- // Copyright 2007, Google Inc. 
- // All rights reserved. 
- // 
- // Redistribution and use in source and binary forms, with or without 
- // modification, are permitted provided that the following conditions are 
- // met: 
- // 
- //     * Redistributions of source code must retain the above copyright 
- // notice, this list of conditions and the following disclaimer. 
- //     * Redistributions in binary form must reproduce the above 
- // copyright notice, this list of conditions and the following disclaimer 
- // in the documentation and/or other materials provided with the 
- // distribution. 
- //     * Neither the name of Google Inc. nor the names of its 
- // contributors may be used to endorse or promote products derived from 
- // this software without specific prior written permission. 
- // 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
-   
-   
- // Google Mock - a framework for writing C++ mock classes. 
- // 
- // This file implements some commonly used argument matchers.  More 
- // matchers can be defined by the user implementing the 
- // MatcherInterface<T> interface if necessary. 
-   
- // GOOGLETEST_CM0002 DO NOT DELETE 
-   
- #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ 
- #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ 
-   
- #include <math.h> 
- #include <algorithm> 
- #include <iterator> 
- #include <limits> 
- #include <ostream>  // NOLINT 
- #include <sstream> 
- #include <string> 
- #include <utility> 
- #include <vector> 
- #include "gtest/gtest.h" 
- #include "gmock/internal/gmock-internal-utils.h" 
- #include "gmock/internal/gmock-port.h" 
-   
- #if GTEST_HAS_STD_INITIALIZER_LIST_ 
- # include <initializer_list>  // NOLINT -- must be after gtest.h 
- #endif 
-   
- GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ 
- /* class A needs to have dll-interface to be used by clients of class B */) 
-   
- namespace testing { 
-   
- // To implement a matcher Foo for type T, define: 
- //   1. a class FooMatcherImpl that implements the 
- //      MatcherInterface<T> interface, and 
- //   2. a factory function that creates a Matcher<T> object from a 
- //      FooMatcherImpl*. 
- // 
- // The two-level delegation design makes it possible to allow a user 
- // to write "v" instead of "Eq(v)" where a Matcher is expected, which 
- // is impossible if we pass matchers by pointers.  It also eases 
- // ownership management as Matcher objects can now be copied like 
- // plain values. 
-   
- // MatchResultListener is an abstract class.  Its << operator can be 
- // used by a matcher to explain why a value matches or doesn't match. 
- // 
- // FIXME: add method 
- //   bool InterestedInWhy(bool result) const; 
- // to indicate whether the listener is interested in why the match 
- // result is 'result'. 
- class MatchResultListener { 
-  public: 
-   // Creates a listener object with the given underlying ostream.  The 
-   // listener does not own the ostream, and does not dereference it 
-   // in the constructor or destructor. 
-   explicit MatchResultListener(::std::ostream* os) : stream_(os) {} 
-   virtual ~MatchResultListener() = 0;  // Makes this class abstract. 
-   
-   // Streams x to the underlying ostream; does nothing if the ostream 
-   // is NULL. 
-   template <typename T> 
-   MatchResultListener& operator<<(const T& x) { 
-     if (stream_ != NULL) 
-       *stream_ << x; 
-     return *this; 
-   } 
-   
-   // Returns the underlying ostream. 
-   ::std::ostream* stream() { return stream_; } 
-   
-   // Returns true iff the listener is interested in an explanation of 
-   // the match result.  A matcher's MatchAndExplain() method can use 
-   // this information to avoid generating the explanation when no one 
-   // intends to hear it. 
-   bool IsInterested() const { return stream_ != NULL; } 
-   
-  private: 
-   ::std::ostream* const stream_; 
-   
-   GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); 
- }; 
-   
- inline MatchResultListener::~MatchResultListener() { 
- } 
-   
- // An instance of a subclass of this knows how to describe itself as a 
- // matcher. 
- class MatcherDescriberInterface { 
-  public: 
-   virtual ~MatcherDescriberInterface() {} 
-   
-   // Describes this matcher to an ostream.  The function should print 
-   // a verb phrase that describes the property a value matching this 
-   // matcher should have.  The subject of the verb phrase is the value 
-   // being matched.  For example, the DescribeTo() method of the Gt(7) 
-   // matcher prints "is greater than 7". 
-   virtual void DescribeTo(::std::ostream* os) const = 0; 
-   
-   // Describes the negation of this matcher to an ostream.  For 
-   // example, if the description of this matcher is "is greater than 
-   // 7", the negated description could be "is not greater than 7". 
-   // You are not required to override this when implementing 
-   // MatcherInterface, but it is highly advised so that your matcher 
-   // can produce good error messages. 
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "not ("; 
-     DescribeTo(os); 
-     *os << ")"; 
-   } 
- }; 
-   
- // The implementation of a matcher. 
- template <typename T> 
- class MatcherInterface : public MatcherDescriberInterface { 
-  public: 
-   // Returns true iff the matcher matches x; also explains the match 
-   // result to 'listener' if necessary (see the next paragraph), in 
-   // the form of a non-restrictive relative clause ("which ...", 
-   // "whose ...", etc) that describes x.  For example, the 
-   // MatchAndExplain() method of the Pointee(...) matcher should 
-   // generate an explanation like "which points to ...". 
-   // 
-   // Implementations of MatchAndExplain() should add an explanation of 
-   // the match result *if and only if* they can provide additional 
-   // information that's not already present (or not obvious) in the 
-   // print-out of x and the matcher's description.  Whether the match 
-   // succeeds is not a factor in deciding whether an explanation is 
-   // needed, as sometimes the caller needs to print a failure message 
-   // when the match succeeds (e.g. when the matcher is used inside 
-   // Not()). 
-   // 
-   // For example, a "has at least 10 elements" matcher should explain 
-   // what the actual element count is, regardless of the match result, 
-   // as it is useful information to the reader; on the other hand, an 
-   // "is empty" matcher probably only needs to explain what the actual 
-   // size is when the match fails, as it's redundant to say that the 
-   // size is 0 when the value is already known to be empty. 
-   // 
-   // You should override this method when defining a new matcher. 
-   // 
-   // It's the responsibility of the caller (Google Mock) to guarantee 
-   // that 'listener' is not NULL.  This helps to simplify a matcher's 
-   // implementation when it doesn't care about the performance, as it 
-   // can talk to 'listener' without checking its validity first. 
-   // However, in order to implement dummy listeners efficiently, 
-   // listener->stream() may be NULL. 
-   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; 
-   
-   // Inherits these methods from MatcherDescriberInterface: 
-   //   virtual void DescribeTo(::std::ostream* os) const = 0; 
-   //   virtual void DescribeNegationTo(::std::ostream* os) const; 
- }; 
-   
- namespace internal { 
-   
- // Converts a MatcherInterface<T> to a MatcherInterface<const T&>. 
- template <typename T> 
- class MatcherInterfaceAdapter : public MatcherInterface<const T&> { 
-  public: 
-   explicit MatcherInterfaceAdapter(const MatcherInterface<T>* impl) 
-       : impl_(impl) {} 
-   virtual ~MatcherInterfaceAdapter() { delete impl_; } 
-   
-   virtual void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } 
-   
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     impl_->DescribeNegationTo(os); 
-   } 
-   
-   virtual bool MatchAndExplain(const T& x, 
-                                MatchResultListener* listener) const { 
-     return impl_->MatchAndExplain(x, listener); 
-   } 
-   
-  private: 
-   const MatcherInterface<T>* const impl_; 
-   
-   GTEST_DISALLOW_COPY_AND_ASSIGN_(MatcherInterfaceAdapter); 
- }; 
-   
- }  // namespace internal 
-   
- // A match result listener that stores the explanation in a string. 
- class StringMatchResultListener : public MatchResultListener { 
-  public: 
-   StringMatchResultListener() : MatchResultListener(&ss_) {} 
-   
-   // Returns the explanation accumulated so far. 
-   std::string str() const { return ss_.str(); } 
-   
-   // Clears the explanation accumulated so far. 
-   void Clear() { ss_.str(""); } 
-   
-  private: 
-   ::std::stringstream ss_; 
-   
-   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); 
- }; 
-   
- namespace internal { 
-   
- struct AnyEq { 
-   template <typename A, typename B> 
-   bool operator()(const A& a, const B& b) const { return a == b; } 
- }; 
- struct AnyNe { 
-   template <typename A, typename B> 
-   bool operator()(const A& a, const B& b) const { return a != b; } 
- }; 
- struct AnyLt { 
-   template <typename A, typename B> 
-   bool operator()(const A& a, const B& b) const { return a < b; } 
- }; 
- struct AnyGt { 
-   template <typename A, typename B> 
-   bool operator()(const A& a, const B& b) const { return a > b; } 
- }; 
- struct AnyLe { 
-   template <typename A, typename B> 
-   bool operator()(const A& a, const B& b) const { return a <= b; } 
- }; 
- struct AnyGe { 
-   template <typename A, typename B> 
-   bool operator()(const A& a, const B& b) const { return a >= b; } 
- }; 
-   
- // A match result listener that ignores the explanation. 
- class DummyMatchResultListener : public MatchResultListener { 
-  public: 
-   DummyMatchResultListener() : MatchResultListener(NULL) {} 
-   
-  private: 
-   GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); 
- }; 
-   
- // A match result listener that forwards the explanation to a given 
- // ostream.  The difference between this and MatchResultListener is 
- // that the former is concrete. 
- class StreamMatchResultListener : public MatchResultListener { 
-  public: 
-   explicit StreamMatchResultListener(::std::ostream* os) 
-       : MatchResultListener(os) {} 
-   
-  private: 
-   GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); 
- }; 
-   
- // An internal class for implementing Matcher<T>, which will derive 
- // from it.  We put functionalities common to all Matcher<T> 
- // specializations here to avoid code duplication. 
- template <typename T> 
- class MatcherBase { 
-  public: 
-   // Returns true iff the matcher matches x; also explains the match 
-   // result to 'listener'. 
-   bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, 
-                        MatchResultListener* listener) const { 
-     return impl_->MatchAndExplain(x, listener); 
-   } 
-   
-   // Returns true iff this matcher matches x. 
-   bool Matches(GTEST_REFERENCE_TO_CONST_(T) x) const { 
-     DummyMatchResultListener dummy; 
-     return MatchAndExplain(x, &dummy); 
-   } 
-   
-   // Describes this matcher to an ostream. 
-   void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } 
-   
-   // Describes the negation of this matcher to an ostream. 
-   void DescribeNegationTo(::std::ostream* os) const { 
-     impl_->DescribeNegationTo(os); 
-   } 
-   
-   // Explains why x matches, or doesn't match, the matcher. 
-   void ExplainMatchResultTo(GTEST_REFERENCE_TO_CONST_(T) x, 
-                             ::std::ostream* os) const { 
-     StreamMatchResultListener listener(os); 
-     MatchAndExplain(x, &listener); 
-   } 
-   
-   // Returns the describer for this matcher object; retains ownership 
-   // of the describer, which is only guaranteed to be alive when 
-   // this matcher object is alive. 
-   const MatcherDescriberInterface* GetDescriber() const { 
-     return impl_.get(); 
-   } 
-   
-  protected: 
-   MatcherBase() {} 
-   
-   // Constructs a matcher from its implementation. 
-   explicit MatcherBase( 
-       const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) 
-       : impl_(impl) {} 
-   
-   template <typename U> 
-   explicit MatcherBase( 
-       const MatcherInterface<U>* impl, 
-       typename internal::EnableIf< 
-           !internal::IsSame<U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = 
-           NULL) 
-       : impl_(new internal::MatcherInterfaceAdapter<U>(impl)) {} 
-   
-   virtual ~MatcherBase() {} 
-   
-  private: 
-   // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar 
-   // interfaces.  The former dynamically allocates a chunk of memory 
-   // to hold the reference count, while the latter tracks all 
-   // references using a circular linked list without allocating 
-   // memory.  It has been observed that linked_ptr performs better in 
-   // typical scenarios.  However, shared_ptr can out-perform 
-   // linked_ptr when there are many more uses of the copy constructor 
-   // than the default constructor. 
-   // 
-   // If performance becomes a problem, we should see if using 
-   // shared_ptr helps. 
-   ::testing::internal::linked_ptr< 
-       const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> > 
-       impl_; 
- }; 
-   
- }  // namespace internal 
-   
- // A Matcher<T> is a copyable and IMMUTABLE (except by assignment) 
- // object that can check whether a value of type T matches.  The 
- // implementation of Matcher<T> is just a linked_ptr to const 
- // MatcherInterface<T>, so copying is fairly cheap.  Don't inherit 
- // from Matcher! 
- template <typename T> 
- class Matcher : public internal::MatcherBase<T> { 
-  public: 
-   // Constructs a null matcher.  Needed for storing Matcher objects in STL 
-   // containers.  A default-constructed matcher is not yet initialized.  You 
-   // cannot use it until a valid value has been assigned to it. 
-   explicit Matcher() {}  // NOLINT 
-   
-   // Constructs a matcher from its implementation. 
-   explicit Matcher(const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) 
-       : internal::MatcherBase<T>(impl) {} 
-   
-   template <typename U> 
-   explicit Matcher(const MatcherInterface<U>* impl, 
-                    typename internal::EnableIf<!internal::IsSame< 
-                        U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = NULL) 
-       : internal::MatcherBase<T>(impl) {} 
-   
-   // Implicit constructor here allows people to write 
-   // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes 
-   Matcher(T value);  // NOLINT 
- }; 
-   
- // The following two specializations allow the user to write str 
- // instead of Eq(str) and "foo" instead of Eq("foo") when a std::string 
- // matcher is expected. 
- template <> 
- class GTEST_API_ Matcher<const std::string&> 
-     : public internal::MatcherBase<const std::string&> { 
-  public: 
-   Matcher() {} 
-   
-   explicit Matcher(const MatcherInterface<const std::string&>* impl) 
-       : internal::MatcherBase<const std::string&>(impl) {} 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a std::string object. 
-   Matcher(const std::string& s);  // NOLINT 
-   
- #if GTEST_HAS_GLOBAL_STRING 
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a ::string object. 
-   Matcher(const ::string& s);  // NOLINT 
- #endif                         // GTEST_HAS_GLOBAL_STRING 
-   
-   // Allows the user to write "foo" instead of Eq("foo") sometimes. 
-   Matcher(const char* s);  // NOLINT 
- }; 
-   
- template <> 
- class GTEST_API_ Matcher<std::string> 
-     : public internal::MatcherBase<std::string> { 
-  public: 
-   Matcher() {} 
-   
-   explicit Matcher(const MatcherInterface<const std::string&>* impl) 
-       : internal::MatcherBase<std::string>(impl) {} 
-   explicit Matcher(const MatcherInterface<std::string>* impl) 
-       : internal::MatcherBase<std::string>(impl) {} 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a string object. 
-   Matcher(const std::string& s);  // NOLINT 
-   
- #if GTEST_HAS_GLOBAL_STRING 
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a ::string object. 
-   Matcher(const ::string& s);  // NOLINT 
- #endif                         // GTEST_HAS_GLOBAL_STRING 
-   
-   // Allows the user to write "foo" instead of Eq("foo") sometimes. 
-   Matcher(const char* s);  // NOLINT 
- }; 
-   
- #if GTEST_HAS_GLOBAL_STRING 
- // The following two specializations allow the user to write str 
- // instead of Eq(str) and "foo" instead of Eq("foo") when a ::string 
- // matcher is expected. 
- template <> 
- class GTEST_API_ Matcher<const ::string&> 
-     : public internal::MatcherBase<const ::string&> { 
-  public: 
-   Matcher() {} 
-   
-   explicit Matcher(const MatcherInterface<const ::string&>* impl) 
-       : internal::MatcherBase<const ::string&>(impl) {} 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a std::string object. 
-   Matcher(const std::string& s);  // NOLINT 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a ::string object. 
-   Matcher(const ::string& s);  // NOLINT 
-   
-   // Allows the user to write "foo" instead of Eq("foo") sometimes. 
-   Matcher(const char* s);  // NOLINT 
- }; 
-   
- template <> 
- class GTEST_API_ Matcher< ::string> 
-     : public internal::MatcherBase< ::string> { 
-  public: 
-   Matcher() {} 
-   
-   explicit Matcher(const MatcherInterface<const ::string&>* impl) 
-       : internal::MatcherBase< ::string>(impl) {} 
-   explicit Matcher(const MatcherInterface< ::string>* impl) 
-       : internal::MatcherBase< ::string>(impl) {} 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a std::string object. 
-   Matcher(const std::string& s);  // NOLINT 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a ::string object. 
-   Matcher(const ::string& s);  // NOLINT 
-   
-   // Allows the user to write "foo" instead of Eq("foo") sometimes. 
-   Matcher(const char* s);  // NOLINT 
- }; 
- #endif  // GTEST_HAS_GLOBAL_STRING 
-   
- #if GTEST_HAS_ABSL 
- // The following two specializations allow the user to write str 
- // instead of Eq(str) and "foo" instead of Eq("foo") when a absl::string_view 
- // matcher is expected. 
- template <> 
- class GTEST_API_ Matcher<const absl::string_view&> 
-     : public internal::MatcherBase<const absl::string_view&> { 
-  public: 
-   Matcher() {} 
-   
-   explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) 
-       : internal::MatcherBase<const absl::string_view&>(impl) {} 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a std::string object. 
-   Matcher(const std::string& s);  // NOLINT 
-   
- #if GTEST_HAS_GLOBAL_STRING 
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a ::string object. 
-   Matcher(const ::string& s);  // NOLINT 
- #endif                         // GTEST_HAS_GLOBAL_STRING 
-   
-   // Allows the user to write "foo" instead of Eq("foo") sometimes. 
-   Matcher(const char* s);  // NOLINT 
-   
-   // Allows the user to pass absl::string_views directly. 
-   Matcher(absl::string_view s);  // NOLINT 
- }; 
-   
- template <> 
- class GTEST_API_ Matcher<absl::string_view> 
-     : public internal::MatcherBase<absl::string_view> { 
-  public: 
-   Matcher() {} 
-   
-   explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) 
-       : internal::MatcherBase<absl::string_view>(impl) {} 
-   explicit Matcher(const MatcherInterface<absl::string_view>* impl) 
-       : internal::MatcherBase<absl::string_view>(impl) {} 
-   
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a std::string object. 
-   Matcher(const std::string& s);  // NOLINT 
-   
- #if GTEST_HAS_GLOBAL_STRING 
-   // Allows the user to write str instead of Eq(str) sometimes, where 
-   // str is a ::string object. 
-   Matcher(const ::string& s);  // NOLINT 
- #endif                         // GTEST_HAS_GLOBAL_STRING 
-   
-   // Allows the user to write "foo" instead of Eq("foo") sometimes. 
-   Matcher(const char* s);  // NOLINT 
-   
-   // Allows the user to pass absl::string_views directly. 
-   Matcher(absl::string_view s);  // NOLINT 
- }; 
- #endif  // GTEST_HAS_ABSL 
-   
- // Prints a matcher in a human-readable format. 
- template <typename T> 
- std::ostream& operator<<(std::ostream& os, const Matcher<T>& matcher) { 
-   matcher.DescribeTo(&os); 
-   return os; 
- } 
-   
- // The PolymorphicMatcher class template makes it easy to implement a 
- // polymorphic matcher (i.e. a matcher that can match values of more 
- // than one type, e.g. Eq(n) and NotNull()). 
- // 
- // To define a polymorphic matcher, a user should provide an Impl 
- // class that has a DescribeTo() method and a DescribeNegationTo() 
- // method, and define a member function (or member function template) 
- // 
- //   bool MatchAndExplain(const Value& value, 
- //                        MatchResultListener* listener) const; 
- // 
- // See the definition of NotNull() for a complete example. 
- template <class Impl> 
- class PolymorphicMatcher { 
-  public: 
-   explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} 
-   
-   // Returns a mutable reference to the underlying matcher 
-   // implementation object. 
-   Impl& mutable_impl() { return impl_; } 
-   
-   // Returns an immutable reference to the underlying matcher 
-   // implementation object. 
-   const Impl& impl() const { return impl_; } 
-   
-   template <typename T> 
-   operator Matcher<T>() const { 
-     return Matcher<T>(new MonomorphicImpl<GTEST_REFERENCE_TO_CONST_(T)>(impl_)); 
-   } 
-   
-  private: 
-   template <typename T> 
-   class MonomorphicImpl : public MatcherInterface<T> { 
-    public: 
-     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       impl_.DescribeTo(os); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       impl_.DescribeNegationTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { 
-       return impl_.MatchAndExplain(x, listener); 
-     } 
-   
-    private: 
-     const Impl impl_; 
-   
-     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); 
-   }; 
-   
-   Impl impl_; 
-   
-   GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); 
- }; 
-   
- // Creates a matcher from its implementation.  This is easier to use 
- // than the Matcher<T> constructor as it doesn't require you to 
- // explicitly write the template argument, e.g. 
- // 
- //   MakeMatcher(foo); 
- // vs 
- //   Matcher<const string&>(foo); 
- template <typename T> 
- inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { 
-   return Matcher<T>(impl); 
- } 
-   
- // Creates a polymorphic matcher from its implementation.  This is 
- // easier to use than the PolymorphicMatcher<Impl> constructor as it 
- // doesn't require you to explicitly write the template argument, e.g. 
- // 
- //   MakePolymorphicMatcher(foo); 
- // vs 
- //   PolymorphicMatcher<TypeOfFoo>(foo); 
- template <class Impl> 
- inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { 
-   return PolymorphicMatcher<Impl>(impl); 
- } 
-   
- // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION 
- // and MUST NOT BE USED IN USER CODE!!! 
- namespace internal { 
-   
- // The MatcherCastImpl class template is a helper for implementing 
- // MatcherCast().  We need this helper in order to partially 
- // specialize the implementation of MatcherCast() (C++ allows 
- // class/struct templates to be partially specialized, but not 
- // function templates.). 
-   
- // This general version is used when MatcherCast()'s argument is a 
- // polymorphic matcher (i.e. something that can be converted to a 
- // Matcher but is not one yet; for example, Eq(value)) or a value (for 
- // example, "hello"). 
