-   
- static lua_Number I2d (Rand64 x) { 
-   lua_Number h = (lua_Number)trim32(x.h) * shiftHI; 
-   lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); 
-   return (h + l) * scaleFIG; 
- } 
-   
- #endif 
-   
-   
- /* convert a 'Rand64' to a 'lua_Unsigned' */ 
- static lua_Unsigned I2UInt (Rand64 x) { 
-   return ((lua_Unsigned)trim32(x.h) << 31 << 1) | (lua_Unsigned)trim32(x.l); 
- } 
-   
- /* convert a 'lua_Unsigned' to a 'Rand64' */ 
- static Rand64 Int2I (lua_Unsigned n) { 
-   return packI((lu_int32)(n >> 31 >> 1), (lu_int32)n); 
- } 
-   
- #endif  /* } */ 
-   
-   
- /* 
- ** A state uses four 'Rand64' values. 
- */ 
- typedef struct { 
-   Rand64 s[4]; 
- } RanState; 
-   
-   
- /* 
- ** Project the random integer 'ran' into the interval [0, n]. 
- ** Because 'ran' has 2^B possible values, the projection can only be 
- ** uniform when the size of the interval is a power of 2 (exact 
- ** division). Otherwise, to get a uniform projection into [0, n], we 
- ** first compute 'lim', the smallest Mersenne number not smaller than 
- ** 'n'. We then project 'ran' into the interval [0, lim].  If the result 
- ** is inside [0, n], we are done. Otherwise, we try with another 'ran', 
- ** until we have a result inside the interval. 
- */ 
- static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, 
-                              RanState *state) { 
-   if ((n & (n + 1)) == 0)  /* is 'n + 1' a power of 2? */ 
-     return ran & n;  /* no bias */ 
-   else { 
-     lua_Unsigned lim = n; 
-     /* compute the smallest (2^b - 1) not smaller than 'n' */ 
-     lim |= (lim >> 1); 
-     lim |= (lim >> 2); 
-     lim |= (lim >> 4); 
-     lim |= (lim >> 8); 
-     lim |= (lim >> 16); 
- #if (LUA_MAXUNSIGNED >> 31) >= 3 
-     lim |= (lim >> 32);  /* integer type has more than 32 bits */ 
- #endif 
-     lua_assert((lim & (lim + 1)) == 0  /* 'lim + 1' is a power of 2, */ 
-       && lim >= n  /* not smaller than 'n', */ 
-       && (lim >> 1) < n);  /* and it is the smallest one */ 
-     while ((ran &= lim) > n)  /* project 'ran' into [0..lim] */ 
-       ran = I2UInt(nextrand(state->s));  /* not inside [0..n]? try again */ 
-     return ran; 
-   } 
- } 
-   
-   
- static int math_random (lua_State *L) { 
-   lua_Integer low, up; 
-   lua_Unsigned p; 
-   RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 
-   Rand64 rv = nextrand(state->s);  /* next pseudo-random value */ 
-   switch (lua_gettop(L)) {  /* check number of arguments */ 
-     case 0: {  /* no arguments */ 
-       lua_pushnumber(L, I2d(rv));  /* float between 0 and 1 */ 
-       return 1; 
-     } 
-     case 1: {  /* only upper limit */ 
-       low = 1; 
-       up = luaL_checkinteger(L, 1); 
-       if (up == 0) {  /* single 0 as argument? */ 
-         lua_pushinteger(L, I2UInt(rv));  /* full random integer */ 
-         return 1; 
-       } 
-       break; 
-     } 
-     case 2: {  /* lower and upper limits */ 
-       low = luaL_checkinteger(L, 1); 
-       up = luaL_checkinteger(L, 2); 
-       break; 
-     } 
-     default: return luaL_error(L, "wrong number of arguments"); 
-   } 
-   /* random integer in the interval [low, up] */ 
-   luaL_argcheck(L, low <= up, 1, "interval is empty"); 
-   /* project random integer into the interval [0, up - low] */ 
-   p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); 
-   lua_pushinteger(L, p + (lua_Unsigned)low); 
-   return 1; 
- } 
-   
-   
- static void setseed (lua_State *L, Rand64 *state, 
-                      lua_Unsigned n1, lua_Unsigned n2) { 
-   int i; 
-   state[0] = Int2I(n1); 
-   state[1] = Int2I(0xff);  /* avoid a zero state */ 
-   state[2] = Int2I(n2); 
-   state[3] = Int2I(0); 
-   for (i = 0; i < 16; i++) 
-     nextrand(state);  /* discard initial values to "spread" seed */ 
-   lua_pushinteger(L, n1); 
-   lua_pushinteger(L, n2); 
- } 
-   
-   
- /* 
- ** Set a "random" seed. To get some randomness, use the current time 
- ** and the address of 'L' (in case the machine does address space layout 
- ** randomization). 
