- // Copyright 2007, Google Inc. 
- // All rights reserved. 
- // 
- // Redistribution and use in source and binary forms, with or without 
- // modification, are permitted provided that the following conditions are 
- // met: 
- // 
- //     * Redistributions of source code must retain the above copyright 
- // notice, this list of conditions and the following disclaimer. 
- //     * Redistributions in binary form must reproduce the above 
- // copyright notice, this list of conditions and the following disclaimer 
- // in the documentation and/or other materials provided with the 
- // distribution. 
- //     * Neither the name of Google Inc. nor the names of its 
- // contributors may be used to endorse or promote products derived from 
- // this software without specific prior written permission. 
- // 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
-   
-   
- // Google Mock - a framework for writing C++ mock classes. 
- // 
- // This file implements Matcher<const string&>, Matcher<string>, and 
- // utilities for defining matchers. 
-   
- #include "gmock/gmock-matchers.h" 
- #include "gmock/gmock-generated-matchers.h" 
-   
- #include <string.h> 
- #include <iostream> 
- #include <sstream> 
- #include <string> 
-   
- namespace testing { 
-   
- // Constructs a matcher that matches a const std::string& whose value is 
- // equal to s. 
- Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); } 
-   
- #if GTEST_HAS_GLOBAL_STRING 
- // Constructs a matcher that matches a const std::string& whose value is 
- // equal to s. 
- Matcher<const std::string&>::Matcher(const ::string& s) { 
-   *this = Eq(static_cast<std::string>(s)); 
- } 
- #endif  // GTEST_HAS_GLOBAL_STRING 
-   
- // Constructs a matcher that matches a const std::string& whose value is 
- // equal to s. 
- Matcher<const std::string&>::Matcher(const char* s) { 
-   *this = Eq(std::string(s)); 
- } 
-   
- // Constructs a matcher that matches a std::string whose value is equal to 
- // s. 
- Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); } 
-   
- #if GTEST_HAS_GLOBAL_STRING 
- // Constructs a matcher that matches a std::string whose value is equal to 
- // s. 
- Matcher<std::string>::Matcher(const ::string& s) { 
-   *this = Eq(static_cast<std::string>(s)); 
- } 
- #endif  // GTEST_HAS_GLOBAL_STRING 
-   
- // Constructs a matcher that matches a std::string whose value is equal to 
- // s. 
- Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); } 
-   
- #if GTEST_HAS_GLOBAL_STRING 
- // Constructs a matcher that matches a const ::string& whose value is 
- // equal to s. 
- Matcher<const ::string&>::Matcher(const std::string& s) { 
-   *this = Eq(static_cast<::string>(s)); 
- } 
-   
- // Constructs a matcher that matches a const ::string& whose value is 
- // equal to s. 
- Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); } 
-   
- // Constructs a matcher that matches a const ::string& whose value is 
- // equal to s. 
- Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); } 
-   
- // Constructs a matcher that matches a ::string whose value is equal to s. 
- Matcher<::string>::Matcher(const std::string& s) { 
-   *this = Eq(static_cast<::string>(s)); 
- } 
-   
- // Constructs a matcher that matches a ::string whose value is equal to s. 
- Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); } 
-   
- // Constructs a matcher that matches a string whose value is equal to s. 
- Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); } 
- #endif  // GTEST_HAS_GLOBAL_STRING 
-   
- #if GTEST_HAS_ABSL 
- // Constructs a matcher that matches a const absl::string_view& whose value is 
- // equal to s. 
- Matcher<const absl::string_view&>::Matcher(const std::string& s) { 
-   *this = Eq(s); 
- } 
-   
- #if GTEST_HAS_GLOBAL_STRING 
- // Constructs a matcher that matches a const absl::string_view& whose value is 
- // equal to s. 
- Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); } 
- #endif  // GTEST_HAS_GLOBAL_STRING 
-   
- // Constructs a matcher that matches a const absl::string_view& whose value is 
- // equal to s. 
- Matcher<const absl::string_view&>::Matcher(const char* s) { 
-   *this = Eq(std::string(s)); 
- } 
-   
- // Constructs a matcher that matches a const absl::string_view& whose value is 
- // equal to s. 
- Matcher<const absl::string_view&>::Matcher(absl::string_view s) { 
-   *this = Eq(std::string(s)); 
- } 
-   
- // Constructs a matcher that matches a absl::string_view whose value is equal to 
- // s. 
- Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); } 
-   
- #if GTEST_HAS_GLOBAL_STRING 
- // Constructs a matcher that matches a absl::string_view whose value is equal to 
- // s. 
- Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); } 
- #endif  // GTEST_HAS_GLOBAL_STRING 
-   
- // Constructs a matcher that matches a absl::string_view whose value is equal to 
- // s. 
- Matcher<absl::string_view>::Matcher(const char* s) { 
-   *this = Eq(std::string(s)); 
- } 
-   
- // Constructs a matcher that matches a absl::string_view whose value is equal to 
- // s. 
- Matcher<absl::string_view>::Matcher(absl::string_view s) { 
-   *this = Eq(std::string(s)); 
- } 
- #endif  // GTEST_HAS_ABSL 
-   
- namespace internal { 
-   
- // Returns the description for a matcher defined using the MATCHER*() 
- // macro where the user-supplied description string is "", if 
- // 'negation' is false; otherwise returns the description of the 
- // negation of the matcher.  'param_values' contains a list of strings 
- // that are the print-out of the matcher's parameters. 