- template <typename T, typename M> 
- class MatcherCastImpl { 
-  public: 
-   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { 
-     // M can be a polymorphic matcher, in which case we want to use 
-     // its conversion operator to create Matcher<T>.  Or it can be a value 
-     // that should be passed to the Matcher<T>'s constructor. 
-     // 
-     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a 
-     // polymorphic matcher because it'll be ambiguous if T has an implicit 
-     // constructor from M (this usually happens when T has an implicit 
-     // constructor from any type). 
-     // 
-     // It won't work to unconditionally implict_cast 
-     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger 
-     // a user-defined conversion from M to T if one exists (assuming M is 
-     // a value). 
-     return CastImpl( 
-         polymorphic_matcher_or_value, 
-         BooleanConstant< 
-             internal::ImplicitlyConvertible<M, Matcher<T> >::value>(), 
-         BooleanConstant< 
-             internal::ImplicitlyConvertible<M, T>::value>()); 
-   } 
-   
-  private: 
-   template <bool Ignore> 
-   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, 
-                              BooleanConstant<true> /* convertible_to_matcher */, 
-                              BooleanConstant<Ignore>) { 
-     // M is implicitly convertible to Matcher<T>, which means that either 
-     // M is a polymorphic matcher or Matcher<T> has an implicit constructor 
-     // from M.  In both cases using the implicit conversion will produce a 
-     // matcher. 
-     // 
-     // Even if T has an implicit constructor from M, it won't be called because 
-     // creating Matcher<T> would require a chain of two user-defined conversions 
-     // (first to create T from M and then to create Matcher<T> from T). 
-     return polymorphic_matcher_or_value; 
-   } 
-   
-   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic 
-   // matcher. It's a value of a type implicitly convertible to T. Use direct 
-   // initialization to create a matcher. 
-   static Matcher<T> CastImpl( 
-       const M& value, BooleanConstant<false> /* convertible_to_matcher */, 
-       BooleanConstant<true> /* convertible_to_T */) { 
-     return Matcher<T>(ImplicitCast_<T>(value)); 
-   } 
-   
-   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use 
-   // polymorphic matcher Eq(value) in this case. 
-   // 
-   // Note that we first attempt to perform an implicit cast on the value and 
-   // only fall back to the polymorphic Eq() matcher afterwards because the 
-   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end 
-   // which might be undefined even when Rhs is implicitly convertible to Lhs 
-   // (e.g. std::pair<const int, int> vs. std::pair<int, int>). 
-   // 
-   // We don't define this method inline as we need the declaration of Eq(). 
-   static Matcher<T> CastImpl( 
-       const M& value, BooleanConstant<false> /* convertible_to_matcher */, 
-       BooleanConstant<false> /* convertible_to_T */); 
- }; 
-   
- // This more specialized version is used when MatcherCast()'s argument 
- // is already a Matcher.  This only compiles when type T can be 
- // statically converted to type U. 
- template <typename T, typename U> 
- class MatcherCastImpl<T, Matcher<U> > { 
-  public: 
-   static Matcher<T> Cast(const Matcher<U>& source_matcher) { 
-     return Matcher<T>(new Impl(source_matcher)); 
-   } 
-   
-  private: 
-   class Impl : public MatcherInterface<T> { 
-    public: 
-     explicit Impl(const Matcher<U>& source_matcher) 
-         : source_matcher_(source_matcher) {} 
-   
-     // We delegate the matching logic to the source matcher. 
-     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { 
- #if GTEST_LANG_CXX11 
-       using FromType = typename std::remove_cv<typename std::remove_pointer< 
-           typename std::remove_reference<T>::type>::type>::type; 
-       using ToType = typename std::remove_cv<typename std::remove_pointer< 
-           typename std::remove_reference<U>::type>::type>::type; 
-       // Do not allow implicitly converting base*/& to derived*/&. 
-       static_assert( 
-           // Do not trigger if only one of them is a pointer. That implies a 
-           // regular conversion and not a down_cast. 
-           (std::is_pointer<typename std::remove_reference<T>::type>::value != 
-            std::is_pointer<typename std::remove_reference<U>::type>::value) || 
-               std::is_same<FromType, ToType>::value || 
-               !std::is_base_of<FromType, ToType>::value, 
-           "Can't implicitly convert from <base> to <derived>"); 
- #endif  // GTEST_LANG_CXX11 
-   
-       return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); 
-     } 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       source_matcher_.DescribeTo(os); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       source_matcher_.DescribeNegationTo(os); 
-     } 
-   
-    private: 
-     const Matcher<U> source_matcher_; 
-   
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
- }; 
-   
- // This even more specialized version is used for efficiently casting 
- // a matcher to its own type. 
- template <typename T> 
- class MatcherCastImpl<T, Matcher<T> > { 
-  public: 
-   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } 
- }; 
-   
- }  // namespace internal 
-   
- // In order to be safe and clear, casting between different matcher 
- // types is done explicitly via MatcherCast<T>(m), which takes a 
- // matcher m and returns a Matcher<T>.  It compiles only when T can be 
- // statically converted to the argument type of m. 
- template <typename T, typename M> 
- inline Matcher<T> MatcherCast(const M& matcher) { 
-   return internal::MatcherCastImpl<T, M>::Cast(matcher); 
- } 
-   
- // Implements SafeMatcherCast(). 
- // 
- // We use an intermediate class to do the actual safe casting as Nokia's 
- // Symbian compiler cannot decide between 
- // template <T, M> ... (M) and 
- // template <T, U> ... (const Matcher<U>&) 
- // for function templates but can for member function templates. 
- template <typename T> 
- class SafeMatcherCastImpl { 
-  public: 
-   // This overload handles polymorphic matchers and values only since 
-   // monomorphic matchers are handled by the next one. 
-   template <typename M> 
-   static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { 
-     return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); 
-   } 
-   
-   // This overload handles monomorphic matchers. 
-   // 
-   // In general, if type T can be implicitly converted to type U, we can 
-   // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is 
-   // contravariant): just keep a copy of the original Matcher<U>, convert the 
-   // argument from type T to U, and then pass it to the underlying Matcher<U>. 
-   // The only exception is when U is a reference and T is not, as the 
-   // underlying Matcher<U> may be interested in the argument's address, which 
-   // is not preserved in the conversion from T to U. 
-   template <typename U> 
-   static inline Matcher<T> Cast(const Matcher<U>& matcher) { 
-     // Enforce that T can be implicitly converted to U. 
-     GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), 
-                           T_must_be_implicitly_convertible_to_U); 
-     // Enforce that we are not converting a non-reference type T to a reference 
-     // type U. 
-     GTEST_COMPILE_ASSERT_( 
-         internal::is_reference<T>::value || !internal::is_reference<U>::value, 
-         cannot_convert_non_reference_arg_to_reference); 
-     // In case both T and U are arithmetic types, enforce that the 
-     // conversion is not lossy. 
-     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; 
-     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; 
-     const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; 
-     const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; 
-     GTEST_COMPILE_ASSERT_( 
-         kTIsOther || kUIsOther || 
-         (internal::LosslessArithmeticConvertible<RawT, RawU>::value), 
-         conversion_of_arithmetic_types_must_be_lossless); 
-     return MatcherCast<T>(matcher); 
-   } 
- }; 
-   
- template <typename T, typename M> 
- inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { 
-   return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); 
- } 
-   
- // A<T>() returns a matcher that matches any value of type T. 
- template <typename T> 
- Matcher<T> A(); 
-   
- // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION 
- // and MUST NOT BE USED IN USER CODE!!! 
- namespace internal { 
-   
- // If the explanation is not empty, prints it to the ostream. 
- inline void PrintIfNotEmpty(const std::string& explanation, 
-                             ::std::ostream* os) { 
-   if (explanation != "" && os != NULL) { 
-     *os << ", " << explanation; 
-   } 
- } 
-   
- // Returns true if the given type name is easy to read by a human. 
- // This is used to decide whether printing the type of a value might 
- // be helpful. 
- inline bool IsReadableTypeName(const std::string& type_name) { 
-   // We consider a type name readable if it's short or doesn't contain 
-   // a template or function type. 
-   return (type_name.length() <= 20 || 
-           type_name.find_first_of("<(") == std::string::npos); 
- } 
-   
- // Matches the value against the given matcher, prints the value and explains 
- // the match result to the listener. Returns the match result. 
- // 'listener' must not be NULL. 
- // Value cannot be passed by const reference, because some matchers take a 
- // non-const argument. 
- template <typename Value, typename T> 
- bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, 
-                           MatchResultListener* listener) { 
-   if (!listener->IsInterested()) { 
-     // If the listener is not interested, we do not need to construct the 
-     // inner explanation. 
-     return matcher.Matches(value); 
-   } 
-   
-   StringMatchResultListener inner_listener; 
-   const bool match = matcher.MatchAndExplain(value, &inner_listener); 
-   
-   UniversalPrint(value, listener->stream()); 
- #if GTEST_HAS_RTTI 
-   const std::string& type_name = GetTypeName<Value>(); 
-   if (IsReadableTypeName(type_name)) 
-     *listener->stream() << " (of type " << type_name << ")"; 
- #endif 
-   PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
-   
-   return match; 
- } 
-   
- // An internal helper class for doing compile-time loop on a tuple's 
- // fields. 
- template <size_t N> 
- class TuplePrefix { 
-  public: 
-   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true 
-   // iff the first N fields of matcher_tuple matches the first N 
-   // fields of value_tuple, respectively. 
-   template <typename MatcherTuple, typename ValueTuple> 
-   static bool Matches(const MatcherTuple& matcher_tuple, 
-                       const ValueTuple& value_tuple) { 
-     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) 
-         && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); 
-   } 
-   
-   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) 
-   // describes failures in matching the first N fields of matchers 
-   // against the first N fields of values.  If there is no failure, 
-   // nothing will be streamed to os. 
-   template <typename MatcherTuple, typename ValueTuple> 
-   static void ExplainMatchFailuresTo(const MatcherTuple& matchers, 
-                                      const ValueTuple& values, 
-                                      ::std::ostream* os) { 
-     // First, describes failures in the first N - 1 fields. 
-     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); 
-   
-     // Then describes the failure (if any) in the (N - 1)-th (0-based) 
-     // field. 
-     typename tuple_element<N - 1, MatcherTuple>::type matcher = 
-         get<N - 1>(matchers); 
-     typedef typename tuple_element<N - 1, ValueTuple>::type Value; 
-     GTEST_REFERENCE_TO_CONST_(Value) value = get<N - 1>(values); 
-     StringMatchResultListener listener; 
-     if (!matcher.MatchAndExplain(value, &listener)) { 
-       // FIXME: include in the message the name of the parameter 
-       // as used in MOCK_METHOD*() when possible. 
-       *os << "  Expected arg #" << N - 1 << ": "; 
-       get<N - 1>(matchers).DescribeTo(os); 
-       *os << "\n           Actual: "; 
-       // We remove the reference in type Value to prevent the 
-       // universal printer from printing the address of value, which 
-       // isn't interesting to the user most of the time.  The 
-       // matcher's MatchAndExplain() method handles the case when 
-       // the address is interesting. 
-       internal::UniversalPrint(value, os); 
-       PrintIfNotEmpty(listener.str(), os); 
-       *os << "\n"; 
-     } 
-   } 
- }; 
-   
- // The base case. 
- template <> 
- class TuplePrefix<0> { 
-  public: 
-   template <typename MatcherTuple, typename ValueTuple> 
-   static bool Matches(const MatcherTuple& /* matcher_tuple */, 
-                       const ValueTuple& /* value_tuple */) { 
-     return true; 
-   } 
-   
-   template <typename MatcherTuple, typename ValueTuple> 
-   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, 
-                                      const ValueTuple& /* values */, 
-                                      ::std::ostream* /* os */) {} 
- }; 
-   
- // TupleMatches(matcher_tuple, value_tuple) returns true iff all 
- // matchers in matcher_tuple match the corresponding fields in 
- // value_tuple.  It is a compiler error if matcher_tuple and 
- // value_tuple have different number of fields or incompatible field 
- // types. 
- template <typename MatcherTuple, typename ValueTuple> 
- bool TupleMatches(const MatcherTuple& matcher_tuple, 
-                   const ValueTuple& value_tuple) { 
-   // Makes sure that matcher_tuple and value_tuple have the same 
-   // number of fields. 
-   GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == 
-                         tuple_size<ValueTuple>::value, 
-                         matcher_and_value_have_different_numbers_of_fields); 
-   return TuplePrefix<tuple_size<ValueTuple>::value>:: 
-       Matches(matcher_tuple, value_tuple); 
- } 
-   
- // Describes failures in matching matchers against values.  If there 
- // is no failure, nothing will be streamed to os. 
- template <typename MatcherTuple, typename ValueTuple> 
- void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, 
-                                 const ValueTuple& values, 
-                                 ::std::ostream* os) { 
-   TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( 
-       matchers, values, os); 
- } 
-   
- // TransformTupleValues and its helper. 
- // 
- // TransformTupleValuesHelper hides the internal machinery that 
- // TransformTupleValues uses to implement a tuple traversal. 
- template <typename Tuple, typename Func, typename OutIter> 
- class TransformTupleValuesHelper { 
-  private: 
-   typedef ::testing::tuple_size<Tuple> TupleSize; 
-   
-  public: 
-   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. 
-   // Returns the final value of 'out' in case the caller needs it. 
-   static OutIter Run(Func f, const Tuple& t, OutIter out) { 
-     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); 
-   } 
-   
-  private: 
-   template <typename Tup, size_t kRemainingSize> 
-   struct IterateOverTuple { 
-     OutIter operator() (Func f, const Tup& t, OutIter out) const { 
-       *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t)); 
-       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); 
-     } 
-   }; 
-   template <typename Tup> 
-   struct IterateOverTuple<Tup, 0> { 
-     OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { 
-       return out; 
-     } 
-   }; 
- }; 
-   
- // Successively invokes 'f(element)' on each element of the tuple 't', 
- // appending each result to the 'out' iterator. Returns the final value 
- // of 'out'. 
- template <typename Tuple, typename Func, typename OutIter> 
- OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { 
-   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); 
- } 
-   
- // Implements A<T>(). 
- template <typename T> 
- class AnyMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { 
-  public: 
-   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) /* x */, 
-                                MatchResultListener* /* listener */) const { 
-     return true; 
-   } 
-   virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } 
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     // This is mostly for completeness' safe, as it's not very useful 
-     // to write Not(A<bool>()).  However we cannot completely rule out 
-     // such a possibility, and it doesn't hurt to be prepared. 
-     *os << "never matches"; 
-   } 
- }; 
-   
- // Implements _, a matcher that matches any value of any 
- // type.  This is a polymorphic matcher, so we need a template type 
- // conversion operator to make it appearing as a Matcher<T> for any 
- // type T. 
- class AnythingMatcher { 
-  public: 
-   template <typename T> 
-   operator Matcher<T>() const { return A<T>(); } 
- }; 
-   
- // Implements a matcher that compares a given value with a 
- // pre-supplied value using one of the ==, <=, <, etc, operators.  The 
- // two values being compared don't have to have the same type. 
- // 
- // The matcher defined here is polymorphic (for example, Eq(5) can be 
- // used to match an int, a short, a double, etc).  Therefore we use 
- // a template type conversion operator in the implementation. 
- // 
- // The following template definition assumes that the Rhs parameter is 
- // a "bare" type (i.e. neither 'const T' nor 'T&'). 
- template <typename D, typename Rhs, typename Op> 
- class ComparisonBase { 
-  public: 
-   explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {} 
-   template <typename Lhs> 
-   operator Matcher<Lhs>() const { 
-     return MakeMatcher(new Impl<Lhs>(rhs_)); 
-   } 
-   
-  private: 
-   template <typename Lhs> 
-   class Impl : public MatcherInterface<Lhs> { 
-    public: 
-     explicit Impl(const Rhs& rhs) : rhs_(rhs) {} 
-     virtual bool MatchAndExplain( 
-         Lhs lhs, MatchResultListener* /* listener */) const { 
-       return Op()(lhs, rhs_); 
-     } 
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << D::Desc() << " "; 
-       UniversalPrint(rhs_, os); 
-     } 
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << D::NegatedDesc() <<  " "; 
-       UniversalPrint(rhs_, os); 
-     } 
-    private: 
-     Rhs rhs_; 
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   Rhs rhs_; 
-   GTEST_DISALLOW_ASSIGN_(ComparisonBase); 
- }; 
-   
- template <typename Rhs> 
- class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> { 
-  public: 
-   explicit EqMatcher(const Rhs& rhs) 
-       : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { } 
-   static const char* Desc() { return "is equal to"; } 
-   static const char* NegatedDesc() { return "isn't equal to"; } 
- }; 
- template <typename Rhs> 
- class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> { 
-  public: 
-   explicit NeMatcher(const Rhs& rhs) 
-       : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { } 
-   static const char* Desc() { return "isn't equal to"; } 
-   static const char* NegatedDesc() { return "is equal to"; } 
- }; 
- template <typename Rhs> 
- class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> { 
-  public: 
-   explicit LtMatcher(const Rhs& rhs) 
-       : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { } 
-   static const char* Desc() { return "is <"; } 
-   static const char* NegatedDesc() { return "isn't <"; } 
- }; 
- template <typename Rhs> 
- class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> { 
-  public: 
-   explicit GtMatcher(const Rhs& rhs) 
-       : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { } 
-   static const char* Desc() { return "is >"; } 
-   static const char* NegatedDesc() { return "isn't >"; } 
- }; 
- template <typename Rhs> 
- class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> { 
-  public: 
-   explicit LeMatcher(const Rhs& rhs) 
-       : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { } 
-   static const char* Desc() { return "is <="; } 
-   static const char* NegatedDesc() { return "isn't <="; } 
- }; 
- template <typename Rhs> 
- class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> { 
-  public: 
-   explicit GeMatcher(const Rhs& rhs) 
-       : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { } 
-   static const char* Desc() { return "is >="; } 
-   static const char* NegatedDesc() { return "isn't >="; } 
- }; 
-   
- // Implements the polymorphic IsNull() matcher, which matches any raw or smart 
- // pointer that is NULL. 
- class IsNullMatcher { 
-  public: 
-   template <typename Pointer> 
-   bool MatchAndExplain(const Pointer& p, 
-                        MatchResultListener* /* listener */) const { 
- #if GTEST_LANG_CXX11 
-     return p == nullptr; 
- #else  // GTEST_LANG_CXX11 
-     return GetRawPointer(p) == NULL; 
- #endif  // GTEST_LANG_CXX11 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } 
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "isn't NULL"; 
-   } 
- }; 
-   
- // Implements the polymorphic NotNull() matcher, which matches any raw or smart 
- // pointer that is not NULL. 
- class NotNullMatcher { 
-  public: 
-   template <typename Pointer> 
-   bool MatchAndExplain(const Pointer& p, 
-                        MatchResultListener* /* listener */) const { 
- #if GTEST_LANG_CXX11 
-     return p != nullptr; 
- #else  // GTEST_LANG_CXX11 
-     return GetRawPointer(p) != NULL; 
- #endif  // GTEST_LANG_CXX11 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } 
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "is NULL"; 
-   } 
- }; 
-   
- // Ref(variable) matches any argument that is a reference to 
- // 'variable'.  This matcher is polymorphic as it can match any 
- // super type of the type of 'variable'. 
- // 
- // The RefMatcher template class implements Ref(variable).  It can 
- // only be instantiated with a reference type.  This prevents a user 
- // from mistakenly using Ref(x) to match a non-reference function 
- // argument.  For example, the following will righteously cause a 
- // compiler error: 
- // 
- //   int n; 
- //   Matcher<int> m1 = Ref(n);   // This won't compile. 
- //   Matcher<int&> m2 = Ref(n);  // This will compile. 
- template <typename T> 
- class RefMatcher; 
-   
- template <typename T> 
- class RefMatcher<T&> { 
-   // Google Mock is a generic framework and thus needs to support 
-   // mocking any function types, including those that take non-const 
-   // reference arguments.  Therefore the template parameter T (and 
-   // Super below) can be instantiated to either a const type or a 
-   // non-const type. 
-  public: 
-   // RefMatcher() takes a T& instead of const T&, as we want the 
-   // compiler to catch using Ref(const_value) as a matcher for a 
-   // non-const reference. 
-   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT 
-   
-   template <typename Super> 
-   operator Matcher<Super&>() const { 
-     // By passing object_ (type T&) to Impl(), which expects a Super&, 
-     // we make sure that Super is a super type of T.  In particular, 
-     // this catches using Ref(const_value) as a matcher for a 
-     // non-const reference, as you cannot implicitly convert a const 
-     // reference to a non-const reference. 
-     return MakeMatcher(new Impl<Super>(object_)); 
-   } 
-   
-  private: 
-   template <typename Super> 
-   class Impl : public MatcherInterface<Super&> { 
-    public: 
-     explicit Impl(Super& x) : object_(x) {}  // NOLINT 
-   
-     // MatchAndExplain() takes a Super& (as opposed to const Super&) 
-     // in order to match the interface MatcherInterface<Super&>. 
-     virtual bool MatchAndExplain( 
-         Super& x, MatchResultListener* listener) const { 
-       *listener << "which is located @" << static_cast<const void*>(&x); 
-       return &x == &object_; 
-     } 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "references the variable "; 
-       UniversalPrinter<Super&>::Print(object_, os); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "does not reference the variable "; 
-       UniversalPrinter<Super&>::Print(object_, os); 
-     } 
-   
-    private: 
-     const Super& object_; 
-   
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-   T& object_; 
-   
-   GTEST_DISALLOW_ASSIGN_(RefMatcher); 
- }; 
-   
- // Polymorphic helper functions for narrow and wide string matchers. 
- inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { 
-   return String::CaseInsensitiveCStringEquals(lhs, rhs); 
- } 
-   
- inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, 
-                                          const wchar_t* rhs) { 
-   return String::CaseInsensitiveWideCStringEquals(lhs, rhs); 
- } 
-   
- // String comparison for narrow or wide strings that can have embedded NUL 
- // characters. 
- template <typename StringType> 
- bool CaseInsensitiveStringEquals(const StringType& s1, 
-                                  const StringType& s2) { 
-   // Are the heads equal? 
-   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { 
-     return false; 
-   } 
-   
-   // Skip the equal heads. 
-   const typename StringType::value_type nul = 0; 
-   const size_t i1 = s1.find(nul), i2 = s2.find(nul); 
-   
-   // Are we at the end of either s1 or s2? 
-   if (i1 == StringType::npos || i2 == StringType::npos) { 
-     return i1 == i2; 
-   } 
-   
-   // Are the tails equal? 
-   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); 
- } 
-   
- // String matchers. 
-   
- // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. 
- template <typename StringType> 
- class StrEqualityMatcher { 
-  public: 
-   StrEqualityMatcher(const StringType& str, bool expect_eq, 
-                      bool case_sensitive) 
-       : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} 
-   
- #if GTEST_HAS_ABSL 
-   bool MatchAndExplain(const absl::string_view& s, 
-                        MatchResultListener* listener) const { 
-     if (s.data() == NULL) { 
-       return !expect_eq_; 
-     } 
-     // This should fail to compile if absl::string_view is used with wide 
-     // strings. 
-     const StringType& str = string(s); 
-     return MatchAndExplain(str, listener); 
-   } 
- #endif  // GTEST_HAS_ABSL 
-   
-   // Accepts pointer types, particularly: 
-   //   const char* 
-   //   char* 
-   //   const wchar_t* 
-   //   wchar_t* 
-   template <typename CharType> 
-   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
-     if (s == NULL) { 
-       return !expect_eq_; 
-     } 
-     return MatchAndExplain(StringType(s), listener); 
-   } 
-   
-   // Matches anything that can convert to StringType. 
-   // 
-   // This is a template, not just a plain function with const StringType&, 
-   // because absl::string_view has some interfering non-explicit constructors. 
-   template <typename MatcheeStringType> 
-   bool MatchAndExplain(const MatcheeStringType& s, 
-                        MatchResultListener* /* listener */) const { 
-     const StringType& s2(s); 
-     const bool eq = case_sensitive_ ? s2 == string_ : 
-         CaseInsensitiveStringEquals(s2, string_); 
-     return expect_eq_ == eq; 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     DescribeToHelper(expect_eq_, os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     DescribeToHelper(!expect_eq_, os); 
-   } 
-   
-  private: 
-   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { 
-     *os << (expect_eq ? "is " : "isn't "); 
-     *os << "equal to "; 
-     if (!case_sensitive_) { 
-       *os << "(ignoring case) "; 
-     } 
-     UniversalPrint(string_, os); 
-   } 
-   
-   const StringType string_; 
-   const bool expect_eq_; 
-   const bool case_sensitive_; 
-   
-   GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); 
- }; 
-   
- // Implements the polymorphic HasSubstr(substring) matcher, which 
- // can be used as a Matcher<T> as long as T can be converted to a 
- // string. 
- template <typename StringType> 
- class HasSubstrMatcher { 
-  public: 
-   explicit HasSubstrMatcher(const StringType& substring) 
-       : substring_(substring) {} 
-   
- #if GTEST_HAS_ABSL 
-   bool MatchAndExplain(const absl::string_view& s, 
-                        MatchResultListener* listener) const { 
-     if (s.data() == NULL) { 
-       return false; 
-     } 
-     // This should fail to compile if absl::string_view is used with wide 
-     // strings. 
-     const StringType& str = string(s); 
-     return MatchAndExplain(str, listener); 
-   } 
- #endif  // GTEST_HAS_ABSL 
-   
-   // Accepts pointer types, particularly: 
-   //   const char* 
-   //   char* 
-   //   const wchar_t* 
-   //   wchar_t* 
-   template <typename CharType> 
-   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
-     return s != NULL && MatchAndExplain(StringType(s), listener); 
-   } 
-   
-   // Matches anything that can convert to StringType. 
-   // 
-   // This is a template, not just a plain function with const StringType&, 
-   // because absl::string_view has some interfering non-explicit constructors. 
-   template <typename MatcheeStringType> 
-   bool MatchAndExplain(const MatcheeStringType& s, 
-                        MatchResultListener* /* listener */) const { 
-     const StringType& s2(s); 
-     return s2.find(substring_) != StringType::npos; 
-   } 
-   
-   // Describes what this matcher matches. 
-   void DescribeTo(::std::ostream* os) const { 
-     *os << "has substring "; 
-     UniversalPrint(substring_, os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "has no substring "; 
-     UniversalPrint(substring_, os); 
-   } 
-   
-  private: 
-   const StringType substring_; 
-   
-   GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); 
- }; 
-   
- // Implements the polymorphic StartsWith(substring) matcher, which 
- // can be used as a Matcher<T> as long as T can be converted to a 
- // string. 
- template <typename StringType> 
- class StartsWithMatcher { 
-  public: 
-   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { 
-   } 
-   
- #if GTEST_HAS_ABSL 
-   bool MatchAndExplain(const absl::string_view& s, 
-                        MatchResultListener* listener) const { 
-     if (s.data() == NULL) { 
-       return false; 
-     } 
-     // This should fail to compile if absl::string_view is used with wide 
-     // strings. 
-     const StringType& str = string(s); 
-     return MatchAndExplain(str, listener); 
-   } 
- #endif  // GTEST_HAS_ABSL 
-   
-   // Accepts pointer types, particularly: 
-   //   const char* 
-   //   char* 
-   //   const wchar_t* 
-   //   wchar_t* 
-   template <typename CharType> 
-   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
-     return s != NULL && MatchAndExplain(StringType(s), listener); 
-   } 
-   
-   // Matches anything that can convert to StringType. 
-   // 
-   // This is a template, not just a plain function with const StringType&, 
-   // because absl::string_view has some interfering non-explicit constructors. 
-   template <typename MatcheeStringType> 
-   bool MatchAndExplain(const MatcheeStringType& s, 
-                        MatchResultListener* /* listener */) const { 
-     const StringType& s2(s); 
-     return s2.length() >= prefix_.length() && 
-         s2.substr(0, prefix_.length()) == prefix_; 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     *os << "starts with "; 
-     UniversalPrint(prefix_, os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "doesn't start with "; 
-     UniversalPrint(prefix_, os); 
-   } 
-   
-  private: 
-   const StringType prefix_; 
-   
-   GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); 
- }; 
-   
- // Implements the polymorphic EndsWith(substring) matcher, which 
- // can be used as a Matcher<T> as long as T can be converted to a 
- // string. 
- template <typename StringType> 
- class EndsWithMatcher { 
-  public: 
-   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} 
-   
- #if GTEST_HAS_ABSL 
-   bool MatchAndExplain(const absl::string_view& s, 
-                        MatchResultListener* listener) const { 
-     if (s.data() == NULL) { 
-       return false; 
-     } 
-     // This should fail to compile if absl::string_view is used with wide 
-     // strings. 
-     const StringType& str = string(s); 
-     return MatchAndExplain(str, listener); 
-   } 
- #endif  // GTEST_HAS_ABSL 
-   
-   // Accepts pointer types, particularly: 
-   //   const char* 
-   //   char* 
-   //   const wchar_t* 
-   //   wchar_t* 
-   template <typename CharType> 
-   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
-     return s != NULL && MatchAndExplain(StringType(s), listener); 
-   } 
-   
-   // Matches anything that can convert to StringType. 
-   // 
-   // This is a template, not just a plain function with const StringType&, 
-   // because absl::string_view has some interfering non-explicit constructors. 
-   template <typename MatcheeStringType> 
-   bool MatchAndExplain(const MatcheeStringType& s, 
-                        MatchResultListener* /* listener */) const { 
-     const StringType& s2(s); 
-     return s2.length() >= suffix_.length() && 
-         s2.substr(s2.length() - suffix_.length()) == suffix_; 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     *os << "ends with "; 
-     UniversalPrint(suffix_, os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "doesn't end with "; 
-     UniversalPrint(suffix_, os); 
-   } 
-   
-  private: 
-   const StringType suffix_; 
-   
-   GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); 
- }; 
-   
- // Implements polymorphic matchers MatchesRegex(regex) and 
- // ContainsRegex(regex), which can be used as a Matcher<T> as long as 
- // T can be converted to a string. 
- class MatchesRegexMatcher { 
-  public: 
-   MatchesRegexMatcher(const RE* regex, bool full_match) 
-       : regex_(regex), full_match_(full_match) {} 
-   
- #if GTEST_HAS_ABSL 
-   bool MatchAndExplain(const absl::string_view& s, 
-                        MatchResultListener* listener) const { 
-     return s.data() && MatchAndExplain(string(s), listener); 
-   } 
- #endif  // GTEST_HAS_ABSL 
-   
-   // Accepts pointer types, particularly: 
-   //   const char* 
-   //   char* 
-   //   const wchar_t* 
-   //   wchar_t* 
-   template <typename CharType> 
-   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
-     return s != NULL && MatchAndExplain(std::string(s), listener); 
-   } 
-   
-   // Matches anything that can convert to std::string. 
-   // 
-   // This is a template, not just a plain function with const std::string&, 
-   // because absl::string_view has some interfering non-explicit constructors. 
-   template <class MatcheeStringType> 
-   bool MatchAndExplain(const MatcheeStringType& s, 
-                        MatchResultListener* /* listener */) const { 
-     const std::string& s2(s); 
-     return full_match_ ? RE::FullMatch(s2, *regex_) : 
-         RE::PartialMatch(s2, *regex_); 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     *os << (full_match_ ? "matches" : "contains") 
-         << " regular expression "; 
-     UniversalPrinter<std::string>::Print(regex_->pattern(), os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "doesn't " << (full_match_ ? "match" : "contain") 
-         << " regular expression "; 
-     UniversalPrinter<std::string>::Print(regex_->pattern(), os); 
-   } 
-   
-  private: 
-   const internal::linked_ptr<const RE> regex_; 
-   const bool full_match_; 
-   
-   GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); 
- }; 
-   
- // Implements a matcher that compares the two fields of a 2-tuple 
- // using one of the ==, <=, <, etc, operators.  The two fields being 
- // compared don't have to have the same type. 
- // 
- // The matcher defined here is polymorphic (for example, Eq() can be 
- // used to match a tuple<int, short>, a tuple<const long&, double>, 
- // etc).  Therefore we use a template type conversion operator in the 
- // implementation. 
- template <typename D, typename Op> 
- class PairMatchBase { 
-  public: 
-   template <typename T1, typename T2> 
-   operator Matcher< ::testing::tuple<T1, T2> >() const { 
-     return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >); 
-   } 
-   template <typename T1, typename T2> 
-   operator Matcher<const ::testing::tuple<T1, T2>&>() const { 
-     return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>); 
-   } 
-   
-  private: 
-   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT 
-     return os << D::Desc(); 
-   } 
-   
-   template <typename Tuple> 
-   class Impl : public MatcherInterface<Tuple> { 
-    public: 
-     virtual bool MatchAndExplain( 
-         Tuple args, 
-         MatchResultListener* /* listener */) const { 
-       return Op()(::testing::get<0>(args), ::testing::get<1>(args)); 
-     } 
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "are " << GetDesc; 
-     } 
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "aren't " << GetDesc; 
-     } 
-   }; 
- }; 
-   
- class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { 
-  public: 
-   static const char* Desc() { return "an equal pair"; } 
- }; 
- class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { 
-  public: 
-   static const char* Desc() { return "an unequal pair"; } 
- }; 
- class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { 
-  public: 
-   static const char* Desc() { return "a pair where the first < the second"; } 
- }; 
- class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { 
-  public: 
-   static const char* Desc() { return "a pair where the first > the second"; } 
- }; 
- class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { 
-  public: 
-   static const char* Desc() { return "a pair where the first <= the second"; } 
- }; 
- class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { 
-  public: 
-   static const char* Desc() { return "a pair where the first >= the second"; } 
- }; 
-   
- // Implements the Not(...) matcher for a particular argument type T. 
- // We do not nest it inside the NotMatcher class template, as that 
- // will prevent different instantiations of NotMatcher from sharing 
- // the same NotMatcherImpl<T> class. 
- template <typename T> 
- class NotMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { 
-  public: 
-   explicit NotMatcherImpl(const Matcher<T>& matcher) 
-       : matcher_(matcher) {} 
-   
-   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, 
-                                MatchResultListener* listener) const { 
-     return !matcher_.MatchAndExplain(x, listener); 
-   } 
-   
-   virtual void DescribeTo(::std::ostream* os) const { 
-     matcher_.DescribeNegationTo(os); 
-   } 
-   
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     matcher_.DescribeTo(os); 
-   } 
-   
-  private: 
-   const Matcher<T> matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); 
- }; 
-   
- // Implements the Not(m) matcher, which matches a value that doesn't 
- // match matcher m. 
- template <typename InnerMatcher> 
- class NotMatcher { 
-  public: 
-   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} 
-   
-   // This template type conversion operator allows Not(m) to be used 
-   // to match any type m can match. 
-   template <typename T> 
-   operator Matcher<T>() const { 
-     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); 
-   } 
-   
-  private: 
-   InnerMatcher matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(NotMatcher); 
- }; 
-   
- // Implements the AllOf(m1, m2) matcher for a particular argument type 
- // T. We do not nest it inside the BothOfMatcher class template, as 
- // that will prevent different instantiations of BothOfMatcher from 
- // sharing the same BothOfMatcherImpl<T> class. 
- template <typename T> 
- class AllOfMatcherImpl 
-     : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { 
-  public: 
-   explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) 
-       : matchers_(internal::move(matchers)) {} 
-   
-   virtual void DescribeTo(::std::ostream* os) const { 
-     *os << "("; 
-     for (size_t i = 0; i < matchers_.size(); ++i) { 
-       if (i != 0) *os << ") and ("; 
-       matchers_[i].DescribeTo(os); 
-     } 
-     *os << ")"; 
-   } 
-   
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "("; 
-     for (size_t i = 0; i < matchers_.size(); ++i) { 
-       if (i != 0) *os << ") or ("; 
-       matchers_[i].DescribeNegationTo(os); 
-     } 
-     *os << ")"; 
-   } 
-   
-   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, 
-                                MatchResultListener* listener) const { 
-     // If either matcher1_ or matcher2_ doesn't match x, we only need 
-     // to explain why one of them fails. 
-     std::string all_match_result; 
-   
-     for (size_t i = 0; i < matchers_.size(); ++i) { 
-       StringMatchResultListener slistener; 
-       if (matchers_[i].MatchAndExplain(x, &slistener)) { 
-         if (all_match_result.empty()) { 
-           all_match_result = slistener.str(); 
-         } else { 
-           std::string result = slistener.str(); 
-           if (!result.empty()) { 
-             all_match_result += ", and "; 
-             all_match_result += result; 
-           } 
-         } 
-       } else { 
-         *listener << slistener.str(); 
-         return false; 
-       } 
-     } 
-   
-     // Otherwise we need to explain why *both* of them match. 
-     *listener << all_match_result; 
-     return true; 
-   } 
-   
-  private: 
-   const std::vector<Matcher<T> > matchers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); 
- }; 
-   
- #if GTEST_LANG_CXX11 
- // VariadicMatcher is used for the variadic implementation of 
- // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). 
- // CombiningMatcher<T> is used to recursively combine the provided matchers 
- // (of type Args...). 
- template <template <typename T> class CombiningMatcher, typename... Args> 
- class VariadicMatcher { 
-  public: 
-   VariadicMatcher(const Args&... matchers)  // NOLINT 
-       : matchers_(matchers...) { 
-     static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); 
-   } 
-   
-   // This template type conversion operator allows an 
-   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that 
-   // all of the provided matchers (Matcher1, Matcher2, ...) can match. 
-   template <typename T> 
-   operator Matcher<T>() const { 
-     std::vector<Matcher<T> > values; 
-     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); 
-     return Matcher<T>(new CombiningMatcher<T>(internal::move(values))); 
-   } 
-   
-  private: 
-   template <typename T, size_t I> 
-   void CreateVariadicMatcher(std::vector<Matcher<T> >* values, 
-                              std::integral_constant<size_t, I>) const { 
-     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); 
-     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); 
-   } 
-   
-   template <typename T> 
-   void CreateVariadicMatcher( 
-       std::vector<Matcher<T> >*, 
-       std::integral_constant<size_t, sizeof...(Args)>) const {} 
-   
-   tuple<Args...> matchers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(VariadicMatcher); 
- }; 
-   
- template <typename... Args> 
- using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; 
-   
- #endif  // GTEST_LANG_CXX11 
-   
- // Used for implementing the AllOf(m_1, ..., m_n) matcher, which 
- // matches a value that matches all of the matchers m_1, ..., and m_n. 
- template <typename Matcher1, typename Matcher2> 
- class BothOfMatcher { 
-  public: 
-   BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) 
-       : matcher1_(matcher1), matcher2_(matcher2) {} 
-   
-   // This template type conversion operator allows a 
-   // BothOfMatcher<Matcher1, Matcher2> object to match any type that 
-   // both Matcher1 and Matcher2 can match. 
-   template <typename T> 
-   operator Matcher<T>() const { 
-     std::vector<Matcher<T> > values; 
-     values.push_back(SafeMatcherCast<T>(matcher1_)); 
-     values.push_back(SafeMatcherCast<T>(matcher2_)); 
-     return Matcher<T>(new AllOfMatcherImpl<T>(internal::move(values))); 
-   } 
-   
-  private: 
-   Matcher1 matcher1_; 
-   Matcher2 matcher2_; 
-   
-   GTEST_DISALLOW_ASSIGN_(BothOfMatcher); 
- }; 
-   
- // Implements the AnyOf(m1, m2) matcher for a particular argument type 
- // T.  We do not nest it inside the AnyOfMatcher class template, as 
- // that will prevent different instantiations of AnyOfMatcher from 
- // sharing the same EitherOfMatcherImpl<T> class. 
- template <typename T> 
- class AnyOfMatcherImpl 
-     : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { 
-  public: 
-   explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) 
-       : matchers_(internal::move(matchers)) {} 
-   
-   virtual void DescribeTo(::std::ostream* os) const { 
-     *os << "("; 
-     for (size_t i = 0; i < matchers_.size(); ++i) { 
-       if (i != 0) *os << ") or ("; 
-       matchers_[i].DescribeTo(os); 
-     } 
-     *os << ")"; 
-   } 
-   
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "("; 
-     for (size_t i = 0; i < matchers_.size(); ++i) { 
-       if (i != 0) *os << ") and ("; 
-       matchers_[i].DescribeNegationTo(os); 
-     } 
-     *os << ")"; 
-   } 
-   
-   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, 
-                                MatchResultListener* listener) const { 
-     std::string no_match_result; 
-   
-     // If either matcher1_ or matcher2_ matches x, we just need to 
-     // explain why *one* of them matches. 
-     for (size_t i = 0; i < matchers_.size(); ++i) { 
-       StringMatchResultListener slistener; 
-       if (matchers_[i].MatchAndExplain(x, &slistener)) { 
-         *listener << slistener.str(); 
-         return true; 
-       } else { 
-         if (no_match_result.empty()) { 
-           no_match_result = slistener.str(); 
-         } else { 
-           std::string result = slistener.str(); 
-           if (!result.empty()) { 
-             no_match_result += ", and "; 
-             no_match_result += result; 
-           } 
-         } 
-       } 
-     } 
-   
-     // Otherwise we need to explain why *both* of them fail. 
-     *listener << no_match_result; 
-     return false; 
-   } 
-   
-  private: 
-   const std::vector<Matcher<T> > matchers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); 
- }; 
-   
- #if GTEST_LANG_CXX11 
- // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). 
- template <typename... Args> 
- using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; 
-   
- #endif  // GTEST_LANG_CXX11 
-   
- // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which 
- // matches a value that matches at least one of the matchers m_1, ..., 
- // and m_n. 
- template <typename Matcher1, typename Matcher2> 
- class EitherOfMatcher { 
-  public: 
-   EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) 
-       : matcher1_(matcher1), matcher2_(matcher2) {} 
-   
-   // This template type conversion operator allows a 
-   // EitherOfMatcher<Matcher1, Matcher2> object to match any type that 
-   // both Matcher1 and Matcher2 can match. 
-   template <typename T> 
-   operator Matcher<T>() const { 
-     std::vector<Matcher<T> > values; 
-     values.push_back(SafeMatcherCast<T>(matcher1_)); 
-     values.push_back(SafeMatcherCast<T>(matcher2_)); 
-     return Matcher<T>(new AnyOfMatcherImpl<T>(internal::move(values))); 
-   } 
-   
-  private: 
-   Matcher1 matcher1_; 
-   Matcher2 matcher2_; 
-   
-   GTEST_DISALLOW_ASSIGN_(EitherOfMatcher); 
- }; 
-   
- // Used for implementing Truly(pred), which turns a predicate into a 
- // matcher. 
- template <typename Predicate> 
- class TrulyMatcher { 
-  public: 
-   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} 
-   
-   // This method template allows Truly(pred) to be used as a matcher 
-   // for type T where T is the argument type of predicate 'pred'.  The 
-   // argument is passed by reference as the predicate may be 
-   // interested in the address of the argument. 
-   template <typename T> 
-   bool MatchAndExplain(T& x,  // NOLINT 
-                        MatchResultListener* /* listener */) const { 
-     // Without the if-statement, MSVC sometimes warns about converting 
-     // a value to bool (warning 4800). 
-     // 
-     // We cannot write 'return !!predicate_(x);' as that doesn't work 
-     // when predicate_(x) returns a class convertible to bool but 
-     // having no operator!(). 
-     if (predicate_(x)) 
-       return true; 
-     return false; 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     *os << "satisfies the given predicate"; 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "doesn't satisfy the given predicate"; 
-   } 
-   
-  private: 
-   Predicate predicate_; 
-   
-   GTEST_DISALLOW_ASSIGN_(TrulyMatcher); 
- }; 
-   
- // Used for implementing Matches(matcher), which turns a matcher into 
- // a predicate. 
