- /* 
- ** $Id: ltable.c $ 
- ** Lua tables (hash) 
- ** See Copyright Notice in lua.h 
- */ 
-   
- #define ltable_c 
- #define LUA_CORE 
-   
- #include "lprefix.h" 
-   
-   
- /* 
- ** Implementation of tables (aka arrays, objects, or hash tables). 
- ** Tables keep its elements in two parts: an array part and a hash part. 
- ** Non-negative integer keys are all candidates to be kept in the array 
- ** part. The actual size of the array is the largest 'n' such that 
- ** more than half the slots between 1 and n are in use. 
- ** Hash uses a mix of chained scatter table with Brent's variation. 
- ** A main invariant of these tables is that, if an element is not 
- ** in its main position (i.e. the 'original' position that its hash gives 
- ** to it), then the colliding element is in its own main position. 
- ** Hence even when the load factor reaches 100%, performance remains good. 
- */ 
-   
- #include <math.h> 
- #include <limits.h> 
-   
- #include "lua.h" 
-   
- #include "ldebug.h" 
- #include "ldo.h" 
- #include "lgc.h" 
- #include "lmem.h" 
- #include "lobject.h" 
- #include "lstate.h" 
- #include "lstring.h" 
- #include "ltable.h" 
- #include "lvm.h" 
-   
-   
- /* 
- ** MAXABITS is the largest integer such that MAXASIZE fits in an 
- ** unsigned int. 
- */ 
- #define MAXABITS        cast_int(sizeof(int) * CHAR_BIT - 1) 
-   
-   
- /* 
- ** MAXASIZE is the maximum size of the array part. It is the minimum 
- ** between 2^MAXABITS and the maximum size that, measured in bytes, 
- ** fits in a 'size_t'. 
- */ 
- #define MAXASIZE        luaM_limitN(1u << MAXABITS, TValue) 
-   
- /* 
- ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a 
- ** signed int. 
- */ 
- #define MAXHBITS        (MAXABITS - 1) 
-   
-   
- /* 
- ** MAXHSIZE is the maximum size of the hash part. It is the minimum 
- ** between 2^MAXHBITS and the maximum size such that, measured in bytes, 
- ** it fits in a 'size_t'. 
- */ 
- #define MAXHSIZE        luaM_limitN(1u << MAXHBITS, Node) 
-   
-   
- /* 
- ** When the original hash value is good, hashing by a power of 2 
- ** avoids the cost of '%'. 
- */ 
- #define hashpow2(t,n)           (gnode(t, lmod((n), sizenode(t)))) 
-   
- /* 
- ** for other types, it is better to avoid modulo by power of 2, as 
- ** they can have many 2 factors. 
- */ 
- #define hashmod(t,n)    (gnode(t, ((n) % ((sizenode(t)-1)|1)))) 
-   
-   
- #define hashstr(t,str)          hashpow2(t, (str)->hash) 
- #define hashboolean(t,p)        hashpow2(t, p) 
-   
-   
- #define hashpointer(t,p)        hashmod(t, point2uint(p)) 
-   
-   
- #define dummynode               (&dummynode_) 
-   
- static const Node dummynode_ = { 
-   {{NULL}, LUA_VEMPTY,  /* value's value and type */ 
-    LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */ 
- }; 
-   
-   
- static const TValue absentkey = {ABSTKEYCONSTANT}; 
-   
-   
- /* 
- ** Hash for integers. To allow a good hash, use the remainder operator 
- ** ('%'). If integer fits as a non-negative int, compute an int 
- ** remainder, which is faster. Otherwise, use an unsigned-integer 
- ** remainder, which uses all bits and ensures a non-negative result. 
- */ 
- static Node *hashint (const Table *t, lua_Integer i) { 
-   lua_Unsigned ui = l_castS2U(i); 
-   if (ui <= (unsigned int)INT_MAX) 
-     return hashmod(t, cast_int(ui)); 
-   else 
-     return hashmod(t, ui); 
- } 
-   
-   
- /* 
- ** Hash for floating-point numbers. 
- ** The main computation should be just 
- **     n = frexp(n, &i); return (n * INT_MAX) + i 
- ** but there are some numerical subtleties. 
- ** In a two-complement representation, INT_MAX does not has an exact 
- ** representation as a float, but INT_MIN does; because the absolute 
- ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the 
- ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal 
- ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when 
- ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with 
- ** INT_MIN. 