- */ 
- static void randseed (lua_State *L, RanState *state) { 
-   lua_Unsigned seed1  = (- lua_Unsigned )time(- NULL );
-   lua_Unsigned seed2 = (lua_Unsigned)(size_t)L; 
-   setseed(L, state->s, seed1, seed2); 
- } 
-   
-   
- static int math_randomseed (lua_State *L) { 
-   RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 
-   if (lua_isnone(L, 1)) { 
-     randseed(L, state); 
-   } 
-   else { 
-     lua_Integer n1 = luaL_checkinteger(L, 1); 
-     lua_Integer n2 = luaL_optinteger(L, 2, 0); 
-     setseed(L, state->s, n1, n2); 
-   } 
-   return 2;  /* return seeds */ 
- } 
-   
-   
- static const luaL_Reg randfuncs[] = { 
-   {"random", math_random}, 
-   {"randomseed", math_randomseed}, 
-   {NULL, NULL} 
- }; 
-   
-   
- /* 
- ** Register the random functions and initialize their state. 
- */ 
- static void setrandfunc (lua_State *L) { 
-   RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); 
-   randseed(L, state);  /* initialize with a "random" seed */ 
-   lua_pop(L, 2);  /* remove pushed seeds */ 
-   luaL_setfuncs(L, randfuncs, 1); 
- } 
-   
- /* }================================================================== */ 
-   
-   
- /* 
- ** {================================================================== 
- ** Deprecated functions (for compatibility only) 
- ** =================================================================== 
- */ 
- #if defined(LUA_COMPAT_MATHLIB) 
-   
- static int math_cosh (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (cosh)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_sinh (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (sinh)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_tanh (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (tanh)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- static int math_pow (lua_State *L) { 
-   lua_Number x = luaL_checknumber(L, 1); 
-   lua_Number y = luaL_checknumber(L, 2); 
-   lua_pushnumber (- L ,-  l_mathop (pow)(- x ,-  y ));
-   return 1; 
- } 
-   
- static int math_frexp (lua_State *L) { 
-   int e; 
-   lua_pushnumber (- L ,-  l_mathop (frexp)(- luaL_checknumber (- L , 1), &- e ));
-   lua_pushinteger(L, e); 
-   return 2; 
- } 
-   
- static int math_ldexp (lua_State *L) { 
-   lua_Number x = luaL_checknumber(L, 1); 
-   int ep = (int)luaL_checkinteger(L, 2); 
-   lua_pushnumber (- L ,-  l_mathop (ldexp)(- x ,-  ep ));
-   return 1; 
- } 
-   
- static int math_log10 (lua_State *L) { 
-   lua_pushnumber (- L ,-  l_mathop (log10)(- luaL_checknumber (- L , 1)));
-   return 1; 
- } 
-   
- #endif 
- /* }================================================================== */ 
-   
-   
-   
- static const luaL_Reg mathlib[] = { 
-   {"abs",   math_abs}, 
-   {"acos",  math_acos}, 
-   {"asin",  math_asin}, 
-   {"atan",  math_atan}, 
-   {"ceil",  math_ceil}, 
-   {"cos",   math_cos}, 
-   {"deg",   math_deg}, 
-   {"exp",   math_exp}, 
-   {"tointeger", math_toint}, 
-   {"floor", math_floor}, 
-   {"fmod",   math_fmod}, 
-   {"ult",   math_ult}, 
-   {"log",   math_log}, 
-   {"max",   math_max}, 
-   {"min",   math_min}, 
-   {"modf",   math_modf}, 
-   {"rad",   math_rad}, 
-   {"sin",   math_sin}, 
-   {"sqrt",  math_sqrt}, 
-   {"tan",   math_tan}, 
-   {"type", math_type}, 
- #if defined(LUA_COMPAT_MATHLIB) 
-   {"atan2", math_atan}, 
-   {"cosh",   math_cosh}, 
-   {"sinh",   math_sinh}, 
-   {"tanh",   math_tanh}, 
-   {"pow",   math_pow}, 
-   {"frexp", math_frexp}, 
-   {"ldexp", math_ldexp}, 
-   {"log10", math_log10}, 
- #endif 
-   /* placeholders */ 
-   {"random", NULL}, 
-   {"randomseed", NULL}, 
-   {"pi", NULL}, 
-   {"huge", NULL}, 
-   {"maxinteger", NULL}, 
-   {"mininteger", NULL}, 
-   {NULL, NULL} 
- }; 
-   
-   
- /* 
- ** Open math library 
- */ 
- LUAMOD_API int luaopen_math (lua_State *L) { 
-   luaL_newlib(L, mathlib); 
-   lua_pushnumber(L, PI); 
-   lua_setfield(L, -2, "pi"); 
-   lua_pushnumber(L, (lua_Number)HUGE_VAL); 
-   lua_setfield(L, -2, "huge"); 
-   lua_pushinteger(L, LUA_MAXINTEGER); 
-   lua_setfield(L, -2, "maxinteger"); 
-   lua_pushinteger(L, LUA_MININTEGER); 
-   lua_setfield(L, -2, "mininteger"); 
-   setrandfunc(L); 
-   return 1; 
- } 
-   
-