- template <typename M> 
- class MatcherAsPredicate { 
-  public: 
-   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} 
-   
-   // This template operator() allows Matches(m) to be used as a 
-   // predicate on type T where m is a matcher on type T. 
-   // 
-   // The argument x is passed by reference instead of by value, as 
-   // some matcher may be interested in its address (e.g. as in 
-   // Matches(Ref(n))(x)). 
-   template <typename T> 
-   bool operator()(const T& x) const { 
-     // We let matcher_ commit to a particular type here instead of 
-     // when the MatcherAsPredicate object was constructed.  This 
-     // allows us to write Matches(m) where m is a polymorphic matcher 
-     // (e.g. Eq(5)). 
-     // 
-     // If we write Matcher<T>(matcher_).Matches(x) here, it won't 
-     // compile when matcher_ has type Matcher<const T&>; if we write 
-     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile 
-     // when matcher_ has type Matcher<T>; if we just write 
-     // matcher_.Matches(x), it won't compile when matcher_ is 
-     // polymorphic, e.g. Eq(5). 
-     // 
-     // MatcherCast<const T&>() is necessary for making the code work 
-     // in all of the above situations. 
-     return MatcherCast<const T&>(matcher_).Matches(x); 
-   } 
-   
-  private: 
-   M matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); 
- }; 
-   
- // For implementing ASSERT_THAT() and EXPECT_THAT().  The template 
- // argument M must be a type that can be converted to a matcher. 
- template <typename M> 
- class PredicateFormatterFromMatcher { 
-  public: 
-   explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {} 
-   
-   // This template () operator allows a PredicateFormatterFromMatcher 
-   // object to act as a predicate-formatter suitable for using with 
-   // Google Test's EXPECT_PRED_FORMAT1() macro. 
-   template <typename T> 
-   AssertionResult operator()(const char* value_text, const T& x) const { 
-     // We convert matcher_ to a Matcher<const T&> *now* instead of 
-     // when the PredicateFormatterFromMatcher object was constructed, 
-     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't 
-     // know which type to instantiate it to until we actually see the 
-     // type of x here. 
-     // 
-     // We write SafeMatcherCast<const T&>(matcher_) instead of 
-     // Matcher<const T&>(matcher_), as the latter won't compile when 
-     // matcher_ has type Matcher<T> (e.g. An<int>()). 
-     // We don't write MatcherCast<const T&> either, as that allows 
-     // potentially unsafe downcasting of the matcher argument. 
-     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); 
-     StringMatchResultListener listener; 
-     if (MatchPrintAndExplain(x, matcher, &listener)) 
-       return AssertionSuccess(); 
-   
-     ::std::stringstream ss; 
-     ss << "Value of: " << value_text << "\n" 
-        << "Expected: "; 
-     matcher.DescribeTo(&ss); 
-     ss << "\n  Actual: " << listener.str(); 
-     return AssertionFailure() << ss.str(); 
-   } 
-   
-  private: 
-   const M matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); 
- }; 
-   
- // A helper function for converting a matcher to a predicate-formatter 
- // without the user needing to explicitly write the type.  This is 
- // used for implementing ASSERT_THAT() and EXPECT_THAT(). 
- // Implementation detail: 'matcher' is received by-value to force decaying. 
- template <typename M> 
- inline PredicateFormatterFromMatcher<M> 
- MakePredicateFormatterFromMatcher(M matcher) { 
-   return PredicateFormatterFromMatcher<M>(internal::move(matcher)); 
- } 
-   
- // Implements the polymorphic floating point equality matcher, which matches 
- // two float values using ULP-based approximation or, optionally, a 
- // user-specified epsilon.  The template is meant to be instantiated with 
- // FloatType being either float or double. 
- template <typename FloatType> 
- class FloatingEqMatcher { 
-  public: 
-   // Constructor for FloatingEqMatcher. 
-   // The matcher's input will be compared with expected.  The matcher treats two 
-   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards, 
-   // equality comparisons between NANs will always return false.  We specify a 
-   // negative max_abs_error_ term to indicate that ULP-based approximation will 
-   // be used for comparison. 
-   FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : 
-     expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { 
-   } 
-   
-   // Constructor that supports a user-specified max_abs_error that will be used 
-   // for comparison instead of ULP-based approximation.  The max absolute 
-   // should be non-negative. 
-   FloatingEqMatcher(FloatType expected, bool nan_eq_nan, 
-                     FloatType max_abs_error) 
-       : expected_(expected), 
-         nan_eq_nan_(nan_eq_nan), 
-         max_abs_error_(max_abs_error) { 
-     GTEST_CHECK_(max_abs_error >= 0) 
-         << ", where max_abs_error is" << max_abs_error; 
-   } 
-   
-   // Implements floating point equality matcher as a Matcher<T>. 
-   template <typename T> 
-   class Impl : public MatcherInterface<T> { 
-    public: 
-     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) 
-         : expected_(expected), 
-           nan_eq_nan_(nan_eq_nan), 
-           max_abs_error_(max_abs_error) {} 
-   
-     virtual bool MatchAndExplain(T value, 
-                                  MatchResultListener* listener) const { 
-       const FloatingPoint<FloatType> actual(value), expected(expected_); 
-   
-       // Compares NaNs first, if nan_eq_nan_ is true. 
-       if (actual.is_nan() || expected.is_nan()) { 
-         if (actual.is_nan() && expected.is_nan()) { 
-           return nan_eq_nan_; 
-         } 
-         // One is nan; the other is not nan. 
-         return false; 
-       } 
-       if (HasMaxAbsError()) { 
-         // We perform an equality check so that inf will match inf, regardless 
-         // of error bounds.  If the result of value - expected_ would result in 
-         // overflow or if either value is inf, the default result is infinity, 
-         // which should only match if max_abs_error_ is also infinity. 
-         if (value == expected_) { 
-           return true; 
-         } 
-   
-         const FloatType diff = value - expected_; 
-         if (fabs(diff) <= max_abs_error_) { 
-           return true; 
-         } 
-   
-         if (listener->IsInterested()) { 
-           *listener << "which is " << diff << " from " << expected_; 
-         } 
-         return false; 
-       } else { 
-         return actual.AlmostEquals(expected); 
-       } 
-     } 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       // os->precision() returns the previously set precision, which we 
-       // store to restore the ostream to its original configuration 
-       // after outputting. 
-       const ::std::streamsize old_precision = os->precision( 
-           ::std::numeric_limits<FloatType>::digits10 + 2); 
-       if (FloatingPoint<FloatType>(expected_).is_nan()) { 
-         if (nan_eq_nan_) { 
-           *os << "is NaN"; 
-         } else { 
-           *os << "never matches"; 
-         } 
-       } else { 
-         *os << "is approximately " << expected_; 
-         if (HasMaxAbsError()) { 
-           *os << " (absolute error <= " << max_abs_error_ << ")"; 
-         } 
-       } 
-       os->precision(old_precision); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       // As before, get original precision. 
-       const ::std::streamsize old_precision = os->precision( 
-           ::std::numeric_limits<FloatType>::digits10 + 2); 
-       if (FloatingPoint<FloatType>(expected_).is_nan()) { 
-         if (nan_eq_nan_) { 
-           *os << "isn't NaN"; 
-         } else { 
-           *os << "is anything"; 
-         } 
-       } else { 
-         *os << "isn't approximately " << expected_; 
-         if (HasMaxAbsError()) { 
-           *os << " (absolute error > " << max_abs_error_ << ")"; 
-         } 
-       } 
-       // Restore original precision. 
-       os->precision(old_precision); 
-     } 
-   
-    private: 
-     bool HasMaxAbsError() const { 
-       return max_abs_error_ >= 0; 
-     } 
-   
-     const FloatType expected_; 
-     const bool nan_eq_nan_; 
-     // max_abs_error will be used for value comparison when >= 0. 
-     const FloatType max_abs_error_; 
-   
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-   // The following 3 type conversion operators allow FloatEq(expected) and 
-   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a 
-   // Matcher<const float&>, or a Matcher<float&>, but nothing else. 
-   // (While Google's C++ coding style doesn't allow arguments passed 
-   // by non-const reference, we may see them in code not conforming to 
-   // the style.  Therefore Google Mock needs to support them.) 
-   operator Matcher<FloatType>() const { 
-     return MakeMatcher( 
-         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); 
-   } 
-   
-   operator Matcher<const FloatType&>() const { 
-     return MakeMatcher( 
-         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); 
-   } 
-   
-   operator Matcher<FloatType&>() const { 
-     return MakeMatcher( 
-         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); 
-   } 
-   
-  private: 
-   const FloatType expected_; 
-   const bool nan_eq_nan_; 
-   // max_abs_error will be used for value comparison when >= 0. 
-   const FloatType max_abs_error_; 
-   
-   GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); 
- }; 
-   
- // A 2-tuple ("binary") wrapper around FloatingEqMatcher: 
- // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) 
- // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) 
- // against y. The former implements "Eq", the latter "Near". At present, there 
- // is no version that compares NaNs as equal. 
- template <typename FloatType> 
- class FloatingEq2Matcher { 
-  public: 
-   FloatingEq2Matcher() { Init(-1, false); } 
-   
-   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } 
-   
-   explicit FloatingEq2Matcher(FloatType max_abs_error) { 
-     Init(max_abs_error, false); 
-   } 
-   
-   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { 
-     Init(max_abs_error, nan_eq_nan); 
-   } 
-   
-   template <typename T1, typename T2> 
-   operator Matcher< ::testing::tuple<T1, T2> >() const { 
-     return MakeMatcher( 
-         new Impl< ::testing::tuple<T1, T2> >(max_abs_error_, nan_eq_nan_)); 
-   } 
-   template <typename T1, typename T2> 
-   operator Matcher<const ::testing::tuple<T1, T2>&>() const { 
-     return MakeMatcher( 
-         new Impl<const ::testing::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); 
-   } 
-   
-  private: 
-   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT 
-     return os << "an almost-equal pair"; 
-   } 
-   
-   template <typename Tuple> 
-   class Impl : public MatcherInterface<Tuple> { 
-    public: 
-     Impl(FloatType max_abs_error, bool nan_eq_nan) : 
-         max_abs_error_(max_abs_error), 
-         nan_eq_nan_(nan_eq_nan) {} 
-   
-     virtual bool MatchAndExplain(Tuple args, 
-                                  MatchResultListener* listener) const { 
-       if (max_abs_error_ == -1) { 
-         FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_); 
-         return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( 
-             ::testing::get<1>(args), listener); 
-       } else { 
-         FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_, 
-                                         max_abs_error_); 
-         return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( 
-             ::testing::get<1>(args), listener); 
-       } 
-     } 
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "are " << GetDesc; 
-     } 
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "aren't " << GetDesc; 
-     } 
-   
-    private: 
-     FloatType max_abs_error_; 
-     const bool nan_eq_nan_; 
-   }; 
-   
-   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { 
-     max_abs_error_ = max_abs_error_val; 
-     nan_eq_nan_ = nan_eq_nan_val; 
-   } 
-   FloatType max_abs_error_; 
-   bool nan_eq_nan_; 
- }; 
-   
- // Implements the Pointee(m) matcher for matching a pointer whose 
- // pointee matches matcher m.  The pointer can be either raw or smart. 
- template <typename InnerMatcher> 
- class PointeeMatcher { 
-  public: 
-   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} 
-   
-   // This type conversion operator template allows Pointee(m) to be 
-   // used as a matcher for any pointer type whose pointee type is 
-   // compatible with the inner matcher, where type Pointer can be 
-   // either a raw pointer or a smart pointer. 
-   // 
-   // The reason we do this instead of relying on 
-   // MakePolymorphicMatcher() is that the latter is not flexible 
-   // enough for implementing the DescribeTo() method of Pointee(). 
-   template <typename Pointer> 
-   operator Matcher<Pointer>() const { 
-     return Matcher<Pointer>( 
-         new Impl<GTEST_REFERENCE_TO_CONST_(Pointer)>(matcher_)); 
-   } 
-   
-  private: 
-   // The monomorphic implementation that works for a particular pointer type. 
-   template <typename Pointer> 
-   class Impl : public MatcherInterface<Pointer> { 
-    public: 
-     typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT 
-         GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; 
-   
-     explicit Impl(const InnerMatcher& matcher) 
-         : matcher_(MatcherCast<const Pointee&>(matcher)) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "points to a value that "; 
-       matcher_.DescribeTo(os); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "does not point to a value that "; 
-       matcher_.DescribeTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(Pointer pointer, 
-                                  MatchResultListener* listener) const { 
-       if (GetRawPointer(pointer) == NULL) 
-         return false; 
-   
-       *listener << "which points to "; 
-       return MatchPrintAndExplain(*pointer, matcher_, listener); 
-     } 
-   
-    private: 
-     const Matcher<const Pointee&> matcher_; 
-   
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-   const InnerMatcher matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(PointeeMatcher); 
- }; 
-   
- #if GTEST_HAS_RTTI 
- // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or 
- // reference that matches inner_matcher when dynamic_cast<T> is applied. 
- // The result of dynamic_cast<To> is forwarded to the inner matcher. 
- // If To is a pointer and the cast fails, the inner matcher will receive NULL. 
- // If To is a reference and the cast fails, this matcher returns false 
- // immediately. 
- template <typename To> 
- class WhenDynamicCastToMatcherBase { 
-  public: 
-   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) 
-       : matcher_(matcher) {} 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     GetCastTypeDescription(os); 
-     matcher_.DescribeTo(os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     GetCastTypeDescription(os); 
-     matcher_.DescribeNegationTo(os); 
-   } 
-   
-  protected: 
-   const Matcher<To> matcher_; 
-   
-   static std::string GetToName() { 
-     return GetTypeName<To>(); 
-   } 
-   
-  private: 
-   static void GetCastTypeDescription(::std::ostream* os) { 
-     *os << "when dynamic_cast to " << GetToName() << ", "; 
-   } 
-   
-   GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); 
- }; 
-   
- // Primary template. 
- // To is a pointer. Cast and forward the result. 
- template <typename To> 
- class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { 
-  public: 
-   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) 
-       : WhenDynamicCastToMatcherBase<To>(matcher) {} 
-   
-   template <typename From> 
-   bool MatchAndExplain(From from, MatchResultListener* listener) const { 
-     // FIXME: Add more detail on failures. ie did the dyn_cast fail? 
-     To to = dynamic_cast<To>(from); 
-     return MatchPrintAndExplain(to, this->matcher_, listener); 
-   } 
- }; 
-   
- // Specialize for references. 
- // In this case we return false if the dynamic_cast fails. 
- template <typename To> 
- class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { 
-  public: 
-   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) 
-       : WhenDynamicCastToMatcherBase<To&>(matcher) {} 
-   
-   template <typename From> 
-   bool MatchAndExplain(From& from, MatchResultListener* listener) const { 
-     // We don't want an std::bad_cast here, so do the cast with pointers. 
-     To* to = dynamic_cast<To*>(&from); 
-     if (to == NULL) { 
-       *listener << "which cannot be dynamic_cast to " << this->GetToName(); 
-       return false; 
-     } 
-     return MatchPrintAndExplain(*to, this->matcher_, listener); 
-   } 
- }; 
- #endif  // GTEST_HAS_RTTI 
-   
- // Implements the Field() matcher for matching a field (i.e. member 
- // variable) of an object. 
- template <typename Class, typename FieldType> 
- class FieldMatcher { 
-  public: 
-   FieldMatcher(FieldType Class::*field, 
-                const Matcher<const FieldType&>& matcher) 
-       : field_(field), matcher_(matcher), whose_field_("whose given field ") {} 
-   
-   FieldMatcher(const std::string& field_name, FieldType Class::*field, 
-                const Matcher<const FieldType&>& matcher) 
-       : field_(field), 
-         matcher_(matcher), 
-         whose_field_("whose field `" + field_name + "` ") {} 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     *os << "is an object " << whose_field_; 
-     matcher_.DescribeTo(os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "is an object " << whose_field_; 
-     matcher_.DescribeNegationTo(os); 
-   } 
-   
-   template <typename T> 
-   bool MatchAndExplain(const T& value, MatchResultListener* listener) const { 
-     return MatchAndExplainImpl( 
-         typename ::testing::internal:: 
-             is_pointer<GTEST_REMOVE_CONST_(T)>::type(), 
-         value, listener); 
-   } 
-   
-  private: 
-   // The first argument of MatchAndExplainImpl() is needed to help 
-   // Symbian's C++ compiler choose which overload to use.  Its type is 
-   // true_type iff the Field() matcher is used to match a pointer. 
-   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, 
-                            MatchResultListener* listener) const { 
-     *listener << whose_field_ << "is "; 
-     return MatchPrintAndExplain(obj.*field_, matcher_, listener); 
-   } 
-   
-   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, 
-                            MatchResultListener* listener) const { 
-     if (p == NULL) 
-       return false; 
-   
-     *listener << "which points to an object "; 
-     // Since *p has a field, it must be a class/struct/union type and 
-     // thus cannot be a pointer.  Therefore we pass false_type() as 
-     // the first argument. 
-     return MatchAndExplainImpl(false_type(), *p, listener); 
-   } 
-   
-   const FieldType Class::*field_; 
-   const Matcher<const FieldType&> matcher_; 
-   
-   // Contains either "whose given field " if the name of the field is unknown 
-   // or "whose field `name_of_field` " if the name is known. 
-   const std::string whose_field_; 
-   
-   GTEST_DISALLOW_ASSIGN_(FieldMatcher); 
- }; 
-   
- // Implements the Property() matcher for matching a property 
- // (i.e. return value of a getter method) of an object. 
- // 
- // Property is a const-qualified member function of Class returning 
- // PropertyType. 
- template <typename Class, typename PropertyType, typename Property> 
- class PropertyMatcher { 
-  public: 
-   // The property may have a reference type, so 'const PropertyType&' 
-   // may cause double references and fail to compile.  That's why we 
-   // need GTEST_REFERENCE_TO_CONST, which works regardless of 
-   // PropertyType being a reference or not. 
-   typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; 
-   
-   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) 
-       : property_(property), 
-         matcher_(matcher), 
-         whose_property_("whose given property ") {} 
-   
-   PropertyMatcher(const std::string& property_name, Property property, 
-                   const Matcher<RefToConstProperty>& matcher) 
-       : property_(property), 
-         matcher_(matcher), 
-         whose_property_("whose property `" + property_name + "` ") {} 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     *os << "is an object " << whose_property_; 
-     matcher_.DescribeTo(os); 
-   } 
-   
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "is an object " << whose_property_; 
-     matcher_.DescribeNegationTo(os); 
-   } 
-   
-   template <typename T> 
-   bool MatchAndExplain(const T&value, MatchResultListener* listener) const { 
-     return MatchAndExplainImpl( 
-         typename ::testing::internal:: 
-             is_pointer<GTEST_REMOVE_CONST_(T)>::type(), 
-         value, listener); 
-   } 
-   
-  private: 
-   // The first argument of MatchAndExplainImpl() is needed to help 
-   // Symbian's C++ compiler choose which overload to use.  Its type is 
-   // true_type iff the Property() matcher is used to match a pointer. 
-   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, 
-                            MatchResultListener* listener) const { 
-     *listener << whose_property_ << "is "; 
-     // Cannot pass the return value (for example, int) to MatchPrintAndExplain, 
-     // which takes a non-const reference as argument. 
- #if defined(_PREFAST_ ) && _MSC_VER == 1800 
-     // Workaround bug in VC++ 2013's /analyze parser. 
-     // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move 
-     posix::Abort();  // To make sure it is never run. 
-     return false; 
- #else 
-     RefToConstProperty result = (obj.*property_)(); 
-     return MatchPrintAndExplain(result, matcher_, listener); 
- #endif 
-   } 
-   
-   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, 
-                            MatchResultListener* listener) const { 
-     if (p == NULL) 
-       return false; 
-   
-     *listener << "which points to an object "; 
-     // Since *p has a property method, it must be a class/struct/union 
-     // type and thus cannot be a pointer.  Therefore we pass 
-     // false_type() as the first argument. 
-     return MatchAndExplainImpl(false_type(), *p, listener); 
-   } 
-   
-   Property property_; 
-   const Matcher<RefToConstProperty> matcher_; 
-   
-   // Contains either "whose given property " if the name of the property is 
-   // unknown or "whose property `name_of_property` " if the name is known. 
-   const std::string whose_property_; 
-   
-   GTEST_DISALLOW_ASSIGN_(PropertyMatcher); 
- }; 
-   
- // Type traits specifying various features of different functors for ResultOf. 
- // The default template specifies features for functor objects. 
- template <typename Functor> 
- struct CallableTraits { 
-   typedef Functor StorageType; 
-   
-   static void CheckIsValid(Functor /* functor */) {} 
-   
- #if GTEST_LANG_CXX11 
-   template <typename T> 
-   static auto Invoke(Functor f, T arg) -> decltype(f(arg)) { return f(arg); } 
- #else 
-   typedef typename Functor::result_type ResultType; 
-   template <typename T> 
-   static ResultType Invoke(Functor f, T arg) { return f(arg); } 
- #endif 
- }; 
-   
- // Specialization for function pointers. 
- template <typename ArgType, typename ResType> 
- struct CallableTraits<ResType(*)(ArgType)> { 
-   typedef ResType ResultType; 
-   typedef ResType(*StorageType)(ArgType); 
-   
-   static void CheckIsValid(ResType(*f)(ArgType)) { 
-     GTEST_CHECK_(f != NULL) 
-         << "NULL function pointer is passed into ResultOf()."; 
-   } 
-   template <typename T> 
-   static ResType Invoke(ResType(*f)(ArgType), T arg) { 
-     return (*f)(arg); 
-   } 
- }; 
-   
- // Implements the ResultOf() matcher for matching a return value of a 
- // unary function of an object. 