- */ 
- #if !defined(l_hashfloat) 
- static int l_hashfloat (lua_Number n) { 
-   int i; 
-   lua_Integer ni; 
-   n  =-  l_mathop (frexp)(- n , &- i ) * -- cast_num (- INT_MIN );
-   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */ 
-     lua_assert (- luai_numisnan (- n ) ||-  l_mathop (fabs)(- n ) ==-  cast_num (- HUGE_VAL ));
-     return 0; 
-   } 
-   else {  /* normal case */ 
-     unsigned int u = cast_uint(i) + cast_uint(ni); 
-     return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); 
-   } 
- } 
- #endif 
-   
-   
- /* 
- ** returns the 'main' position of an element in a table (that is, 
- ** the index of its hash value). 
- */ 
- static Node *mainpositionTV (const Table *t, const TValue *key) { 
-   switch (ttypetag(key)) { 
-     case LUA_VNUMINT: { 
-       lua_Integer i = ivalue(key); 
-       return hashint(t, i); 
-     } 
-     case LUA_VNUMFLT: { 
-       lua_Number n = fltvalue(key); 
-       return hashmod(t, l_hashfloat(n)); 
-     } 
-     case LUA_VSHRSTR: { 
-       TString *ts = tsvalue(key); 
-       return hashstr(t, ts); 
-     } 
-     case LUA_VLNGSTR: { 
-       TString *ts = tsvalue(key); 
-       return hashpow2(t, luaS_hashlongstr(ts)); 
-     } 
-     case LUA_VFALSE: 
-       return hashboolean(t, 0); 
-     case LUA_VTRUE: 
-       return hashboolean(t, 1); 
-     case LUA_VLIGHTUSERDATA: { 
-       void *p = pvalue(key); 
-       return hashpointer(t, p); 
-     } 
-     case LUA_VLCF: { 
-       lua_CFunction f = fvalue(key); 
-       return hashpointer(t, f); 
-     } 
-     default: { 
-       GCObject *o = gcvalue(key); 
-       return hashpointer(t, o); 
-     } 
-   } 
- } 
-   
-   
- l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) { 
-   TValue key; 
-   getnodekey(cast(lua_State *, NULL), &key, nd); 
-   return mainpositionTV(t, &key); 
- } 
-   
-   
- /* 
- ** Check whether key 'k1' is equal to the key in node 'n2'. This 
- ** equality is raw, so there are no metamethods. Floats with integer 
- ** values have been normalized, so integers cannot be equal to 
- ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so 
- ** that short strings are handled in the default case. 
- ** A true 'deadok' means to accept dead keys as equal to their original 
- ** values. All dead keys are compared in the default case, by pointer 
- ** identity. (Only collectable objects can produce dead keys.) Note that 
- ** dead long strings are also compared by identity. 
- ** Once a key is dead, its corresponding value may be collected, and 
- ** then another value can be created with the same address. If this 
- ** other value is given to 'next', 'equalkey' will signal a false 
- ** positive. In a regular traversal, this situation should never happen, 
- ** as all keys given to 'next' came from the table itself, and therefore 
- ** could not have been collected. Outside a regular traversal, we 
- ** have garbage in, garbage out. What is relevant is that this false 
- ** positive does not break anything.  (In particular, 'next' will return 
- ** some other valid item on the table or nil.) 
- */ 
- static int equalkey (const TValue *k1, const Node *n2, int deadok) { 
-   if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */ 
-        !(deadok && keyisdead(n2) && iscollectable(k1))) 
-    return 0;  /* cannot be same key */ 
-   switch (keytt(n2)) { 
-     case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: 
-       return 1; 
-     case LUA_VNUMINT: 
-       return (ivalue(k1) == keyival(n2)); 
-     case LUA_VNUMFLT: 
-       return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); 
-     case LUA_VLIGHTUSERDATA: 
-       return pvalue(k1) == pvalueraw(keyval(n2)); 
-     case LUA_VLCF: 
-       return fvalue(k1) == fvalueraw(keyval(n2)); 
-     case ctb(LUA_VLNGSTR): 
-       return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); 
-     default: 
-       return gcvalue(k1) == gcvalueraw(keyval(n2)); 
-   } 
- } 
-   
-   
- /* 
- ** True if value of 'alimit' is equal to the real size of the array 
- ** part of table 't'. (Otherwise, the array part must be larger than 
- ** 'alimit'.) 
- */ 
- #define limitequalsasize(t)     (isrealasize(t) || ispow2((t)->alimit)) 
-   
-   
- /* 
- ** Returns the real size of the 'array' array 
- */ 
- LUAI_FUNC unsigned int luaH_realasize (const Table *t) { 
-   if (limitequalsasize(t)) 
-     return t->alimit;  /* this is the size */ 
-   else { 
-     unsigned int size = t->alimit; 
-     /* compute the smallest power of 2 not smaller than 'n' */ 
-     size |= (size >> 1); 
-     size |= (size >> 2); 
-     size |= (size >> 4); 
-     size |= (size >> 8); 
-     size |= (size >> 16); 
- #if (UINT_MAX >> 30) > 3 
-     size |= (size >> 32);  /* unsigned int has more than 32 bits */ 
- #endif 
-     size++; 
-     lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); 
-     return size; 
-   } 
- } 
-   
-   
- /* 
- ** Check whether real size of the array is a power of 2. 
- ** (If it is not, 'alimit' cannot be changed to any other value 
- ** without changing the real size.) 
- */ 
- static int ispow2realasize (const Table *t) { 
-   return (!isrealasize(t) || ispow2(t->alimit)); 
- } 
-   
-   
- static unsigned int setlimittosize (Table *t) { 
-   t->alimit = luaH_realasize(t); 
-   setrealasize(t); 
-   return t->alimit; 
- } 
-   
-   
- #define limitasasize(t) check_exp(isrealasize(t), t->alimit) 
-   
-   
-   
- /* 
- ** "Generic" get version. (Not that generic: not valid for integers, 
- ** which may be in array part, nor for floats with integral values.) 
- ** See explanation about 'deadok' in function 'equalkey'. 
- */ 
- static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { 
-   Node *n = mainpositionTV(t, key); 
-   for (;;) {  /* check whether 'key' is somewhere in the chain */ 
-     if (equalkey(key, n, deadok)) 
-       return gval(n);  /* that's it */ 
-     else { 
-       int nx = gnext(n); 
-       if (nx == 0) 
-         return &absentkey;  /* not found */ 
-       n += nx; 
-     } 
-   } 
- } 
-   
-   
- /* 
- ** returns the index for 'k' if 'k' is an appropriate key to live in 
- ** the array part of a table, 0 otherwise. 
- */ 
- static unsigned int arrayindex (lua_Integer k) { 
-   if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */ 
-     return cast_uint(k);  /* 'key' is an appropriate array index */ 
-   else 
-     return 0; 
- } 
-   
-   
- /* 
- ** returns the index of a 'key' for table traversals. First goes all 
- ** elements in the array part, then elements in the hash part. The 
- ** beginning of a traversal is signaled by 0. 
- */ 
- static unsigned int findindex (lua_State *L, Table *t, TValue *key, 
-                                unsigned int asize) { 
-   unsigned int i; 
-   if (ttisnil(key)) return 0;  /* first iteration */ 
-   i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; 
-   if (i - 1u < asize)  /* is 'key' inside array part? */ 
-     return i;  /* yes; that's the index */ 
-   else { 
-     const TValue *n = getgeneric(t, key, 1); 
-     if (l_unlikely(isabstkey(n))) 
-       luaG_runerror(L, "invalid key to 'next'");  /* key not found */ 
-     i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */ 
-     /* hash elements are numbered after array ones */ 
-     return (i + 1) + asize; 
-   } 
- } 
-   
-   
- int luaH_next (lua_State *L, Table *t, StkId key) { 
-   unsigned int asize = luaH_realasize(t); 
-   unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */ 
-   for (; i < asize; i++) {  /* try first array part */ 
-     if (!isempty(&t->array[i])) {  /* a non-empty entry? */ 
-       setivalue(s2v(key), i + 1); 
-       setobj2s(L, key + 1, &t->array[i]); 
-       return 1; 
-     } 
-   } 
-   for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */ 
-     if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */ 
-       Node *n = gnode(t, i); 
-       getnodekey(L, s2v(key), n); 
-       setobj2s(L, key + 1, gval(n)); 
-       return 1; 
-     } 
-   } 
-   return 0;  /* no more elements */ 
- } 
-   
-   
- static void freehash (lua_State *L, Table *t) { 
-   if (!isdummy(t)) 
-     luaM_freearray(L, t->node, cast_sizet(sizenode(t))); 
- } 
-   
-   
- /* 
- ** {============================================================= 
- ** Rehash 
- ** ============================================================== 
- */ 
-   
- /* 