- template <typename Callable, typename InnerMatcher> 
- class ResultOfMatcher { 
-  public: 
-   ResultOfMatcher(Callable callable, InnerMatcher matcher) 
-       : callable_(internal::move(callable)), matcher_(internal::move(matcher)) { 
-     CallableTraits<Callable>::CheckIsValid(callable_); 
-   } 
-   
-   template <typename T> 
-   operator Matcher<T>() const { 
-     return Matcher<T>(new Impl<T>(callable_, matcher_)); 
-   } 
-   
-  private: 
-   typedef typename CallableTraits<Callable>::StorageType CallableStorageType; 
-   
-   template <typename T> 
-   class Impl : public MatcherInterface<T> { 
- #if GTEST_LANG_CXX11 
-     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( 
-         std::declval<CallableStorageType>(), std::declval<T>())); 
- #else 
-     typedef typename CallableTraits<Callable>::ResultType ResultType; 
- #endif 
-   
-    public: 
-     template <typename M> 
-     Impl(const CallableStorageType& callable, const M& matcher) 
-         : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "is mapped by the given callable to a value that "; 
-       matcher_.DescribeTo(os); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "is mapped by the given callable to a value that "; 
-       matcher_.DescribeNegationTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const { 
-       *listener << "which is mapped by the given callable to "; 
-       // Cannot pass the return value directly to MatchPrintAndExplain, which 
-       // takes a non-const reference as argument. 
-       // Also, specifying template argument explicitly is needed because T could 
-       // be a non-const reference (e.g. Matcher<Uncopyable&>). 
-       ResultType result = 
-           CallableTraits<Callable>::template Invoke<T>(callable_, obj); 
-       return MatchPrintAndExplain(result, matcher_, listener); 
-     } 
-   
-    private: 
-     // Functors often define operator() as non-const method even though 
-     // they are actually stateless. But we need to use them even when 
-     // 'this' is a const pointer. It's the user's responsibility not to 
-     // use stateful callables with ResultOf(), which doesn't guarantee 
-     // how many times the callable will be invoked. 
-     mutable CallableStorageType callable_; 
-     const Matcher<ResultType> matcher_; 
-   
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   };  // class Impl 
-   
-   const CallableStorageType callable_; 
-   const InnerMatcher matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); 
- }; 
-   
- // Implements a matcher that checks the size of an STL-style container. 
- template <typename SizeMatcher> 
- class SizeIsMatcher { 
-  public: 
-   explicit SizeIsMatcher(const SizeMatcher& size_matcher) 
-        : size_matcher_(size_matcher) { 
-   } 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     return MakeMatcher(new Impl<Container>(size_matcher_)); 
-   } 
-   
-   template <typename Container> 
-   class Impl : public MatcherInterface<Container> { 
-    public: 
-     typedef internal::StlContainerView< 
-          GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; 
-     typedef typename ContainerView::type::size_type SizeType; 
-     explicit Impl(const SizeMatcher& size_matcher) 
-         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "size "; 
-       size_matcher_.DescribeTo(os); 
-     } 
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "size "; 
-       size_matcher_.DescribeNegationTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(Container container, 
-                                  MatchResultListener* listener) const { 
-       SizeType size = container.size(); 
-       StringMatchResultListener size_listener; 
-       const bool result = size_matcher_.MatchAndExplain(size, &size_listener); 
-       *listener 
-           << "whose size " << size << (result ? " matches" : " doesn't match"); 
-       PrintIfNotEmpty(size_listener.str(), listener->stream()); 
-       return result; 
-     } 
-   
-    private: 
-     const Matcher<SizeType> size_matcher_; 
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-  private: 
-   const SizeMatcher size_matcher_; 
-   GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); 
- }; 
-   
- // Implements a matcher that checks the begin()..end() distance of an STL-style 
- // container. 
- template <typename DistanceMatcher> 
- class BeginEndDistanceIsMatcher { 
-  public: 
-   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) 
-       : distance_matcher_(distance_matcher) {} 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     return MakeMatcher(new Impl<Container>(distance_matcher_)); 
-   } 
-   
-   template <typename Container> 
-   class Impl : public MatcherInterface<Container> { 
-    public: 
-     typedef internal::StlContainerView< 
-         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; 
-     typedef typename std::iterator_traits< 
-         typename ContainerView::type::const_iterator>::difference_type 
-         DistanceType; 
-     explicit Impl(const DistanceMatcher& distance_matcher) 
-         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "distance between begin() and end() "; 
-       distance_matcher_.DescribeTo(os); 
-     } 
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "distance between begin() and end() "; 
-       distance_matcher_.DescribeNegationTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(Container container, 
-                                  MatchResultListener* listener) const { 
- #if GTEST_HAS_STD_BEGIN_AND_END_ 
-       using std::begin; 
-       using std::end; 
-       DistanceType distance = std::distance(begin(container), end(container)); 
- #else 
-       DistanceType distance = std::distance(container.begin(), container.end()); 
- #endif 
-       StringMatchResultListener distance_listener; 
-       const bool result = 
-           distance_matcher_.MatchAndExplain(distance, &distance_listener); 
-       *listener << "whose distance between begin() and end() " << distance 
-                 << (result ? " matches" : " doesn't match"); 
-       PrintIfNotEmpty(distance_listener.str(), listener->stream()); 
-       return result; 
-     } 
-   
-    private: 
-     const Matcher<DistanceType> distance_matcher_; 
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-  private: 
-   const DistanceMatcher distance_matcher_; 
-   GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); 
- }; 
-   
- // Implements an equality matcher for any STL-style container whose elements 
- // support ==. This matcher is like Eq(), but its failure explanations provide 
- // more detailed information that is useful when the container is used as a set. 
- // The failure message reports elements that are in one of the operands but not 
- // the other. The failure messages do not report duplicate or out-of-order 
- // elements in the containers (which don't properly matter to sets, but can 
- // occur if the containers are vectors or lists, for example). 
- // 
- // Uses the container's const_iterator, value_type, operator ==, 
- // begin(), and end(). 
- template <typename Container> 
- class ContainerEqMatcher { 
-  public: 
-   typedef internal::StlContainerView<Container> View; 
-   typedef typename View::type StlContainer; 
-   typedef typename View::const_reference StlContainerReference; 
-   
-   // We make a copy of expected in case the elements in it are modified 
-   // after this matcher is created. 
-   explicit ContainerEqMatcher(const Container& expected) 
-       : expected_(View::Copy(expected)) { 
-     // Makes sure the user doesn't instantiate this class template 
-     // with a const or reference type. 
-     (void)testing::StaticAssertTypeEq<Container, 
-         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); 
-   } 
-   
-   void DescribeTo(::std::ostream* os) const { 
-     *os << "equals "; 
-     UniversalPrint(expected_, os); 
-   } 
-   void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "does not equal "; 
-     UniversalPrint(expected_, os); 
-   } 
-   
-   template <typename LhsContainer> 
-   bool MatchAndExplain(const LhsContainer& lhs, 
-                        MatchResultListener* listener) const { 
-     // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug 
-     // that causes LhsContainer to be a const type sometimes. 
-     typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> 
-         LhsView; 
-     typedef typename LhsView::type LhsStlContainer; 
-     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); 
-     if (lhs_stl_container == expected_) 
-       return true; 
-   
-     ::std::ostream* const os = listener->stream(); 
-     if (os != NULL) { 
-       // Something is different. Check for extra values first. 
-       bool printed_header = false; 
-       for (typename LhsStlContainer::const_iterator it = 
-                lhs_stl_container.begin(); 
-            it != lhs_stl_container.end(); ++it) { 
-         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == 
-             expected_.end()) { 
-           if (printed_header) { 
-             *os << ", "; 
-           } else { 
-             *os << "which has these unexpected elements: "; 
-             printed_header = true; 
-           } 
-           UniversalPrint(*it, os); 
-         } 
-       } 
-   
-       // Now check for missing values. 
-       bool printed_header2 = false; 
-       for (typename StlContainer::const_iterator it = expected_.begin(); 
-            it != expected_.end(); ++it) { 
-         if (internal::ArrayAwareFind( 
-                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) == 
-             lhs_stl_container.end()) { 
-           if (printed_header2) { 
-             *os << ", "; 
-           } else { 
-             *os << (printed_header ? ",\nand" : "which") 
-                 << " doesn't have these expected elements: "; 
-             printed_header2 = true; 
-           } 
-           UniversalPrint(*it, os); 
-         } 
-       } 
-     } 
-   
-     return false; 
-   } 
-   
-  private: 
-   const StlContainer expected_; 
-   
-   GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); 
- }; 
-   
- // A comparator functor that uses the < operator to compare two values. 
- struct LessComparator { 
-   template <typename T, typename U> 
-   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } 
- }; 
-   
- // Implements WhenSortedBy(comparator, container_matcher). 
- template <typename Comparator, typename ContainerMatcher> 
- class WhenSortedByMatcher { 
-  public: 
-   WhenSortedByMatcher(const Comparator& comparator, 
-                       const ContainerMatcher& matcher) 
-       : comparator_(comparator), matcher_(matcher) {} 
-   
-   template <typename LhsContainer> 
-   operator Matcher<LhsContainer>() const { 
-     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); 
-   } 
-   
-   template <typename LhsContainer> 
-   class Impl : public MatcherInterface<LhsContainer> { 
-    public: 
-     typedef internal::StlContainerView< 
-          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; 
-     typedef typename LhsView::type LhsStlContainer; 
-     typedef typename LhsView::const_reference LhsStlContainerReference; 
-     // Transforms std::pair<const Key, Value> into std::pair<Key, Value> 
-     // so that we can match associative containers. 
-     typedef typename RemoveConstFromKey< 
-         typename LhsStlContainer::value_type>::type LhsValue; 
-   
-     Impl(const Comparator& comparator, const ContainerMatcher& matcher) 
-         : comparator_(comparator), matcher_(matcher) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "(when sorted) "; 
-       matcher_.DescribeTo(os); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "(when sorted) "; 
-       matcher_.DescribeNegationTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(LhsContainer lhs, 
-                                  MatchResultListener* listener) const { 
-       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); 
-       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), 
-                                                lhs_stl_container.end()); 
-       ::std::sort( 
-            sorted_container.begin(), sorted_container.end(), comparator_); 
-   
-       if (!listener->IsInterested()) { 
-         // If the listener is not interested, we do not need to 
-         // construct the inner explanation. 
-         return matcher_.Matches(sorted_container); 
-       } 
-   
-       *listener << "which is "; 
-       UniversalPrint(sorted_container, listener->stream()); 
-       *listener << " when sorted"; 
-   
-       StringMatchResultListener inner_listener; 
-       const bool match = matcher_.MatchAndExplain(sorted_container, 
-                                                   &inner_listener); 
-       PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
-       return match; 
-     } 
-   
-    private: 
-     const Comparator comparator_; 
-     const Matcher<const ::std::vector<LhsValue>&> matcher_; 
-   
-     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); 
-   }; 
-   
-  private: 
-   const Comparator comparator_; 
-   const ContainerMatcher matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); 
- }; 
-   
- // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher 
- // must be able to be safely cast to Matcher<tuple<const T1&, const 
- // T2&> >, where T1 and T2 are the types of elements in the LHS 
- // container and the RHS container respectively. 
- template <typename TupleMatcher, typename RhsContainer> 
- class PointwiseMatcher { 
-   GTEST_COMPILE_ASSERT_( 
-       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, 
-       use_UnorderedPointwise_with_hash_tables); 
-   
-  public: 
-   typedef internal::StlContainerView<RhsContainer> RhsView; 
-   typedef typename RhsView::type RhsStlContainer; 
-   typedef typename RhsStlContainer::value_type RhsValue; 
-   
-   // Like ContainerEq, we make a copy of rhs in case the elements in 
-   // it are modified after this matcher is created. 
-   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) 
-       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { 
-     // Makes sure the user doesn't instantiate this class template 
-     // with a const or reference type. 
-     (void)testing::StaticAssertTypeEq<RhsContainer, 
-         GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); 
-   } 
-   
-   template <typename LhsContainer> 
-   operator Matcher<LhsContainer>() const { 
-     GTEST_COMPILE_ASSERT_( 
-         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, 
-         use_UnorderedPointwise_with_hash_tables); 
-   
-     return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_)); 
-   } 
-   
-   template <typename LhsContainer> 
-   class Impl : public MatcherInterface<LhsContainer> { 
-    public: 
-     typedef internal::StlContainerView< 
-          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; 
-     typedef typename LhsView::type LhsStlContainer; 
-     typedef typename LhsView::const_reference LhsStlContainerReference; 
-     typedef typename LhsStlContainer::value_type LhsValue; 
-     // We pass the LHS value and the RHS value to the inner matcher by 
-     // reference, as they may be expensive to copy.  We must use tuple 
-     // instead of pair here, as a pair cannot hold references (C++ 98, 
-     // 20.2.2 [lib.pairs]). 
-     typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; 
-   
-     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) 
-         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. 
-         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), 
-           rhs_(rhs) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "contains " << rhs_.size() 
-           << " values, where each value and its corresponding value in "; 
-       UniversalPrinter<RhsStlContainer>::Print(rhs_, os); 
-       *os << " "; 
-       mono_tuple_matcher_.DescribeTo(os); 
-     } 
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "doesn't contain exactly " << rhs_.size() 
-           << " values, or contains a value x at some index i" 
-           << " where x and the i-th value of "; 
-       UniversalPrint(rhs_, os); 
-       *os << " "; 
-       mono_tuple_matcher_.DescribeNegationTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(LhsContainer lhs, 
-                                  MatchResultListener* listener) const { 
-       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); 
-       const size_t actual_size = lhs_stl_container.size(); 
-       if (actual_size != rhs_.size()) { 
-         *listener << "which contains " << actual_size << " values"; 
-         return false; 
-       } 
-   
-       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); 
-       typename RhsStlContainer::const_iterator right = rhs_.begin(); 
-       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { 
-         if (listener->IsInterested()) { 
-           StringMatchResultListener inner_listener; 
-           // Create InnerMatcherArg as a temporarily object to avoid it outlives 
-           // *left and *right. Dereference or the conversion to `const T&` may 
-           // return temp objects, e.g for vector<bool>. 
-           if (!mono_tuple_matcher_.MatchAndExplain( 
-                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), 
-                                   ImplicitCast_<const RhsValue&>(*right)), 
-                   &inner_listener)) { 
-             *listener << "where the value pair ("; 
-             UniversalPrint(*left, listener->stream()); 
-             *listener << ", "; 
-             UniversalPrint(*right, listener->stream()); 
-             *listener << ") at index #" << i << " don't match"; 
-             PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
-             return false; 
-           } 
-         } else { 
-           if (!mono_tuple_matcher_.Matches( 
-                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), 
-                                   ImplicitCast_<const RhsValue&>(*right)))) 
-             return false; 
-         } 
-       } 
-   
-       return true; 
-     } 
-   
-    private: 
-     const Matcher<InnerMatcherArg> mono_tuple_matcher_; 
-     const RhsStlContainer rhs_; 
-   
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-  private: 
-   const TupleMatcher tuple_matcher_; 
-   const RhsStlContainer rhs_; 
-   
-   GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); 
- }; 
-   
- // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. 
- template <typename Container> 
- class QuantifierMatcherImpl : public MatcherInterface<Container> { 
-  public: 
-   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
-   typedef StlContainerView<RawContainer> View; 
-   typedef typename View::type StlContainer; 
-   typedef typename View::const_reference StlContainerReference; 
-   typedef typename StlContainer::value_type Element; 
-   
-   template <typename InnerMatcher> 
-   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) 
-       : inner_matcher_( 
-            testing::SafeMatcherCast<const Element&>(inner_matcher)) {} 
-   
-   // Checks whether: 
-   // * All elements in the container match, if all_elements_should_match. 
-   // * Any element in the container matches, if !all_elements_should_match. 
-   bool MatchAndExplainImpl(bool all_elements_should_match, 
-                            Container container, 
-                            MatchResultListener* listener) const { 
-     StlContainerReference stl_container = View::ConstReference(container); 
-     size_t i = 0; 
-     for (typename StlContainer::const_iterator it = stl_container.begin(); 
-          it != stl_container.end(); ++it, ++i) { 
-       StringMatchResultListener inner_listener; 
-       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); 
-   
-       if (matches != all_elements_should_match) { 
-         *listener << "whose element #" << i 
-                   << (matches ? " matches" : " doesn't match"); 
-         PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
-         return !all_elements_should_match; 
-       } 
-     } 
-     return all_elements_should_match; 
-   } 
-   
-  protected: 
-   const Matcher<const Element&> inner_matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); 
- }; 
-   
- // Implements Contains(element_matcher) for the given argument type Container. 
- // Symmetric to EachMatcherImpl. 
- template <typename Container> 
- class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { 
-  public: 
-   template <typename InnerMatcher> 
-   explicit ContainsMatcherImpl(InnerMatcher inner_matcher) 
-       : QuantifierMatcherImpl<Container>(inner_matcher) {} 
-   
-   // Describes what this matcher does. 
-   virtual void DescribeTo(::std::ostream* os) const { 
-     *os << "contains at least one element that "; 
-     this->inner_matcher_.DescribeTo(os); 
-   } 
-   
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "doesn't contain any element that "; 
-     this->inner_matcher_.DescribeTo(os); 
-   } 
-   
-   virtual bool MatchAndExplain(Container container, 
-                                MatchResultListener* listener) const { 
-     return this->MatchAndExplainImpl(false, container, listener); 
-   } 
-   
-  private: 
-   GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); 
- }; 
-   
- // Implements Each(element_matcher) for the given argument type Container. 
- // Symmetric to ContainsMatcherImpl. 
- template <typename Container> 
- class EachMatcherImpl : public QuantifierMatcherImpl<Container> { 
-  public: 
-   template <typename InnerMatcher> 
-   explicit EachMatcherImpl(InnerMatcher inner_matcher) 
-       : QuantifierMatcherImpl<Container>(inner_matcher) {} 
-   
-   // Describes what this matcher does. 
-   virtual void DescribeTo(::std::ostream* os) const { 
-     *os << "only contains elements that "; 
-     this->inner_matcher_.DescribeTo(os); 
-   } 
-   
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "contains some element that "; 
-     this->inner_matcher_.DescribeNegationTo(os); 
-   } 
-   
-   virtual bool MatchAndExplain(Container container, 
-                                MatchResultListener* listener) const { 
-     return this->MatchAndExplainImpl(true, container, listener); 
-   } 
-   
-  private: 
-   GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); 
- }; 
-   
- // Implements polymorphic Contains(element_matcher). 
- template <typename M> 
- class ContainsMatcher { 
-  public: 
-   explicit ContainsMatcher(M m) : inner_matcher_(m) {} 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); 
-   } 
-   
-  private: 
-   const M inner_matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(ContainsMatcher); 
- }; 
-   
- // Implements polymorphic Each(element_matcher). 
- template <typename M> 
- class EachMatcher { 
-  public: 
-   explicit EachMatcher(M m) : inner_matcher_(m) {} 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_)); 
-   } 
-   
-  private: 
-   const M inner_matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(EachMatcher); 
- }; 
-   
- struct Rank1 {}; 
- struct Rank0 : Rank1 {}; 
-   
- namespace pair_getters { 
- #if GTEST_LANG_CXX11 
- using std::get; 
- template <typename T> 
- auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT 
-   return get<0>(x); 
- } 
- template <typename T> 
- auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT 
-   return x.first; 
- } 
-   
- template <typename T> 
- auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT 
-   return get<1>(x); 
- } 
- template <typename T> 
- auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT 
-   return x.second; 
- } 
- #else 
- template <typename T> 
- typename T::first_type& First(T& x, Rank0) {  // NOLINT 
-   return x.first; 
- } 
- template <typename T> 
- const typename T::first_type& First(const T& x, Rank0) { 
-   return x.first; 
- } 
-   
- template <typename T> 
- typename T::second_type& Second(T& x, Rank0) {  // NOLINT 
-   return x.second; 
- } 
- template <typename T> 
- const typename T::second_type& Second(const T& x, Rank0) { 
-   return x.second; 
- } 
- #endif  // GTEST_LANG_CXX11 
- }  // namespace pair_getters 
-   
- // Implements Key(inner_matcher) for the given argument pair type. 
- // Key(inner_matcher) matches an std::pair whose 'first' field matches 
- // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an 
- // std::map that contains at least one element whose key is >= 5. 
- template <typename PairType> 
- class KeyMatcherImpl : public MatcherInterface<PairType> { 
-  public: 
-   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; 
-   typedef typename RawPairType::first_type KeyType; 
-   
-   template <typename InnerMatcher> 
-   explicit KeyMatcherImpl(InnerMatcher inner_matcher) 
-       : inner_matcher_( 
-           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { 
-   } 
-   
-   // Returns true iff 'key_value.first' (the key) matches the inner matcher. 
-   virtual bool MatchAndExplain(PairType key_value, 
-                                MatchResultListener* listener) const { 
-     StringMatchResultListener inner_listener; 
-     const bool match = inner_matcher_.MatchAndExplain( 
-         pair_getters::First(key_value, Rank0()), &inner_listener); 
-     const std::string explanation = inner_listener.str(); 
-     if (explanation != "") { 
-       *listener << "whose first field is a value " << explanation; 
-     } 
-     return match; 
-   } 
-   
-   // Describes what this matcher does. 
-   virtual void DescribeTo(::std::ostream* os) const { 
-     *os << "has a key that "; 
-     inner_matcher_.DescribeTo(os); 
-   } 
-   
-   // Describes what the negation of this matcher does. 
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "doesn't have a key that "; 
-     inner_matcher_.DescribeTo(os); 
-   } 
-   
-  private: 
-   const Matcher<const KeyType&> inner_matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); 
- }; 
-   
- // Implements polymorphic Key(matcher_for_key). 