- ** Compute the optimal size for the array part of table 't'. 'nums' is a 
- ** "count array" where 'nums[i]' is the number of integers in the table 
- ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of 
- ** integer keys in the table and leaves with the number of keys that 
- ** will go to the array part; return the optimal size.  (The condition 
- ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) 
- */ 
- static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { 
-   int i; 
-   unsigned int twotoi;  /* 2^i (candidate for optimal size) */ 
-   unsigned int a = 0;  /* number of elements smaller than 2^i */ 
-   unsigned int na = 0;  /* number of elements to go to array part */ 
-   unsigned int optimal = 0;  /* optimal size for array part */ 
-   /* loop while keys can fill more than half of total size */ 
-   for (i = 0, twotoi = 1; 
-        twotoi > 0 && *pna > twotoi / 2; 
-        i++, twotoi *= 2) { 
-     a += nums[i]; 
-     if (a > twotoi/2) {  /* more than half elements present? */ 
-       optimal = twotoi;  /* optimal size (till now) */ 
-       na = a;  /* all elements up to 'optimal' will go to array part */ 
-     } 
-   } 
-   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); 
-   *pna = na; 
-   return optimal; 
- } 
-   
-   
- static int countint (lua_Integer key, unsigned int *nums) { 
-   unsigned int k = arrayindex(key); 
-   if (k != 0) {  /* is 'key' an appropriate array index? */ 
-     nums[luaO_ceillog2(k)]++;  /* count as such */ 
-     return 1; 
-   } 
-   else 
-     return 0; 
- } 
-   
-   
- /* 
- ** Count keys in array part of table 't': Fill 'nums[i]' with 
- ** number of keys that will go into corresponding slice and return 
- ** total number of non-nil keys. 
- */ 
- static unsigned int numusearray (const Table *t, unsigned int *nums) { 
-   int lg; 
-   unsigned int ttlg;  /* 2^lg */ 
-   unsigned int ause = 0;  /* summation of 'nums' */ 
-   unsigned int i = 1;  /* count to traverse all array keys */ 
-   unsigned int asize = limitasasize(t);  /* real array size */ 
-   /* traverse each slice */ 
-   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { 
-     unsigned int lc = 0;  /* counter */ 
-     unsigned int lim = ttlg; 
-     if (lim > asize) { 
-       lim = asize;  /* adjust upper limit */ 
-       if (i > lim) 
-         break;  /* no more elements to count */ 
-     } 
-     /* count elements in range (2^(lg - 1), 2^lg] */ 
-     for (; i <= lim; i++) { 
-       if (!isempty(&t->array[i-1])) 
-         lc++; 
-     } 
-     nums[lg] += lc; 
-     ause += lc; 
-   } 
-   return ause; 
- } 
-   
-   
- static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { 
-   int totaluse = 0;  /* total number of elements */ 
-   int ause = 0;  /* elements added to 'nums' (can go to array part) */ 
-   int i = sizenode(t); 
-   while (i--) { 
-     Node *n = &t->node[i]; 
-     if (!isempty(gval(n))) { 
-       if (keyisinteger(n)) 
-         ause += countint(keyival(n), nums); 
-       totaluse++; 
-     } 
-   } 
-   *pna += ause; 
-   return totaluse; 
- } 
-   
-   
- /* 
- ** Creates an array for the hash part of a table with the given 
- ** size, or reuses the dummy node if size is zero. 
- ** The computation for size overflow is in two steps: the first 
- ** comparison ensures that the shift in the second one does not 
- ** overflow. 
- */ 
- static void setnodevector (lua_State *L, Table *t, unsigned int size) { 
-   if (size == 0) {  /* no elements to hash part? */ 
-     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */ 
-     t->lsizenode = 0; 
-     t->lastfree = NULL;  /* signal that it is using dummy node */ 
-   } 
-   else { 
-     int i; 
-     int lsize = luaO_ceillog2(size); 
-     if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) 
-       luaG_runerror(L, "table overflow"); 
-     size = twoto(lsize); 
-     t->node = luaM_newvector(L, size, Node); 
-     for (i = 0; i < (int)size; i++) { 
-       Node *n = gnode(t, i); 
-       gnext(n) = 0; 
-       setnilkey(n); 
-       setempty(gval(n)); 
-     } 
-     t->lsizenode = cast_byte(lsize); 
-     t->lastfree = gnode(t, size);  /* all positions are free */ 
-   } 
- } 
-   
-   
- /* 
- ** (Re)insert all elements from the hash part of 'ot' into table 't'. 
- */ 
- static void reinsert (lua_State *L, Table *ot, Table *t) { 
-   int j; 
-   int size = sizenode(ot); 
-   for (j = 0; j < size; j++) { 
-     Node *old = gnode(ot, j); 
-     if (!isempty(gval(old))) { 
-       /* doesn't need barrier/invalidate cache, as entry was 
-          already present in the table */ 
-       TValue k; 
-       getnodekey(L, &k, old); 
-       luaH_set(L, t, &k, gval(old)); 
-     } 
-   } 
- } 
-   
-   
- /* 
- ** Exchange the hash part of 't1' and 't2'. 
- */ 
- static void exchangehashpart (Table *t1, Table *t2) { 
-   lu_byte lsizenode = t1->lsizenode; 
-   Node *node = t1->node; 
-   Node *lastfree = t1->lastfree; 
-   t1->lsizenode = t2->lsizenode; 
-   t1->node = t2->node; 
-   t1->lastfree = t2->lastfree; 
-   t2->lsizenode = lsizenode; 
-   t2->node = node; 
-   t2->lastfree = lastfree; 
- } 
-   
-   
- /* 
- ** Resize table 't' for the new given sizes. Both allocations (for 
- ** the hash part and for the array part) can fail, which creates some 
- ** subtleties. If the first allocation, for the hash part, fails, an 
- ** error is raised and that is it. Otherwise, it copies the elements from 
- ** the shrinking part of the array (if it is shrinking) into the new 
- ** hash. Then it reallocates the array part.  If that fails, the table 
- ** is in its original state; the function frees the new hash part and then 
- ** raises the allocation error. Otherwise, it sets the new hash part 
- ** into the table, initializes the new part of the array (if any) with 
- ** nils and reinserts the elements of the old hash back into the new 
- ** parts of the table. 
- */ 
- void luaH_resize (lua_State *L, Table *t, unsigned int newasize, 
-                                           unsigned int nhsize) { 
-   unsigned int i; 
-   Table newt;  /* to keep the new hash part */ 
-   unsigned int oldasize = setlimittosize(t); 
-   TValue *newarray; 
-   /* create new hash part with appropriate size into 'newt' */ 
-   setnodevector(L, &newt, nhsize); 
-   if (newasize < oldasize) {  /* will array shrink? */ 
-     t->alimit = newasize;  /* pretend array has new size... */ 
-     exchangehashpart(t, &newt);  /* and new hash */ 
-     /* re-insert into the new hash the elements from vanishing slice */ 
-     for (i = newasize; i < oldasize; i++) { 
-       if (!isempty(&t->array[i])) 
-         luaH_setint(L, t, i + 1, &t->array[i]); 
-     } 
-     t->alimit = oldasize;  /* restore current size... */ 
-     exchangehashpart(t, &newt);  /* and hash (in case of errors) */ 
-   } 
-   /* allocate new array */ 
-   newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); 
-   if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */ 
-     freehash(L, &newt);  /* release new hash part */ 
-     luaM_error(L);  /* raise error (with array unchanged) */ 
-   } 
-   /* allocation ok; initialize new part of the array */ 
-   exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */ 
-   t->array = newarray;  /* set new array part */ 
-   t->alimit = newasize; 
-   for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */ 
-      setempty(&t->array[i]); 
-   /* re-insert elements from old hash part into new parts */ 
-   reinsert(L, &newt, t);  /* 'newt' now has the old hash */ 
-   freehash(L, &newt);  /* free old hash part */ 
- } 
-   
-   
- void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { 
-   int nsize = allocsizenode(t); 
-   luaH_resize(L, t, nasize, nsize); 
- } 
-   
- /* 
- ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i 
- */ 
- static void rehash (lua_State *L, Table *t, const TValue *ek) { 
-   unsigned int asize;  /* optimal size for array part */ 
-   unsigned int na;  /* number of keys in the array part */ 
-   unsigned int nums[MAXABITS + 1]; 
-   int i; 
-   int totaluse; 
-   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */ 
-   setlimittosize(t); 
-   na = numusearray(t, nums);  /* count keys in array part */ 
-   totaluse = na;  /* all those keys are integer keys */ 
-   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */ 
-   /* count extra key */ 
-   if (ttisinteger(ek)) 
-     na += countint(ivalue(ek), nums); 
-   totaluse++; 
-   /* compute new size for array part */ 
-   asize = computesizes(nums, &na); 
-   /* resize the table to new computed sizes */ 
-   luaH_resize(L, t, asize, totaluse - na); 
- } 
-   
-   
-   
- /* 
- ** }============================================================= 
- */ 
-   
-   
- Table *luaH_new (lua_State *L) { 
-   GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); 
-   Table *t = gco2t(o); 
-   t->metatable = NULL; 
-   t->flags = cast_byte(maskflags);  /* table has no metamethod fields */ 
-   t->array = NULL; 
-   t->alimit = 0; 
-   setnodevector(L, t, 0); 
-   return t; 
- } 
-   
-   
- void luaH_free (lua_State *L, Table *t) { 
-   freehash(L, t); 
-   luaM_freearray(L, t->array, luaH_realasize(t)); 
-   luaM_free(L, t); 
- } 
-   
-   
- static Node *getfreepos (Table *t) { 
-   if (!isdummy(t)) { 
-     while (t->lastfree > t->node) { 
-       t->lastfree--; 
-       if (keyisnil(t->lastfree)) 
-         return t->lastfree; 
-     } 
-   } 
-   return NULL;  /* could not find a free place */ 
- } 
-   
-   
-   
- /* 
- ** inserts a new key into a hash table; first, check whether key's main 
- ** position is free. If not, check whether colliding node is in its main 
- ** position or not: if it is not, move colliding node to an empty place and 
- ** put new key in its main position; otherwise (colliding node is in its main 
- ** position), new key goes to an empty position. 