- template <typename M> 
- class KeyMatcher { 
-  public: 
-   explicit KeyMatcher(M m) : matcher_for_key_(m) {} 
-   
-   template <typename PairType> 
-   operator Matcher<PairType>() const { 
-     return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); 
-   } 
-   
-  private: 
-   const M matcher_for_key_; 
-   
-   GTEST_DISALLOW_ASSIGN_(KeyMatcher); 
- }; 
-   
- // Implements Pair(first_matcher, second_matcher) for the given argument pair 
- // type with its two matchers. See Pair() function below. 
- template <typename PairType> 
- class PairMatcherImpl : public MatcherInterface<PairType> { 
-  public: 
-   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; 
-   typedef typename RawPairType::first_type FirstType; 
-   typedef typename RawPairType::second_type SecondType; 
-   
-   template <typename FirstMatcher, typename SecondMatcher> 
-   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) 
-       : first_matcher_( 
-             testing::SafeMatcherCast<const FirstType&>(first_matcher)), 
-         second_matcher_( 
-             testing::SafeMatcherCast<const SecondType&>(second_matcher)) { 
-   } 
-   
-   // Describes what this matcher does. 
-   virtual void DescribeTo(::std::ostream* os) const { 
-     *os << "has a first field that "; 
-     first_matcher_.DescribeTo(os); 
-     *os << ", and has a second field that "; 
-     second_matcher_.DescribeTo(os); 
-   } 
-   
-   // Describes what the negation of this matcher does. 
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     *os << "has a first field that "; 
-     first_matcher_.DescribeNegationTo(os); 
-     *os << ", or has a second field that "; 
-     second_matcher_.DescribeNegationTo(os); 
-   } 
-   
-   // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' 
-   // matches second_matcher. 
-   virtual bool MatchAndExplain(PairType a_pair, 
-                                MatchResultListener* listener) const { 
-     if (!listener->IsInterested()) { 
-       // If the listener is not interested, we don't need to construct the 
-       // explanation. 
-       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && 
-              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); 
-     } 
-     StringMatchResultListener first_inner_listener; 
-     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), 
-                                         &first_inner_listener)) { 
-       *listener << "whose first field does not match"; 
-       PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); 
-       return false; 
-     } 
-     StringMatchResultListener second_inner_listener; 
-     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), 
-                                          &second_inner_listener)) { 
-       *listener << "whose second field does not match"; 
-       PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); 
-       return false; 
-     } 
-     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), 
-                    listener); 
-     return true; 
-   } 
-   
-  private: 
-   void ExplainSuccess(const std::string& first_explanation, 
-                       const std::string& second_explanation, 
-                       MatchResultListener* listener) const { 
-     *listener << "whose both fields match"; 
-     if (first_explanation != "") { 
-       *listener << ", where the first field is a value " << first_explanation; 
-     } 
-     if (second_explanation != "") { 
-       *listener << ", "; 
-       if (first_explanation != "") { 
-         *listener << "and "; 
-       } else { 
-         *listener << "where "; 
-       } 
-       *listener << "the second field is a value " << second_explanation; 
-     } 
-   } 
-   
-   const Matcher<const FirstType&> first_matcher_; 
-   const Matcher<const SecondType&> second_matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); 
- }; 
-   
- // Implements polymorphic Pair(first_matcher, second_matcher). 
- template <typename FirstMatcher, typename SecondMatcher> 
- class PairMatcher { 
-  public: 
-   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) 
-       : first_matcher_(first_matcher), second_matcher_(second_matcher) {} 
-   
-   template <typename PairType> 
-   operator Matcher<PairType> () const { 
-     return MakeMatcher( 
-         new PairMatcherImpl<PairType>( 
-             first_matcher_, second_matcher_)); 
-   } 
-   
-  private: 
-   const FirstMatcher first_matcher_; 
-   const SecondMatcher second_matcher_; 
-   
-   GTEST_DISALLOW_ASSIGN_(PairMatcher); 
- }; 
-   
- // Implements ElementsAre() and ElementsAreArray(). 
- template <typename Container> 
- class ElementsAreMatcherImpl : public MatcherInterface<Container> { 
-  public: 
-   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
-   typedef internal::StlContainerView<RawContainer> View; 
-   typedef typename View::type StlContainer; 
-   typedef typename View::const_reference StlContainerReference; 
-   typedef typename StlContainer::value_type Element; 
-   
-   // Constructs the matcher from a sequence of element values or 
-   // element matchers. 
-   template <typename InputIter> 
-   ElementsAreMatcherImpl(InputIter first, InputIter last) { 
-     while (first != last) { 
-       matchers_.push_back(MatcherCast<const Element&>(*first++)); 
-     } 
-   } 
-   
-   // Describes what this matcher does. 
-   virtual void DescribeTo(::std::ostream* os) const { 
-     if (count() == 0) { 
-       *os << "is empty"; 
-     } else if (count() == 1) { 
-       *os << "has 1 element that "; 
-       matchers_[0].DescribeTo(os); 
-     } else { 
-       *os << "has " << Elements(count()) << " where\n"; 
-       for (size_t i = 0; i != count(); ++i) { 
-         *os << "element #" << i << " "; 
-         matchers_[i].DescribeTo(os); 
-         if (i + 1 < count()) { 
-           *os << ",\n"; 
-         } 
-       } 
-     } 
-   } 
-   
-   // Describes what the negation of this matcher does. 
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     if (count() == 0) { 
-       *os << "isn't empty"; 
-       return; 
-     } 
-   
-     *os << "doesn't have " << Elements(count()) << ", or\n"; 
-     for (size_t i = 0; i != count(); ++i) { 
-       *os << "element #" << i << " "; 
-       matchers_[i].DescribeNegationTo(os); 
-       if (i + 1 < count()) { 
-         *os << ", or\n"; 
-       } 
-     } 
-   } 
-   
-   virtual bool MatchAndExplain(Container container, 
-                                MatchResultListener* listener) const { 
-     // To work with stream-like "containers", we must only walk 
-     // through the elements in one pass. 
-   
-     const bool listener_interested = listener->IsInterested(); 
-   
-     // explanations[i] is the explanation of the element at index i. 
-     ::std::vector<std::string> explanations(count()); 
-     StlContainerReference stl_container = View::ConstReference(container); 
-     typename StlContainer::const_iterator it = stl_container.begin(); 
-     size_t exam_pos = 0; 
-     bool mismatch_found = false;  // Have we found a mismatched element yet? 
-   
-     // Go through the elements and matchers in pairs, until we reach 
-     // the end of either the elements or the matchers, or until we find a 
-     // mismatch. 
-     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { 
-       bool match;  // Does the current element match the current matcher? 
-       if (listener_interested) { 
-         StringMatchResultListener s; 
-         match = matchers_[exam_pos].MatchAndExplain(*it, &s); 
-         explanations[exam_pos] = s.str(); 
-       } else { 
-         match = matchers_[exam_pos].Matches(*it); 
-       } 
-   
-       if (!match) { 
-         mismatch_found = true; 
-         break; 
-       } 
-     } 
-     // If mismatch_found is true, 'exam_pos' is the index of the mismatch. 
-   
-     // Find how many elements the actual container has.  We avoid 
-     // calling size() s.t. this code works for stream-like "containers" 
-     // that don't define size(). 
-     size_t actual_count = exam_pos; 
-     for (; it != stl_container.end(); ++it) { 
-       ++actual_count; 
-     } 
-   
-     if (actual_count != count()) { 
-       // The element count doesn't match.  If the container is empty, 
-       // there's no need to explain anything as Google Mock already 
-       // prints the empty container.  Otherwise we just need to show 
-       // how many elements there actually are. 
-       if (listener_interested && (actual_count != 0)) { 
-         *listener << "which has " << Elements(actual_count); 
-       } 
-       return false; 
-     } 
-   
-     if (mismatch_found) { 
-       // The element count matches, but the exam_pos-th element doesn't match. 
-       if (listener_interested) { 
-         *listener << "whose element #" << exam_pos << " doesn't match"; 
-         PrintIfNotEmpty(explanations[exam_pos], listener->stream()); 
-       } 
-       return false; 
-     } 
-   
-     // Every element matches its expectation.  We need to explain why 
-     // (the obvious ones can be skipped). 
-     if (listener_interested) { 
-       bool reason_printed = false; 
-       for (size_t i = 0; i != count(); ++i) { 
-         const std::string& s = explanations[i]; 
-         if (!s.empty()) { 
-           if (reason_printed) { 
-             *listener << ",\nand "; 
-           } 
-           *listener << "whose element #" << i << " matches, " << s; 
-           reason_printed = true; 
-         } 
-       } 
-     } 
-     return true; 
-   } 
-   
-  private: 
-   static Message Elements(size_t count) { 
-     return Message() << count << (count == 1 ? " element" : " elements"); 
-   } 
-   
-   size_t count() const { return matchers_.size(); } 
-   
-   ::std::vector<Matcher<const Element&> > matchers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); 
- }; 
-   
- // Connectivity matrix of (elements X matchers), in element-major order. 
- // Initially, there are no edges. 
- // Use NextGraph() to iterate over all possible edge configurations. 
- // Use Randomize() to generate a random edge configuration. 
- class GTEST_API_ MatchMatrix { 
-  public: 
-   MatchMatrix(size_t num_elements, size_t num_matchers) 
-       : num_elements_(num_elements), 
-         num_matchers_(num_matchers), 
-         matched_(num_elements_* num_matchers_, 0) { 
-   } 
-   
-   size_t LhsSize() const { return num_elements_; } 
-   size_t RhsSize() const { return num_matchers_; } 
-   bool HasEdge(size_t ilhs, size_t irhs) const { 
-     return matched_[SpaceIndex(ilhs, irhs)] == 1; 
-   } 
-   void SetEdge(size_t ilhs, size_t irhs, bool b) { 
-     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; 
-   } 
-   
-   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, 
-   // adds 1 to that number; returns false if incrementing the graph left it 
-   // empty. 
-   bool NextGraph(); 
-   
-   void Randomize(); 
-   
-   std::string DebugString() const; 
-   
-  private: 
-   size_t SpaceIndex(size_t ilhs, size_t irhs) const { 
-     return ilhs * num_matchers_ + irhs; 
-   } 
-   
-   size_t num_elements_; 
-   size_t num_matchers_; 
-   
-   // Each element is a char interpreted as bool. They are stored as a 
-   // flattened array in lhs-major order, use 'SpaceIndex()' to translate 
-   // a (ilhs, irhs) matrix coordinate into an offset. 
-   ::std::vector<char> matched_; 
- }; 
-   
- typedef ::std::pair<size_t, size_t> ElementMatcherPair; 
- typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; 
-   
- // Returns a maximum bipartite matching for the specified graph 'g'. 
- // The matching is represented as a vector of {element, matcher} pairs. 
- GTEST_API_ ElementMatcherPairs 
- FindMaxBipartiteMatching(const MatchMatrix& g); 
-   
- struct UnorderedMatcherRequire { 
-   enum Flags { 
-     Superset = 1 << 0, 
-     Subset = 1 << 1, 
-     ExactMatch = Superset | Subset, 
-   }; 
- }; 
-   
- // Untyped base class for implementing UnorderedElementsAre.  By 
- // putting logic that's not specific to the element type here, we 
- // reduce binary bloat and increase compilation speed. 
- class GTEST_API_ UnorderedElementsAreMatcherImplBase { 
-  protected: 
-   explicit UnorderedElementsAreMatcherImplBase( 
-       UnorderedMatcherRequire::Flags matcher_flags) 
-       : match_flags_(matcher_flags) {} 
-   
-   // A vector of matcher describers, one for each element matcher. 
-   // Does not own the describers (and thus can be used only when the 
-   // element matchers are alive). 
-   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; 
-   
-   // Describes this UnorderedElementsAre matcher. 
-   void DescribeToImpl(::std::ostream* os) const; 
-   
-   // Describes the negation of this UnorderedElementsAre matcher. 
-   void DescribeNegationToImpl(::std::ostream* os) const; 
-   
-   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, 
-                          const MatchMatrix& matrix, 
-                          MatchResultListener* listener) const; 
-   
-   bool FindPairing(const MatchMatrix& matrix, 
-                    MatchResultListener* listener) const; 
-   
-   MatcherDescriberVec& matcher_describers() { 
-     return matcher_describers_; 
-   } 
-   
-   static Message Elements(size_t n) { 
-     return Message() << n << " element" << (n == 1 ? "" : "s"); 
-   } 
-   
-   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } 
-   
-  private: 
-   UnorderedMatcherRequire::Flags match_flags_; 
-   MatcherDescriberVec matcher_describers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); 
- }; 
-   
- // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and 
- // IsSupersetOf. 
- template <typename Container> 
- class UnorderedElementsAreMatcherImpl 
-     : public MatcherInterface<Container>, 
-       public UnorderedElementsAreMatcherImplBase { 
-  public: 
-   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
-   typedef internal::StlContainerView<RawContainer> View; 
-   typedef typename View::type StlContainer; 
-   typedef typename View::const_reference StlContainerReference; 
-   typedef typename StlContainer::const_iterator StlContainerConstIterator; 
-   typedef typename StlContainer::value_type Element; 
-   
-   template <typename InputIter> 
-   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, 
-                                   InputIter first, InputIter last) 
-       : UnorderedElementsAreMatcherImplBase(matcher_flags) { 
-     for (; first != last; ++first) { 
-       matchers_.push_back(MatcherCast<const Element&>(*first)); 
-       matcher_describers().push_back(matchers_.back().GetDescriber()); 
-     } 
-   } 
-   
-   // Describes what this matcher does. 
-   virtual void DescribeTo(::std::ostream* os) const { 
-     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); 
-   } 
-   
-   // Describes what the negation of this matcher does. 
-   virtual void DescribeNegationTo(::std::ostream* os) const { 
-     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); 
-   } 
-   
-   virtual bool MatchAndExplain(Container container, 
-                                MatchResultListener* listener) const { 
-     StlContainerReference stl_container = View::ConstReference(container); 
-     ::std::vector<std::string> element_printouts; 
-     MatchMatrix matrix = 
-         AnalyzeElements(stl_container.begin(), stl_container.end(), 
-                         &element_printouts, listener); 
-   
-     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { 
-       return true; 
-     } 
-   
-     if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 
-       if (matrix.LhsSize() != matrix.RhsSize()) { 
-         // The element count doesn't match.  If the container is empty, 
-         // there's no need to explain anything as Google Mock already 
-         // prints the empty container. Otherwise we just need to show 
-         // how many elements there actually are. 
-         if (matrix.LhsSize() != 0 && listener->IsInterested()) { 
-           *listener << "which has " << Elements(matrix.LhsSize()); 
-         } 
-         return false; 
-       } 
-     } 
-   
-     return VerifyMatchMatrix(element_printouts, matrix, listener) && 
-            FindPairing(matrix, listener); 
-   } 
-   
-  private: 
-   template <typename ElementIter> 
-   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, 
-                               ::std::vector<std::string>* element_printouts, 
-                               MatchResultListener* listener) const { 
-     element_printouts->clear(); 
-     ::std::vector<char> did_match; 
-     size_t num_elements = 0; 
-     for (; elem_first != elem_last; ++num_elements, ++elem_first) { 
-       if (listener->IsInterested()) { 
-         element_printouts->push_back(PrintToString(*elem_first)); 
-       } 
-       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { 
-         did_match.push_back(Matches(matchers_[irhs])(*elem_first)); 
-       } 
-     } 
-   
-     MatchMatrix matrix(num_elements, matchers_.size()); 
-     ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); 
-     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { 
-       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { 
-         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); 
-       } 
-     } 
-     return matrix; 
-   } 
-   
-   ::std::vector<Matcher<const Element&> > matchers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); 
- }; 
-   
- // Functor for use in TransformTuple. 
- // Performs MatcherCast<Target> on an input argument of any type. 
- template <typename Target> 
- struct CastAndAppendTransform { 
-   template <typename Arg> 
-   Matcher<Target> operator()(const Arg& a) const { 
-     return MatcherCast<Target>(a); 
-   } 
- }; 
-   
- // Implements UnorderedElementsAre. 
- template <typename MatcherTuple> 
- class UnorderedElementsAreMatcher { 
-  public: 
-   explicit UnorderedElementsAreMatcher(const MatcherTuple& args) 
-       : matchers_(args) {} 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
-     typedef typename internal::StlContainerView<RawContainer>::type View; 
-     typedef typename View::value_type Element; 
-     typedef ::std::vector<Matcher<const Element&> > MatcherVec; 
-     MatcherVec matchers; 
-     matchers.reserve(::testing::tuple_size<MatcherTuple>::value); 
-     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, 
-                          ::std::back_inserter(matchers)); 
-     return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( 
-         UnorderedMatcherRequire::ExactMatch, matchers.begin(), matchers.end())); 
-   } 
-   
-  private: 
-   const MatcherTuple matchers_; 
-   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); 
- }; 
-   
- // Implements ElementsAre. 
- template <typename MatcherTuple> 
- class ElementsAreMatcher { 
-  public: 
-   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     GTEST_COMPILE_ASSERT_( 
-         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || 
-             ::testing::tuple_size<MatcherTuple>::value < 2, 
-         use_UnorderedElementsAre_with_hash_tables); 
-   
-     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
-     typedef typename internal::StlContainerView<RawContainer>::type View; 
-     typedef typename View::value_type Element; 
-     typedef ::std::vector<Matcher<const Element&> > MatcherVec; 
-     MatcherVec matchers; 
-     matchers.reserve(::testing::tuple_size<MatcherTuple>::value); 
-     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, 
-                          ::std::back_inserter(matchers)); 
-     return MakeMatcher(new ElementsAreMatcherImpl<Container>( 
-                            matchers.begin(), matchers.end())); 
-   } 
-   
-  private: 
-   const MatcherTuple matchers_; 
-   GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); 
- }; 
-   
- // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). 
- template <typename T> 
- class UnorderedElementsAreArrayMatcher { 
-  public: 
-   template <typename Iter> 
-   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, 
-                                    Iter first, Iter last) 
-       : match_flags_(match_flags), matchers_(first, last) {} 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( 
-         match_flags_, matchers_.begin(), matchers_.end())); 
-   } 
-   
-  private: 
-   UnorderedMatcherRequire::Flags match_flags_; 
-   ::std::vector<T> matchers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); 
- }; 
-   
- // Implements ElementsAreArray(). 
- template <typename T> 
- class ElementsAreArrayMatcher { 
-  public: 
-   template <typename Iter> 
-   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} 
-   
-   template <typename Container> 
-   operator Matcher<Container>() const { 
-     GTEST_COMPILE_ASSERT_( 
-         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, 
-         use_UnorderedElementsAreArray_with_hash_tables); 
-   
-     return MakeMatcher(new ElementsAreMatcherImpl<Container>( 
-         matchers_.begin(), matchers_.end())); 
-   } 
-   
-  private: 
-   const ::std::vector<T> matchers_; 
-   
-   GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); 
- }; 
-   
- // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second 
- // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, 
- // second) is a polymorphic matcher that matches a value x iff tm 
- // matches tuple (x, second).  Useful for implementing 
- // UnorderedPointwise() in terms of UnorderedElementsAreArray(). 
- // 
- // BoundSecondMatcher is copyable and assignable, as we need to put 
- // instances of this class in a vector when implementing 
- // UnorderedPointwise(). 
- template <typename Tuple2Matcher, typename Second> 
- class BoundSecondMatcher { 
-  public: 
-   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) 
-       : tuple2_matcher_(tm), second_value_(second) {} 
-   
-   template <typename T> 
-   operator Matcher<T>() const { 
-     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); 
-   } 
-   
-   // We have to define this for UnorderedPointwise() to compile in 
-   // C++98 mode, as it puts BoundSecondMatcher instances in a vector, 
-   // which requires the elements to be assignable in C++98.  The 
-   // compiler cannot generate the operator= for us, as Tuple2Matcher 
-   // and Second may not be assignable. 
-   // 
-   // However, this should never be called, so the implementation just 
-   // need to assert. 
-   void operator=(const BoundSecondMatcher& /*rhs*/) { 
-     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; 
-   } 
-   
-  private: 
-   template <typename T> 
-   class Impl : public MatcherInterface<T> { 
-    public: 
-     typedef ::testing::tuple<T, Second> ArgTuple; 
-   
-     Impl(const Tuple2Matcher& tm, const Second& second) 
-         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), 
-           second_value_(second) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "and "; 
-       UniversalPrint(second_value_, os); 
-       *os << " "; 
-       mono_tuple2_matcher_.DescribeTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { 
-       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), 
-                                                   listener); 
-     } 
-   
-    private: 
-     const Matcher<const ArgTuple&> mono_tuple2_matcher_; 
-     const Second second_value_; 
-   
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-   const Tuple2Matcher tuple2_matcher_; 
-   const Second second_value_; 
- }; 
-   
- // Given a 2-tuple matcher tm and a value second, 
- // MatcherBindSecond(tm, second) returns a matcher that matches a 
- // value x iff tm matches tuple (x, second).  Useful for implementing 
- // UnorderedPointwise() in terms of UnorderedElementsAreArray(). 
- template <typename Tuple2Matcher, typename Second> 
- BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( 
-     const Tuple2Matcher& tm, const Second& second) { 
-   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); 
- } 
-   
- // Returns the description for a matcher defined using the MATCHER*() 
- // macro where the user-supplied description string is "", if 
- // 'negation' is false; otherwise returns the description of the 
- // negation of the matcher.  'param_values' contains a list of strings 
- // that are the print-out of the matcher's parameters. 
- GTEST_API_ std::string FormatMatcherDescription(bool negation, 
-                                                 const char* matcher_name, 
-                                                 const Strings& param_values); 
-   
- // Implements a matcher that checks the value of a optional<> type variable. 