- */ 
- void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) { 
-   Node *mp; 
-   TValue aux; 
-   if (l_unlikely(ttisnil(key))) 
-     luaG_runerror(L, "table index is nil"); 
-   else if (ttisfloat(key)) { 
-     lua_Number f = fltvalue(key); 
-     lua_Integer k; 
-     if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */ 
-       setivalue(&aux, k); 
-       key = &aux;  /* insert it as an integer */ 
-     } 
-     else if (l_unlikely(luai_numisnan(f))) 
-       luaG_runerror(L, "table index is NaN"); 
-   } 
-   if (ttisnil(value)) 
-     return;  /* do not insert nil values */ 
-   mp = mainpositionTV(t, key); 
-   if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */ 
-     Node *othern; 
-     Node *f = getfreepos(t);  /* get a free place */ 
-     if (f == NULL) {  /* cannot find a free place? */ 
-       rehash(L, t, key);  /* grow table */ 
-       /* whatever called 'newkey' takes care of TM cache */ 
-       luaH_set(L, t, key, value);  /* insert key into grown table */ 
-       return; 
-     } 
-     lua_assert(!isdummy(t)); 
-     othern = mainpositionfromnode(t, mp); 
-     if (othern != mp) {  /* is colliding node out of its main position? */ 
-       /* yes; move colliding node into free position */ 
-       while (othern + gnext(othern) != mp)  /* find previous */ 
-         othern += gnext(othern); 
-       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */ 
-       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */ 
-       if (gnext(mp) != 0) { 
-         gnext(f) += cast_int(mp - f);  /* correct 'next' */ 
-         gnext(mp) = 0;  /* now 'mp' is free */ 
-       } 
-       setempty(gval(mp)); 
-     } 
-     else {  /* colliding node is in its own main position */ 
-       /* new node will go into free position */ 
-       if (gnext(mp) != 0) 
-         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */ 
-       else lua_assert(gnext(f) == 0); 
-       gnext(mp) = cast_int(f - mp); 
-       mp = f; 
-     } 
-   } 
-   setnodekey(L, mp, key); 
-   luaC_barrierback(L, obj2gco(t), key); 
-   lua_assert(isempty(gval(mp))); 
-   setobj2t(L, gval(mp), value); 
- } 
-   
-   
- /* 
- ** Search function for integers. If integer is inside 'alimit', get it 
- ** directly from the array part. Otherwise, if 'alimit' is not equal to 
- ** the real size of the array, key still can be in the array part. In 
- ** this case, try to avoid a call to 'luaH_realasize' when key is just 
- ** one more than the limit (so that it can be incremented without 
- ** changing the real size of the array). 
- */ 
- const TValue *luaH_getint (Table *t, lua_Integer key) { 
-   if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */ 
-     return &t->array[key - 1]; 
-   else if (!limitequalsasize(t) &&  /* key still may be in the array part? */ 
-            (l_castS2U(key) == t->alimit + 1 || 
-             l_castS2U(key) - 1u < luaH_realasize(t))) { 
-     t->alimit = cast_uint(key);  /* probably '#t' is here now */ 
-     return &t->array[key - 1]; 
-   } 
-   else { 
-     Node *n = hashint(t, key); 
-     for (;;) {  /* check whether 'key' is somewhere in the chain */ 
-       if (keyisinteger(n) && keyival(n) == key) 
-         return gval(n);  /* that's it */ 
-       else { 
-         int nx = gnext(n); 
-         if (nx == 0) break; 
-         n += nx; 
-       } 
-     } 
-     return &absentkey; 
-   } 
- } 
-   
-   
- /* 
- ** search function for short strings 
- */ 
- const TValue *luaH_getshortstr (Table *t, TString *key) { 
-   Node *n = hashstr(t, key); 
-   lua_assert(key->tt == LUA_VSHRSTR); 
-   for (;;) {  /* check whether 'key' is somewhere in the chain */ 
-     if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) 
-       return gval(n);  /* that's it */ 
-     else { 
-       int nx = gnext(n); 
-       if (nx == 0) 
-         return &absentkey;  /* not found */ 
-       n += nx; 
-     } 
-   } 
- } 
-   
-   
- const TValue *luaH_getstr (Table *t, TString *key) { 
-   if (key->tt == LUA_VSHRSTR) 
-     return luaH_getshortstr(t, key); 
-   else {  /* for long strings, use generic case */ 
-     TValue ko; 
-     setsvalue(cast(lua_State *, NULL), &ko, key); 
-     return getgeneric(t, &ko, 0); 
-   } 
- } 
-   
-   
- /* 
- ** main search function 
- */ 
- const TValue *luaH_get (Table *t, const TValue *key) { 
-   switch (ttypetag(key)) { 
-     case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); 
-     case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); 
-     case LUA_VNIL: return &absentkey; 
-     case LUA_VNUMFLT: { 
-       lua_Integer k; 
-       if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ 
-         return luaH_getint(t, k);  /* use specialized version */ 
-       /* else... */ 
-     }  /* FALLTHROUGH */ 
-     default: 
-       return getgeneric(t, key, 0); 
-   } 
- } 
-   
-   
- /* 
- ** Finish a raw "set table" operation, where 'slot' is where the value 
- ** should have been (the result of a previous "get table"). 
- ** Beware: when using this function you probably need to check a GC 
- ** barrier and invalidate the TM cache. 
- */ 
- void luaH_finishset (lua_State *L, Table *t, const TValue *key, 
-                                    const TValue *slot, TValue *value) { 
-   if (isabstkey(slot)) 
-     luaH_newkey(L, t, key, value); 
-   else 
-     setobj2t(L, cast(TValue *, slot), value); 
- } 
-   
-   
- /* 
- ** beware: when using this function you probably need to check a GC 
- ** barrier and invalidate the TM cache. 
- */ 
- void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { 
-   const TValue *slot = luaH_get(t, key); 
-   luaH_finishset(L, t, key, slot, value); 
- } 
-   
-   
- void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { 
-   const TValue *p = luaH_getint(t, key); 
-   if (isabstkey(p)) { 
-     TValue k; 
-     setivalue(&k, key); 
-     luaH_newkey(L, t, &k, value); 
-   } 
-   else 
-     setobj2t(L, cast(TValue *, p), value); 
- } 
-   
-   
- /* 
- ** Try to find a boundary in the hash part of table 't'. From the 
- ** caller, we know that 'j' is zero or present and that 'j + 1' is 
- ** present. We want to find a larger key that is absent from the 
- ** table, so that we can do a binary search between the two keys to 
- ** find a boundary. We keep doubling 'j' until we get an absent index. 
- ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is 
- ** absent, we are ready for the binary search. ('j', being max integer, 
- ** is larger or equal to 'i', but it cannot be equal because it is 
- ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a 
- ** boundary. ('j + 1' cannot be a present integer key because it is 
- ** not a valid integer in Lua.) 
- */ 
- static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { 
-   lua_Unsigned i; 
-   if (j == 0) j++;  /* the caller ensures 'j + 1' is present */ 
-   do { 
-     i = j;  /* 'i' is a present index */ 
-     if (j <= l_castS2U(LUA_MAXINTEGER) / 2) 
-       j *= 2; 
-     else { 
-       j = LUA_MAXINTEGER; 
-       if (isempty(luaH_getint(t, j)))  /* t[j] not present? */ 
-         break;  /* 'j' now is an absent index */ 
-       else  /* weird case */ 
-         return j;  /* well, max integer is a boundary... */ 
-     } 
-   } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */ 
-   /* i < j  &&  t[i] present  &&  t[j] absent */ 
-   while (j - i > 1u) {  /* do a binary search between them */ 
-     lua_Unsigned m = (i + j) / 2; 
-     if (isempty(luaH_getint(t, m))) j = m; 
-     else i = m; 
-   } 
-   return i; 
- } 
-   
-   
- static unsigned int binsearch (const TValue *array, unsigned int i, 
-                                                     unsigned int j) { 
-   while (j - i > 1u) {  /* binary search */ 
-     unsigned int m = (i + j) / 2; 
-     if (isempty(&array[m - 1])) j = m; 
-     else i = m; 
-   } 
-   return i; 
- } 
-   
-   
- /* 
- ** Try to find a boundary in table 't'. (A 'boundary' is an integer index 
- ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent 
- ** and 'maxinteger' if t[maxinteger] is present.) 