- template <typename ValueMatcher> 
- class OptionalMatcher { 
-  public: 
-   explicit OptionalMatcher(const ValueMatcher& value_matcher) 
-       : value_matcher_(value_matcher) {} 
-   
-   template <typename Optional> 
-   operator Matcher<Optional>() const { 
-     return MakeMatcher(new Impl<Optional>(value_matcher_)); 
-   } 
-   
-   template <typename Optional> 
-   class Impl : public MatcherInterface<Optional> { 
-    public: 
-     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; 
-     typedef typename OptionalView::value_type ValueType; 
-     explicit Impl(const ValueMatcher& value_matcher) 
-         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} 
-   
-     virtual void DescribeTo(::std::ostream* os) const { 
-       *os << "value "; 
-       value_matcher_.DescribeTo(os); 
-     } 
-   
-     virtual void DescribeNegationTo(::std::ostream* os) const { 
-       *os << "value "; 
-       value_matcher_.DescribeNegationTo(os); 
-     } 
-   
-     virtual bool MatchAndExplain(Optional optional, 
-                                  MatchResultListener* listener) const { 
-       if (!optional) { 
-         *listener << "which is not engaged"; 
-         return false; 
-       } 
-       const ValueType& value = *optional; 
-       StringMatchResultListener value_listener; 
-       const bool match = value_matcher_.MatchAndExplain(value, &value_listener); 
-       *listener << "whose value " << PrintToString(value) 
-                 << (match ? " matches" : " doesn't match"); 
-       PrintIfNotEmpty(value_listener.str(), listener->stream()); 
-       return match; 
-     } 
-   
-    private: 
-     const Matcher<ValueType> value_matcher_; 
-     GTEST_DISALLOW_ASSIGN_(Impl); 
-   }; 
-   
-  private: 
-   const ValueMatcher value_matcher_; 
-   GTEST_DISALLOW_ASSIGN_(OptionalMatcher); 
- }; 
-   
- namespace variant_matcher { 
- // Overloads to allow VariantMatcher to do proper ADL lookup. 
- template <typename T> 
- void holds_alternative() {} 
- template <typename T> 
- void get() {} 
-   
- // Implements a matcher that checks the value of a variant<> type variable. 
- template <typename T> 
- class VariantMatcher { 
-  public: 
-   explicit VariantMatcher(::testing::Matcher<const T&> matcher) 
-       : matcher_(internal::move(matcher)) {} 
-   
-   template <typename Variant> 
-   bool MatchAndExplain(const Variant& value, 
-                        ::testing::MatchResultListener* listener) const { 
-     if (!listener->IsInterested()) { 
-       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); 
-     } 
-   
-     if (!holds_alternative<T>(value)) { 
-       *listener << "whose value is not of type '" << GetTypeName() << "'"; 
-       return false; 
-     } 
-   
-     const T& elem = get<T>(value); 
-     StringMatchResultListener elem_listener; 
-     const bool match = matcher_.MatchAndExplain(elem, &elem_listener); 
-     *listener << "whose value " << PrintToString(elem) 
-               << (match ? " matches" : " doesn't match"); 
-     PrintIfNotEmpty(elem_listener.str(), listener->stream()); 
-     return match; 
-   } 
-   
-   void DescribeTo(std::ostream* os) const { 
-     *os << "is a variant<> with value of type '" << GetTypeName() 
-         << "' and the value "; 
-     matcher_.DescribeTo(os); 
-   } 
-   
-   void DescribeNegationTo(std::ostream* os) const { 
-     *os << "is a variant<> with value of type other than '" << GetTypeName() 
-         << "' or the value "; 
-     matcher_.DescribeNegationTo(os); 
-   } 
-   
-  private: 
-   static std::string GetTypeName() { 
- #if GTEST_HAS_RTTI 
-     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( 
-         return internal::GetTypeName<T>()); 
- #endif 
-     return "the element type"; 
-   } 
-   
-   const ::testing::Matcher<const T&> matcher_; 
- }; 
-   
- }  // namespace variant_matcher 
-   
- namespace any_cast_matcher { 
-   
- // Overloads to allow AnyCastMatcher to do proper ADL lookup. 
- template <typename T> 
- void any_cast() {} 
-   
- // Implements a matcher that any_casts the value. 
- template <typename T> 
- class AnyCastMatcher { 
-  public: 
-   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) 
-       : matcher_(matcher) {} 
-   
-   template <typename AnyType> 
-   bool MatchAndExplain(const AnyType& value, 
-                        ::testing::MatchResultListener* listener) const { 
-     if (!listener->IsInterested()) { 
-       const T* ptr = any_cast<T>(&value); 
-       return ptr != NULL && matcher_.Matches(*ptr); 
-     } 
-   
-     const T* elem = any_cast<T>(&value); 
-     if (elem == NULL) { 
-       *listener << "whose value is not of type '" << GetTypeName() << "'"; 
-       return false; 
-     } 
-   
-     StringMatchResultListener elem_listener; 
-     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); 
-     *listener << "whose value " << PrintToString(*elem) 
-               << (match ? " matches" : " doesn't match"); 
-     PrintIfNotEmpty(elem_listener.str(), listener->stream()); 
-     return match; 
-   } 
-   
-   void DescribeTo(std::ostream* os) const { 
-     *os << "is an 'any' type with value of type '" << GetTypeName() 
-         << "' and the value "; 
-     matcher_.DescribeTo(os); 
-   } 
-   
-   void DescribeNegationTo(std::ostream* os) const { 
-     *os << "is an 'any' type with value of type other than '" << GetTypeName() 
-         << "' or the value "; 
-     matcher_.DescribeNegationTo(os); 
-   } 
-   
-  private: 
-   static std::string GetTypeName() { 
- #if GTEST_HAS_RTTI 
-     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( 
-         return internal::GetTypeName<T>()); 
- #endif 
-     return "the element type"; 
-   } 
-   
-   const ::testing::Matcher<const T&> matcher_; 
- }; 
-   
- }  // namespace any_cast_matcher 
- }  // namespace internal 
-   
- // ElementsAreArray(iterator_first, iterator_last) 
- // ElementsAreArray(pointer, count) 
- // ElementsAreArray(array) 
- // ElementsAreArray(container) 
- // ElementsAreArray({ e1, e2, ..., en }) 
- // 
- // The ElementsAreArray() functions are like ElementsAre(...), except 
- // that they are given a homogeneous sequence rather than taking each 
- // element as a function argument. The sequence can be specified as an 
- // array, a pointer and count, a vector, an initializer list, or an 
- // STL iterator range. In each of these cases, the underlying sequence 
- // can be either a sequence of values or a sequence of matchers. 
- // 
- // All forms of ElementsAreArray() make a copy of the input matcher sequence. 
-   
- template <typename Iter> 
- inline internal::ElementsAreArrayMatcher< 
-     typename ::std::iterator_traits<Iter>::value_type> 
- ElementsAreArray(Iter first, Iter last) { 
-   typedef typename ::std::iterator_traits<Iter>::value_type T; 
-   return internal::ElementsAreArrayMatcher<T>(first, last); 
- } 
-   
- template <typename T> 
- inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( 
-     const T* pointer, size_t count) { 
-   return ElementsAreArray(pointer, pointer + count); 
- } 
-   
- template <typename T, size_t N> 
- inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( 
-     const T (&array)[N]) { 
-   return ElementsAreArray(array, N); 
- } 
-   
- template <typename Container> 
- inline internal::ElementsAreArrayMatcher<typename Container::value_type> 
- ElementsAreArray(const Container& container) { 
-   return ElementsAreArray(container.begin(), container.end()); 
- } 
-   
- #if GTEST_HAS_STD_INITIALIZER_LIST_ 
- template <typename T> 
- inline internal::ElementsAreArrayMatcher<T> 
- ElementsAreArray(::std::initializer_list<T> xs) { 
-   return ElementsAreArray(xs.begin(), xs.end()); 
- } 
- #endif 
-   
- // UnorderedElementsAreArray(iterator_first, iterator_last) 
- // UnorderedElementsAreArray(pointer, count) 
- // UnorderedElementsAreArray(array) 
- // UnorderedElementsAreArray(container) 
- // UnorderedElementsAreArray({ e1, e2, ..., en }) 
- // 
- // UnorderedElementsAreArray() verifies that a bijective mapping onto a 
- // collection of matchers exists. 
- // 
- // The matchers can be specified as an array, a pointer and count, a container, 
- // an initializer list, or an STL iterator range. In each of these cases, the 
- // underlying matchers can be either values or matchers. 
-   
- template <typename Iter> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename ::std::iterator_traits<Iter>::value_type> 
- UnorderedElementsAreArray(Iter first, Iter last) { 
-   typedef typename ::std::iterator_traits<Iter>::value_type T; 
-   return internal::UnorderedElementsAreArrayMatcher<T>( 
-       internal::UnorderedMatcherRequire::ExactMatch, first, last); 
- } 
-   
- template <typename T> 
- inline internal::UnorderedElementsAreArrayMatcher<T> 
- UnorderedElementsAreArray(const T* pointer, size_t count) { 
-   return UnorderedElementsAreArray(pointer, pointer + count); 
- } 
-   
- template <typename T, size_t N> 
- inline internal::UnorderedElementsAreArrayMatcher<T> 
- UnorderedElementsAreArray(const T (&array)[N]) { 
-   return UnorderedElementsAreArray(array, N); 
- } 
-   
- template <typename Container> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename Container::value_type> 
- UnorderedElementsAreArray(const Container& container) { 
-   return UnorderedElementsAreArray(container.begin(), container.end()); 
- } 
-   
- #if GTEST_HAS_STD_INITIALIZER_LIST_ 
- template <typename T> 
- inline internal::UnorderedElementsAreArrayMatcher<T> 
- UnorderedElementsAreArray(::std::initializer_list<T> xs) { 
-   return UnorderedElementsAreArray(xs.begin(), xs.end()); 
- } 
- #endif 
-   
- // _ is a matcher that matches anything of any type. 
- // 
- // This definition is fine as: 
- // 
- //   1. The C++ standard permits using the name _ in a namespace that 
- //      is not the global namespace or ::std. 
- //   2. The AnythingMatcher class has no data member or constructor, 
- //      so it's OK to create global variables of this type. 
- //   3. c-style has approved of using _ in this case. 
- const internal::AnythingMatcher _ = {}; 
- // Creates a matcher that matches any value of the given type T. 
- template <typename T> 
- inline Matcher<T> A() { 
-   return Matcher<T>(new internal::AnyMatcherImpl<T>()); 
- } 
-   
- // Creates a matcher that matches any value of the given type T. 
- template <typename T> 
- inline Matcher<T> An() { return A<T>(); } 
-   
- // Creates a polymorphic matcher that matches anything equal to x. 
- // Note: if the parameter of Eq() were declared as const T&, Eq("foo") 
- // wouldn't compile. 
- template <typename T> 
- inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } 
-   
- // Constructs a Matcher<T> from a 'value' of type T.  The constructed 
- // matcher matches any value that's equal to 'value'. 
- template <typename T> 
- Matcher<T>::Matcher(T value) { *this = Eq(value); } 
-   
- template <typename T, typename M> 
- Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( 
-     const M& value, 
-     internal::BooleanConstant<false> /* convertible_to_matcher */, 
-     internal::BooleanConstant<false> /* convertible_to_T */) { 
-   return Eq(value); 
- } 
-   
- // Creates a monomorphic matcher that matches anything with type Lhs 
- // and equal to rhs.  A user may need to use this instead of Eq(...) 
- // in order to resolve an overloading ambiguity. 
- // 
- // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) 
- // or Matcher<T>(x), but more readable than the latter. 
- // 
- // We could define similar monomorphic matchers for other comparison 
- // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do 
- // it yet as those are used much less than Eq() in practice.  A user 
- // can always write Matcher<T>(Lt(5)) to be explicit about the type, 
- // for example. 
- template <typename Lhs, typename Rhs> 
- inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } 
-   
- // Creates a polymorphic matcher that matches anything >= x. 
- template <typename Rhs> 
- inline internal::GeMatcher<Rhs> Ge(Rhs x) { 
-   return internal::GeMatcher<Rhs>(x); 
- } 
-   
- // Creates a polymorphic matcher that matches anything > x. 
- template <typename Rhs> 
- inline internal::GtMatcher<Rhs> Gt(Rhs x) { 
-   return internal::GtMatcher<Rhs>(x); 
- } 
-   
- // Creates a polymorphic matcher that matches anything <= x. 
- template <typename Rhs> 
- inline internal::LeMatcher<Rhs> Le(Rhs x) { 
-   return internal::LeMatcher<Rhs>(x); 
- } 
-   
- // Creates a polymorphic matcher that matches anything < x. 
- template <typename Rhs> 
- inline internal::LtMatcher<Rhs> Lt(Rhs x) { 
-   return internal::LtMatcher<Rhs>(x); 
- } 
-   
- // Creates a polymorphic matcher that matches anything != x. 
- template <typename Rhs> 
- inline internal::NeMatcher<Rhs> Ne(Rhs x) { 
-   return internal::NeMatcher<Rhs>(x); 
- } 
-   
- // Creates a polymorphic matcher that matches any NULL pointer. 
- inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { 
-   return MakePolymorphicMatcher(internal::IsNullMatcher()); 
- } 
-   
- // Creates a polymorphic matcher that matches any non-NULL pointer. 
- // This is convenient as Not(NULL) doesn't compile (the compiler 
- // thinks that that expression is comparing a pointer with an integer). 
- inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { 
-   return MakePolymorphicMatcher(internal::NotNullMatcher()); 
- } 
-   
- // Creates a polymorphic matcher that matches any argument that 
- // references variable x. 
- template <typename T> 
- inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT 
-   return internal::RefMatcher<T&>(x); 
- } 
-   
- // Creates a matcher that matches any double argument approximately 
- // equal to rhs, where two NANs are considered unequal. 
- inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { 
-   return internal::FloatingEqMatcher<double>(rhs, false); 
- } 
-   
- // Creates a matcher that matches any double argument approximately 
- // equal to rhs, including NaN values when rhs is NaN. 
- inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { 
-   return internal::FloatingEqMatcher<double>(rhs, true); 
- } 
-   
- // Creates a matcher that matches any double argument approximately equal to 
- // rhs, up to the specified max absolute error bound, where two NANs are 
- // considered unequal.  The max absolute error bound must be non-negative. 
- inline internal::FloatingEqMatcher<double> DoubleNear( 
-     double rhs, double max_abs_error) { 
-   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); 
- } 
-   
- // Creates a matcher that matches any double argument approximately equal to 
- // rhs, up to the specified max absolute error bound, including NaN values when 
- // rhs is NaN.  The max absolute error bound must be non-negative. 
- inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( 
-     double rhs, double max_abs_error) { 
-   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); 
- } 
-   
- // Creates a matcher that matches any float argument approximately 
- // equal to rhs, where two NANs are considered unequal. 
- inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { 
-   return internal::FloatingEqMatcher<float>(rhs, false); 
- } 
-   
- // Creates a matcher that matches any float argument approximately 
- // equal to rhs, including NaN values when rhs is NaN. 
- inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { 
-   return internal::FloatingEqMatcher<float>(rhs, true); 
- } 
-   
- // Creates a matcher that matches any float argument approximately equal to 
- // rhs, up to the specified max absolute error bound, where two NANs are 
- // considered unequal.  The max absolute error bound must be non-negative. 
- inline internal::FloatingEqMatcher<float> FloatNear( 
-     float rhs, float max_abs_error) { 
-   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); 
- } 
-   
- // Creates a matcher that matches any float argument approximately equal to 
- // rhs, up to the specified max absolute error bound, including NaN values when 
- // rhs is NaN.  The max absolute error bound must be non-negative. 
- inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( 
-     float rhs, float max_abs_error) { 
-   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); 
- } 
-   
- // Creates a matcher that matches a pointer (raw or smart) that points 
- // to a value that matches inner_matcher. 
- template <typename InnerMatcher> 
- inline internal::PointeeMatcher<InnerMatcher> Pointee( 
-     const InnerMatcher& inner_matcher) { 
-   return internal::PointeeMatcher<InnerMatcher>(inner_matcher); 
- } 
-   
- #if GTEST_HAS_RTTI 
- // Creates a matcher that matches a pointer or reference that matches 
- // inner_matcher when dynamic_cast<To> is applied. 
- // The result of dynamic_cast<To> is forwarded to the inner matcher. 
- // If To is a pointer and the cast fails, the inner matcher will receive NULL. 
- // If To is a reference and the cast fails, this matcher returns false 
- // immediately. 
- template <typename To> 
- inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > 
- WhenDynamicCastTo(const Matcher<To>& inner_matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::WhenDynamicCastToMatcher<To>(inner_matcher)); 
- } 
- #endif  // GTEST_HAS_RTTI 
-   
- // Creates a matcher that matches an object whose given field matches 
- // 'matcher'.  For example, 
- //   Field(&Foo::number, Ge(5)) 
- // matches a Foo object x iff x.number >= 5. 
- template <typename Class, typename FieldType, typename FieldMatcher> 
- inline PolymorphicMatcher< 
-   internal::FieldMatcher<Class, FieldType> > Field( 
-     FieldType Class::*field, const FieldMatcher& matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::FieldMatcher<Class, FieldType>( 
-           field, MatcherCast<const FieldType&>(matcher))); 
-   // The call to MatcherCast() is required for supporting inner 
-   // matchers of compatible types.  For example, it allows 
-   //   Field(&Foo::bar, m) 
-   // to compile where bar is an int32 and m is a matcher for int64. 
- } 
-   
- // Same as Field() but also takes the name of the field to provide better error 
- // messages. 
- template <typename Class, typename FieldType, typename FieldMatcher> 
- inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( 
-     const std::string& field_name, FieldType Class::*field, 
-     const FieldMatcher& matcher) { 
-   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( 
-       field_name, field, MatcherCast<const FieldType&>(matcher))); 
- } 
-   
- // Creates a matcher that matches an object whose given property 
- // matches 'matcher'.  For example, 
- //   Property(&Foo::str, StartsWith("hi")) 
- // matches a Foo object x iff x.str() starts with "hi". 
- template <typename Class, typename PropertyType, typename PropertyMatcher> 
- inline PolymorphicMatcher<internal::PropertyMatcher< 
-     Class, PropertyType, PropertyType (Class::*)() const> > 
- Property(PropertyType (Class::*property)() const, 
-          const PropertyMatcher& matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::PropertyMatcher<Class, PropertyType, 
-                                 PropertyType (Class::*)() const>( 
-           property, 
-           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); 
-   // The call to MatcherCast() is required for supporting inner 
-   // matchers of compatible types.  For example, it allows 
-   //   Property(&Foo::bar, m) 
-   // to compile where bar() returns an int32 and m is a matcher for int64. 
- } 
-   
- // Same as Property() above, but also takes the name of the property to provide 
- // better error messages. 
- template <typename Class, typename PropertyType, typename PropertyMatcher> 
- inline PolymorphicMatcher<internal::PropertyMatcher< 
-     Class, PropertyType, PropertyType (Class::*)() const> > 
- Property(const std::string& property_name, 
-          PropertyType (Class::*property)() const, 
-          const PropertyMatcher& matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::PropertyMatcher<Class, PropertyType, 
-                                 PropertyType (Class::*)() const>( 
-           property_name, property, 
-           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); 
- } 
-   
- #if GTEST_LANG_CXX11 
- // The same as above but for reference-qualified member functions. 
- template <typename Class, typename PropertyType, typename PropertyMatcher> 
- inline PolymorphicMatcher<internal::PropertyMatcher< 
-     Class, PropertyType, PropertyType (Class::*)() const &> > 
- Property(PropertyType (Class::*property)() const &, 
-          const PropertyMatcher& matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::PropertyMatcher<Class, PropertyType, 
-                                 PropertyType (Class::*)() const &>( 
-           property, 
-           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); 
- } 
-   
- // Three-argument form for reference-qualified member functions. 
- template <typename Class, typename PropertyType, typename PropertyMatcher> 
- inline PolymorphicMatcher<internal::PropertyMatcher< 
-     Class, PropertyType, PropertyType (Class::*)() const &> > 
- Property(const std::string& property_name, 
-          PropertyType (Class::*property)() const &, 
-          const PropertyMatcher& matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::PropertyMatcher<Class, PropertyType, 
-                                 PropertyType (Class::*)() const &>( 
-           property_name, property, 
-           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); 
- } 
- #endif 
-   
- // Creates a matcher that matches an object iff the result of applying 
- // a callable to x matches 'matcher'. 
- // For example, 
- //   ResultOf(f, StartsWith("hi")) 
- // matches a Foo object x iff f(x) starts with "hi". 
- // `callable` parameter can be a function, function pointer, or a functor. It is 
- // required to keep no state affecting the results of the calls on it and make 
- // no assumptions about how many calls will be made. Any state it keeps must be 
- // protected from the concurrent access. 
- template <typename Callable, typename InnerMatcher> 
- internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( 
-     Callable callable, InnerMatcher matcher) { 
-   return internal::ResultOfMatcher<Callable, InnerMatcher>( 
-       internal::move(callable), internal::move(matcher)); 
- } 
-   
- // String matchers. 
-   
- // Matches a string equal to str. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( 
-     const std::string& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::string>(str, true, true)); 
- } 
-   
- // Matches a string not equal to str. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( 
-     const std::string& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::string>(str, false, true)); 
- } 
-   
- // Matches a string equal to str, ignoring case. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( 
-     const std::string& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::string>(str, true, false)); 
- } 
-   
- // Matches a string not equal to str, ignoring case. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( 
-     const std::string& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::string>(str, false, false)); 
- } 
-   
- // Creates a matcher that matches any string, std::string, or C string 
- // that contains the given substring. 
- inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( 
-     const std::string& substring) { 
-   return MakePolymorphicMatcher( 
-       internal::HasSubstrMatcher<std::string>(substring)); 
- } 
-   
- // Matches a string that starts with 'prefix' (case-sensitive). 
- inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( 
-     const std::string& prefix) { 
-   return MakePolymorphicMatcher( 
-       internal::StartsWithMatcher<std::string>(prefix)); 
- } 
-   
- // Matches a string that ends with 'suffix' (case-sensitive). 
- inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( 
-     const std::string& suffix) { 
-   return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix)); 
- } 
-   
- // Matches a string that fully matches regular expression 'regex'. 
- // The matcher takes ownership of 'regex'. 
- inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( 
-     const internal::RE* regex) { 
-   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); 
- } 
- inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( 
-     const std::string& regex) { 
-   return MatchesRegex(new internal::RE(regex)); 
- } 
-   
- // Matches a string that contains regular expression 'regex'. 