- ** (In the next explanation, we use Lua indices, that is, with base 1. 
- ** The code itself uses base 0 when indexing the array part of the table.) 
- ** The code starts with 'limit = t->alimit', a position in the array 
- ** part that may be a boundary. 
- ** 
- ** (1) If 't[limit]' is empty, there must be a boundary before it. 
- ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' 
- ** is present. If so, it is a boundary. Otherwise, do a binary search 
- ** between 0 and limit to find a boundary. In both cases, try to 
- ** use this boundary as the new 'alimit', as a hint for the next call. 
- ** 
- ** (2) If 't[limit]' is not empty and the array has more elements 
- ** after 'limit', try to find a boundary there. Again, try first 
- ** the special case (which should be quite frequent) where 'limit+1' 
- ** is empty, so that 'limit' is a boundary. Otherwise, check the 
- ** last element of the array part. If it is empty, there must be a 
- ** boundary between the old limit (present) and the last element 
- ** (absent), which is found with a binary search. (This boundary always 
- ** can be a new limit.) 
- ** 
- ** (3) The last case is when there are no elements in the array part 
- ** (limit == 0) or its last element (the new limit) is present. 
- ** In this case, must check the hash part. If there is no hash part 
- ** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call 
- ** 'hash_search' to find a boundary in the hash part of the table. 
- ** (In those cases, the boundary is not inside the array part, and 
- ** therefore cannot be used as a new limit.) 
- */ 
- lua_Unsigned luaH_getn (Table *t) { 
-   unsigned int limit = t->alimit; 
-   if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */ 
-     /* there must be a boundary before 'limit' */ 
-     if (limit >= 2 && !isempty(&t->array[limit - 2])) { 
-       /* 'limit - 1' is a boundary; can it be a new limit? */ 
-       if (ispow2realasize(t) && !ispow2(limit - 1)) { 
-         t->alimit = limit - 1; 
-         setnorealasize(t);  /* now 'alimit' is not the real size */ 
-       } 
-       return limit - 1; 
-     } 
-     else {  /* must search for a boundary in [0, limit] */ 
-       unsigned int boundary = binsearch(t->array, 0, limit); 
-       /* can this boundary represent the real size of the array? */ 
-       if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { 
-         t->alimit = boundary;  /* use it as the new limit */ 
-         setnorealasize(t); 
-       } 
-       return boundary; 
-     } 
-   } 
-   /* 'limit' is zero or present in table */ 
-   if (!limitequalsasize(t)) {  /* (2)? */ 
-     /* 'limit' > 0 and array has more elements after 'limit' */ 
-     if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */ 
-       return limit;  /* this is the boundary */ 
-     /* else, try last element in the array */ 
-     limit = luaH_realasize(t); 
-     if (isempty(&t->array[limit - 1])) {  /* empty? */ 
-       /* there must be a boundary in the array after old limit, 
-          and it must be a valid new limit */ 
-       unsigned int boundary = binsearch(t->array, t->alimit, limit); 
-       t->alimit = boundary; 
-       return boundary; 
-     } 
-     /* else, new limit is present in the table; check the hash part */ 
-   } 
-   /* (3) 'limit' is the last element and either is zero or present in table */ 
-   lua_assert(limit == luaH_realasize(t) && 
-              (limit == 0 || !isempty(&t->array[limit - 1]))); 
-   if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) 
-     return limit;  /* 'limit + 1' is absent */ 
-   else  /* 'limit + 1' is also present */ 
-     return hash_search(t, limit); 
- } 
-   
-   
-   
- #if defined(LUA_DEBUG) 
-   
- /* export these functions for the test library */ 
-   
- Node *luaH_mainposition (const Table *t, const TValue *key) { 
-   return mainpositionTV(t, key); 
- } 
-   
- int luaH_isdummy (const Table *t) { return isdummy(t); } 
-   
- #endif 
-