- // The matcher takes ownership of 'regex'. 
- inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( 
-     const internal::RE* regex) { 
-   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); 
- } 
- inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( 
-     const std::string& regex) { 
-   return ContainsRegex(new internal::RE(regex)); 
- } 
-   
- #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING 
- // Wide string matchers. 
-   
- // Matches a string equal to str. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( 
-     const std::wstring& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::wstring>(str, true, true)); 
- } 
-   
- // Matches a string not equal to str. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( 
-     const std::wstring& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::wstring>(str, false, true)); 
- } 
-   
- // Matches a string equal to str, ignoring case. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > 
- StrCaseEq(const std::wstring& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::wstring>(str, true, false)); 
- } 
-   
- // Matches a string not equal to str, ignoring case. 
- inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > 
- StrCaseNe(const std::wstring& str) { 
-   return MakePolymorphicMatcher( 
-       internal::StrEqualityMatcher<std::wstring>(str, false, false)); 
- } 
-   
- // Creates a matcher that matches any ::wstring, std::wstring, or C wide string 
- // that contains the given substring. 
- inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( 
-     const std::wstring& substring) { 
-   return MakePolymorphicMatcher( 
-       internal::HasSubstrMatcher<std::wstring>(substring)); 
- } 
-   
- // Matches a string that starts with 'prefix' (case-sensitive). 
- inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > 
- StartsWith(const std::wstring& prefix) { 
-   return MakePolymorphicMatcher( 
-       internal::StartsWithMatcher<std::wstring>(prefix)); 
- } 
-   
- // Matches a string that ends with 'suffix' (case-sensitive). 
- inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( 
-     const std::wstring& suffix) { 
-   return MakePolymorphicMatcher( 
-       internal::EndsWithMatcher<std::wstring>(suffix)); 
- } 
-   
- #endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where the 
- // first field == the second field. 
- inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where the 
- // first field >= the second field. 
- inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where the 
- // first field > the second field. 
- inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where the 
- // first field <= the second field. 
- inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where the 
- // first field < the second field. 
- inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where the 
- // first field != the second field. 
- inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // FloatEq(first field) matches the second field. 
- inline internal::FloatingEq2Matcher<float> FloatEq() { 
-   return internal::FloatingEq2Matcher<float>(); 
- } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // DoubleEq(first field) matches the second field. 
- inline internal::FloatingEq2Matcher<double> DoubleEq() { 
-   return internal::FloatingEq2Matcher<double>(); 
- } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // FloatEq(first field) matches the second field with NaN equality. 
- inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { 
-   return internal::FloatingEq2Matcher<float>(true); 
- } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // DoubleEq(first field) matches the second field with NaN equality. 
- inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { 
-   return internal::FloatingEq2Matcher<double>(true); 
- } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // FloatNear(first field, max_abs_error) matches the second field. 
- inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { 
-   return internal::FloatingEq2Matcher<float>(max_abs_error); 
- } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // DoubleNear(first field, max_abs_error) matches the second field. 
- inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { 
-   return internal::FloatingEq2Matcher<double>(max_abs_error); 
- } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // FloatNear(first field, max_abs_error) matches the second field with NaN 
- // equality. 
- inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( 
-     float max_abs_error) { 
-   return internal::FloatingEq2Matcher<float>(max_abs_error, true); 
- } 
-   
- // Creates a polymorphic matcher that matches a 2-tuple where 
- // DoubleNear(first field, max_abs_error) matches the second field with NaN 
- // equality. 
- inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( 
-     double max_abs_error) { 
-   return internal::FloatingEq2Matcher<double>(max_abs_error, true); 
- } 
-   
- // Creates a matcher that matches any value of type T that m doesn't 
- // match. 
- template <typename InnerMatcher> 
- inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { 
-   return internal::NotMatcher<InnerMatcher>(m); 
- } 
-   
- // Returns a matcher that matches anything that satisfies the given 
- // predicate.  The predicate can be any unary function or functor 
- // whose return type can be implicitly converted to bool. 
- template <typename Predicate> 
- inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > 
- Truly(Predicate pred) { 
-   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); 
- } 
-   
- // Returns a matcher that matches the container size. The container must 
- // support both size() and size_type which all STL-like containers provide. 
- // Note that the parameter 'size' can be a value of type size_type as well as 
- // matcher. For instance: 
- //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements. 
- //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2. 
- template <typename SizeMatcher> 
- inline internal::SizeIsMatcher<SizeMatcher> 
- SizeIs(const SizeMatcher& size_matcher) { 
-   return internal::SizeIsMatcher<SizeMatcher>(size_matcher); 
- } 
-   
- // Returns a matcher that matches the distance between the container's begin() 
- // iterator and its end() iterator, i.e. the size of the container. This matcher 
- // can be used instead of SizeIs with containers such as std::forward_list which 
- // do not implement size(). The container must provide const_iterator (with 
- // valid iterator_traits), begin() and end(). 
- template <typename DistanceMatcher> 
- inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> 
- BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { 
-   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); 
- } 
-   
- // Returns a matcher that matches an equal container. 
- // This matcher behaves like Eq(), but in the event of mismatch lists the 
- // values that are included in one container but not the other. (Duplicate 
- // values and order differences are not explained.) 
- template <typename Container> 
- inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT 
-                             GTEST_REMOVE_CONST_(Container)> > 
-     ContainerEq(const Container& rhs) { 
-   // This following line is for working around a bug in MSVC 8.0, 
-   // which causes Container to be a const type sometimes. 
-   typedef GTEST_REMOVE_CONST_(Container) RawContainer; 
-   return MakePolymorphicMatcher( 
-       internal::ContainerEqMatcher<RawContainer>(rhs)); 
- } 
-   
- // Returns a matcher that matches a container that, when sorted using 
- // the given comparator, matches container_matcher. 
- template <typename Comparator, typename ContainerMatcher> 
- inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> 
- WhenSortedBy(const Comparator& comparator, 
-              const ContainerMatcher& container_matcher) { 
-   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( 
-       comparator, container_matcher); 
- } 
-   
- // Returns a matcher that matches a container that, when sorted using 
- // the < operator, matches container_matcher. 
- template <typename ContainerMatcher> 
- inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> 
- WhenSorted(const ContainerMatcher& container_matcher) { 
-   return 
-       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( 
-           internal::LessComparator(), container_matcher); 
- } 
-   
- // Matches an STL-style container or a native array that contains the 
- // same number of elements as in rhs, where its i-th element and rhs's 
- // i-th element (as a pair) satisfy the given pair matcher, for all i. 
- // TupleMatcher must be able to be safely cast to Matcher<tuple<const 
- // T1&, const T2&> >, where T1 and T2 are the types of elements in the 
- // LHS container and the RHS container respectively. 
- template <typename TupleMatcher, typename Container> 
- inline internal::PointwiseMatcher<TupleMatcher, 
-                                   GTEST_REMOVE_CONST_(Container)> 
- Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { 
-   // This following line is for working around a bug in MSVC 8.0, 
-   // which causes Container to be a const type sometimes (e.g. when 
-   // rhs is a const int[]).. 
-   typedef GTEST_REMOVE_CONST_(Container) RawContainer; 
-   return internal::PointwiseMatcher<TupleMatcher, RawContainer>( 
-       tuple_matcher, rhs); 
- } 
-   
- #if GTEST_HAS_STD_INITIALIZER_LIST_ 
-   
- // Supports the Pointwise(m, {a, b, c}) syntax. 
- template <typename TupleMatcher, typename T> 
- inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( 
-     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { 
-   return Pointwise(tuple_matcher, std::vector<T>(rhs)); 
- } 
-   
- #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ 
-   
- // UnorderedPointwise(pair_matcher, rhs) matches an STL-style 
- // container or a native array that contains the same number of 
- // elements as in rhs, where in some permutation of the container, its 
- // i-th element and rhs's i-th element (as a pair) satisfy the given 
- // pair matcher, for all i.  Tuple2Matcher must be able to be safely 
- // cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are 
- // the types of elements in the LHS container and the RHS container 
- // respectively. 
- // 
- // This is like Pointwise(pair_matcher, rhs), except that the element 
- // order doesn't matter. 
- template <typename Tuple2Matcher, typename RhsContainer> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename internal::BoundSecondMatcher< 
-         Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_( 
-                            RhsContainer)>::type::value_type> > 
- UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, 
-                    const RhsContainer& rhs_container) { 
-   // This following line is for working around a bug in MSVC 8.0, 
-   // which causes RhsContainer to be a const type sometimes (e.g. when 
-   // rhs_container is a const int[]). 
-   typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer; 
-   
-   // RhsView allows the same code to handle RhsContainer being a 
-   // STL-style container and it being a native C-style array. 
-   typedef typename internal::StlContainerView<RawRhsContainer> RhsView; 
-   typedef typename RhsView::type RhsStlContainer; 
-   typedef typename RhsStlContainer::value_type Second; 
-   const RhsStlContainer& rhs_stl_container = 
-       RhsView::ConstReference(rhs_container); 
-   
-   // Create a matcher for each element in rhs_container. 
-   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; 
-   for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); 
-        it != rhs_stl_container.end(); ++it) { 
-     matchers.push_back( 
-         internal::MatcherBindSecond(tuple2_matcher, *it)); 
-   } 
-   
-   // Delegate the work to UnorderedElementsAreArray(). 
-   return UnorderedElementsAreArray(matchers); 
- } 
-   
- #if GTEST_HAS_STD_INITIALIZER_LIST_ 
-   
- // Supports the UnorderedPointwise(m, {a, b, c}) syntax. 
- template <typename Tuple2Matcher, typename T> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename internal::BoundSecondMatcher<Tuple2Matcher, T> > 
- UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, 
-                    std::initializer_list<T> rhs) { 
-   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); 
- } 
-   
- #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ 
-   
- // Matches an STL-style container or a native array that contains at 
- // least one element matching the given value or matcher. 
- // 
- // Examples: 
- //   ::std::set<int> page_ids; 
- //   page_ids.insert(3); 
- //   page_ids.insert(1); 
- //   EXPECT_THAT(page_ids, Contains(1)); 
- //   EXPECT_THAT(page_ids, Contains(Gt(2))); 
- //   EXPECT_THAT(page_ids, Not(Contains(4))); 
- // 
- //   ::std::map<int, size_t> page_lengths; 
- //   page_lengths[1] = 100; 
- //   EXPECT_THAT(page_lengths, 
- //               Contains(::std::pair<const int, size_t>(1, 100))); 
- // 
- //   const char* user_ids[] = { "joe", "mike", "tom" }; 
- //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); 
- template <typename M> 
- inline internal::ContainsMatcher<M> Contains(M matcher) { 
-   return internal::ContainsMatcher<M>(matcher); 
- } 
-   
- // IsSupersetOf(iterator_first, iterator_last) 
- // IsSupersetOf(pointer, count) 
- // IsSupersetOf(array) 
- // IsSupersetOf(container) 
- // IsSupersetOf({e1, e2, ..., en}) 
- // 
- // IsSupersetOf() verifies that a surjective partial mapping onto a collection 
- // of matchers exists. In other words, a container matches 
- // IsSupersetOf({e1, ..., en}) if and only if there is a permutation 
- // {y1, ..., yn} of some of the container's elements where y1 matches e1, 
- // ..., and yn matches en. Obviously, the size of the container must be >= n 
- // in order to have a match. Examples: 
- // 
- // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and 
- //   1 matches Ne(0). 
- // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches 
- //   both Eq(1) and Lt(2). The reason is that different matchers must be used 
- //   for elements in different slots of the container. 
- // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches 
- //   Eq(1) and (the second) 1 matches Lt(2). 
- // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) 
- //   Gt(1) and 3 matches (the second) Gt(1). 
- // 
- // The matchers can be specified as an array, a pointer and count, a container, 
- // an initializer list, or an STL iterator range. In each of these cases, the 
- // underlying matchers can be either values or matchers. 
-   
- template <typename Iter> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename ::std::iterator_traits<Iter>::value_type> 
- IsSupersetOf(Iter first, Iter last) { 
-   typedef typename ::std::iterator_traits<Iter>::value_type T; 
-   return internal::UnorderedElementsAreArrayMatcher<T>( 
-       internal::UnorderedMatcherRequire::Superset, first, last); 
- } 
-   
- template <typename T> 
- inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( 
-     const T* pointer, size_t count) { 
-   return IsSupersetOf(pointer, pointer + count); 
- } 
-   
- template <typename T, size_t N> 
- inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( 
-     const T (&array)[N]) { 
-   return IsSupersetOf(array, N); 
- } 
-   
- template <typename Container> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename Container::value_type> 
- IsSupersetOf(const Container& container) { 
-   return IsSupersetOf(container.begin(), container.end()); 
- } 
-   
- #if GTEST_HAS_STD_INITIALIZER_LIST_ 
- template <typename T> 
- inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( 
-     ::std::initializer_list<T> xs) { 
-   return IsSupersetOf(xs.begin(), xs.end()); 
- } 
- #endif 
-   
- // IsSubsetOf(iterator_first, iterator_last) 
- // IsSubsetOf(pointer, count) 
- // IsSubsetOf(array) 
- // IsSubsetOf(container) 
- // IsSubsetOf({e1, e2, ..., en}) 
- // 
- // IsSubsetOf() verifies that an injective mapping onto a collection of matchers 
- // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and 
- // only if there is a subset of matchers {m1, ..., mk} which would match the 
- // container using UnorderedElementsAre.  Obviously, the size of the container 
- // must be <= n in order to have a match. Examples: 
- // 
- // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). 
- // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 
- //   matches Lt(0). 
- // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both 
- //   match Gt(0). The reason is that different matchers must be used for 
- //   elements in different slots of the container. 
- // 
- // The matchers can be specified as an array, a pointer and count, a container, 
- // an initializer list, or an STL iterator range. In each of these cases, the 
- // underlying matchers can be either values or matchers. 
-   
- template <typename Iter> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename ::std::iterator_traits<Iter>::value_type> 
- IsSubsetOf(Iter first, Iter last) { 
-   typedef typename ::std::iterator_traits<Iter>::value_type T; 
-   return internal::UnorderedElementsAreArrayMatcher<T>( 
-       internal::UnorderedMatcherRequire::Subset, first, last); 
- } 
-   
- template <typename T> 
- inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( 
-     const T* pointer, size_t count) { 
-   return IsSubsetOf(pointer, pointer + count); 
- } 
-   
- template <typename T, size_t N> 
- inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( 
-     const T (&array)[N]) { 
-   return IsSubsetOf(array, N); 
- } 
-   
- template <typename Container> 
- inline internal::UnorderedElementsAreArrayMatcher< 
-     typename Container::value_type> 
- IsSubsetOf(const Container& container) { 
-   return IsSubsetOf(container.begin(), container.end()); 
- } 
-   
- #if GTEST_HAS_STD_INITIALIZER_LIST_ 
- template <typename T> 
- inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( 
-     ::std::initializer_list<T> xs) { 
-   return IsSubsetOf(xs.begin(), xs.end()); 
- } 
- #endif 
-   
- // Matches an STL-style container or a native array that contains only 
- // elements matching the given value or matcher. 
- // 
- // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only 
- // the messages are different. 
- // 
- // Examples: 
- //   ::std::set<int> page_ids; 
- //   // Each(m) matches an empty container, regardless of what m is. 
- //   EXPECT_THAT(page_ids, Each(Eq(1))); 
- //   EXPECT_THAT(page_ids, Each(Eq(77))); 
- // 
- //   page_ids.insert(3); 
- //   EXPECT_THAT(page_ids, Each(Gt(0))); 
- //   EXPECT_THAT(page_ids, Not(Each(Gt(4)))); 
- //   page_ids.insert(1); 
- //   EXPECT_THAT(page_ids, Not(Each(Lt(2)))); 
- // 
- //   ::std::map<int, size_t> page_lengths; 
- //   page_lengths[1] = 100; 
- //   page_lengths[2] = 200; 
- //   page_lengths[3] = 300; 
- //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); 
- //   EXPECT_THAT(page_lengths, Each(Key(Le(3)))); 
- // 
- //   const char* user_ids[] = { "joe", "mike", "tom" }; 
- //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); 
- template <typename M> 
- inline internal::EachMatcher<M> Each(M matcher) { 
-   return internal::EachMatcher<M>(matcher); 
- } 
-   
- // Key(inner_matcher) matches an std::pair whose 'first' field matches 
- // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an 
- // std::map that contains at least one element whose key is >= 5. 
- template <typename M> 
- inline internal::KeyMatcher<M> Key(M inner_matcher) { 
-   return internal::KeyMatcher<M>(inner_matcher); 
- } 
-   
- // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field 
- // matches first_matcher and whose 'second' field matches second_matcher.  For 
- // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used 
- // to match a std::map<int, string> that contains exactly one element whose key 
- // is >= 5 and whose value equals "foo". 
- template <typename FirstMatcher, typename SecondMatcher> 
- inline internal::PairMatcher<FirstMatcher, SecondMatcher> 
- Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { 
-   return internal::PairMatcher<FirstMatcher, SecondMatcher>( 
-       first_matcher, second_matcher); 
- } 
-   
- // Returns a predicate that is satisfied by anything that matches the 
- // given matcher. 
- template <typename M> 
- inline internal::MatcherAsPredicate<M> Matches(M matcher) { 
-   return internal::MatcherAsPredicate<M>(matcher); 
- } 
-   
- // Returns true iff the value matches the matcher. 
- template <typename T, typename M> 
- inline bool Value(const T& value, M matcher) { 
-   return testing::Matches(matcher)(value); 
- } 
-   
- // Matches the value against the given matcher and explains the match 
- // result to listener. 
- template <typename T, typename M> 
- inline bool ExplainMatchResult( 
-     M matcher, const T& value, MatchResultListener* listener) { 
-   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); 
- } 
-   
- // Returns a string representation of the given matcher.  Useful for description 
- // strings of matchers defined using MATCHER_P* macros that accept matchers as 
- // their arguments.  For example: 
- // 
- // MATCHER_P(XAndYThat, matcher, 
- //           "X that " + DescribeMatcher<int>(matcher, negation) + 
- //               " and Y that " + DescribeMatcher<double>(matcher, negation)) { 
- //   return ExplainMatchResult(matcher, arg.x(), result_listener) && 
- //          ExplainMatchResult(matcher, arg.y(), result_listener); 
- // } 
- template <typename T, typename M> 
- std::string DescribeMatcher(const M& matcher, bool negation = false) { 
-   ::std::stringstream ss; 
-   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); 
-   if (negation) { 
-     monomorphic_matcher.DescribeNegationTo(&ss); 
-   } else { 
-     monomorphic_matcher.DescribeTo(&ss); 
-   } 
-   return ss.str(); 
- } 
-   
- #if GTEST_LANG_CXX11 
- // Define variadic matcher versions. They are overloaded in 
- // gmock-generated-matchers.h for the cases supported by pre C++11 compilers. 
- template <typename... Args> 
- internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( 
-     const Args&... matchers) { 
-   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( 
-       matchers...); 
- } 
-   
- template <typename... Args> 
- internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( 
-     const Args&... matchers) { 
-   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( 
-       matchers...); 
- } 
-   
- template <typename... Args> 
- internal::ElementsAreMatcher<tuple<typename std::decay<const Args&>::type...>> 
- ElementsAre(const Args&... matchers) { 
-   return internal::ElementsAreMatcher< 
-       tuple<typename std::decay<const Args&>::type...>>( 
-       make_tuple(matchers...)); 
- } 
-   
- template <typename... Args> 
- internal::UnorderedElementsAreMatcher< 
-     tuple<typename std::decay<const Args&>::type...>> 
- UnorderedElementsAre(const Args&... matchers) { 
-   return internal::UnorderedElementsAreMatcher< 
-       tuple<typename std::decay<const Args&>::type...>>( 
-       make_tuple(matchers...)); 
- } 
-   
- #endif  // GTEST_LANG_CXX11 
-   
- // AllArgs(m) is a synonym of m.  This is useful in 
- // 
- //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); 
- // 
- // which is easier to read than 
- // 
- //   EXPECT_CALL(foo, Bar(_, _)).With(Eq()); 
- template <typename InnerMatcher> 
- inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } 
-   
- // Returns a matcher that matches the value of an optional<> type variable. 
- // The matcher implementation only uses '!arg' and requires that the optional<> 
- // type has a 'value_type' member type and that '*arg' is of type 'value_type' 
- // and is printable using 'PrintToString'. It is compatible with 
- // std::optional/std::experimental::optional. 
- // Note that to compare an optional type variable against nullopt you should 
- // use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the 
- // optional value contains an optional itself. 
- template <typename ValueMatcher> 
- inline internal::OptionalMatcher<ValueMatcher> Optional( 
-     const ValueMatcher& value_matcher) { 
-   return internal::OptionalMatcher<ValueMatcher>(value_matcher); 
- } 
-   
- // Returns a matcher that matches the value of a absl::any type variable. 
- template <typename T> 
- PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( 
-     const Matcher<const T&>& matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); 
- } 
-   
- // Returns a matcher that matches the value of a variant<> type variable. 
- // The matcher implementation uses ADL to find the holds_alternative and get 
- // functions. 
- // It is compatible with std::variant. 
- template <typename T> 
- PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( 
-     const Matcher<const T&>& matcher) { 
-   return MakePolymorphicMatcher( 
-       internal::variant_matcher::VariantMatcher<T>(matcher)); 
- } 
-   
- // These macros allow using matchers to check values in Google Test 
- // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) 
- // succeed iff the value matches the matcher.  If the assertion fails, 
- // the value and the description of the matcher will be printed. 
- #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ 
-     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) 
- #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ 
-     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) 
-   
- }  // namespace testing 
-   
- GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 
-   
- // Include any custom callback matchers added by the local installation. 
- // We must include this header at the end to make sure it can use the 
- // declarations from this file. 
- #include "gmock/internal/custom/gmock-matchers.h" 
-   
- #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ 
-