- GTEST_API_ std::string FormatMatcherDescription(bool negation, 
-                                                 const char* matcher_name, 
-                                                 const Strings& param_values) { 
-   std::string result = ConvertIdentifierNameToWords(matcher_name); 
-   if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values); 
-   return negation ? "not (" + result + ")" : result; 
- } 
-   
- // FindMaxBipartiteMatching and its helper class. 
- // 
- // Uses the well-known Ford-Fulkerson max flow method to find a maximum 
- // bipartite matching. Flow is considered to be from left to right. 
- // There is an implicit source node that is connected to all of the left 
- // nodes, and an implicit sink node that is connected to all of the 
- // right nodes. All edges have unit capacity. 
- // 
- // Neither the flow graph nor the residual flow graph are represented 
- // explicitly. Instead, they are implied by the information in 'graph' and 
- // a vector<int> called 'left_' whose elements are initialized to the 
- // value kUnused. This represents the initial state of the algorithm, 
- // where the flow graph is empty, and the residual flow graph has the 
- // following edges: 
- //   - An edge from source to each left_ node 
- //   - An edge from each right_ node to sink 
- //   - An edge from each left_ node to each right_ node, if the 
- //     corresponding edge exists in 'graph'. 
- // 
- // When the TryAugment() method adds a flow, it sets left_[l] = r for some 
- // nodes l and r. This induces the following changes: 
- //   - The edges (source, l), (l, r), and (r, sink) are added to the 
- //     flow graph. 
- //   - The same three edges are removed from the residual flow graph. 
- //   - The reverse edges (l, source), (r, l), and (sink, r) are added 
- //     to the residual flow graph, which is a directional graph 
- //     representing unused flow capacity. 
- // 
- // When the method augments a flow (moving left_[l] from some r1 to some 
- // other r2), this can be thought of as "undoing" the above steps with 
- // respect to r1 and "redoing" them with respect to r2. 
- // 
- // It bears repeating that the flow graph and residual flow graph are 
- // never represented explicitly, but can be derived by looking at the 
- // information in 'graph' and in left_. 
- // 
- // As an optimization, there is a second vector<int> called right_ which 
- // does not provide any new information. Instead, it enables more 
- // efficient queries about edges entering or leaving the right-side nodes 
- // of the flow or residual flow graphs. The following invariants are 
- // maintained: 
- // 
- // left[l] == kUnused or right[left[l]] == l 
- // right[r] == kUnused or left[right[r]] == r 
- // 
- // . [ source ]                                        . 
- // .   |||                                             . 
- // .   |||                                             . 
- // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     . 
- // .   ||                   |                    |     . 
- // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     . 
- // .   |                                        ||     . 
- // .   \----> left[2]=2  ------> right[2]=2  --\||     . 
- // .                                           |||     . 
- // .         elements           matchers       vvv     . 
- // .                                         [ sink ]  . 
- // 
- // See Also: 
- //   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". 
- //       "Introduction to Algorithms (Second ed.)", pp. 651-664. 
- //   [2] "Ford-Fulkerson algorithm", Wikipedia, 
- //       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' 
- class MaxBipartiteMatchState { 
-  public: 
-   explicit MaxBipartiteMatchState(const MatchMatrix& graph) 
-       : graph_(&graph), 
-         left_(graph_->LhsSize(), kUnused), 
-         right_(graph_->RhsSize(), kUnused) {} 
-   
-   // Returns the edges of a maximal match, each in the form {left, right}. 
-   ElementMatcherPairs Compute() { 
-     // 'seen' is used for path finding { 0: unseen, 1: seen }. 
-     ::std::vector<char> seen; 
-     // Searches the residual flow graph for a path from each left node to 
-     // the sink in the residual flow graph, and if one is found, add flow 
-     // to the graph. It's okay to search through the left nodes once. The 
-     // edge from the implicit source node to each previously-visited left 
-     // node will have flow if that left node has any path to the sink 
-     // whatsoever. Subsequent augmentations can only add flow to the 
-     // network, and cannot take away that previous flow unit from the source. 
-     // Since the source-to-left edge can only carry one flow unit (or, 
-     // each element can be matched to only one matcher), there is no need 
-     // to visit the left nodes more than once looking for augmented paths. 
-     // The flow is known to be possible or impossible by looking at the 
-     // node once. 
-     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { 
-       // Reset the path-marking vector and try to find a path from 
-       // source to sink starting at the left_[ilhs] node. 
-       GTEST_CHECK_(left_[ilhs] == kUnused) 
-           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; 
-       // 'seen' initialized to 'graph_->RhsSize()' copies of 0. 
-       seen.assign(graph_->RhsSize(), 0); 
-       TryAugment(ilhs, &seen); 
-     } 
-     ElementMatcherPairs result; 
-     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { 
-       size_t irhs = left_[ilhs]; 
-       if (irhs == kUnused) continue; 
-       result.push_back(ElementMatcherPair(ilhs, irhs)); 
-     } 
-     return result; 
-   } 
-   
-  private: 
-   static const size_t kUnused = static_cast<size_t>(-1); 
-   
-   // Perform a depth-first search from left node ilhs to the sink.  If a 
-   // path is found, flow is added to the network by linking the left and 
-   // right vector elements corresponding each segment of the path. 
-   // Returns true if a path to sink was found, which means that a unit of 
-   // flow was added to the network. The 'seen' vector elements correspond 
-   // to right nodes and are marked to eliminate cycles from the search. 
-   // 
-   // Left nodes will only be explored at most once because they 
-   // are accessible from at most one right node in the residual flow 
-   // graph. 
-   // 
-   // Note that left_[ilhs] is the only element of left_ that TryAugment will 
-   // potentially transition from kUnused to another value. Any other 
-   // left_ element holding kUnused before TryAugment will be holding it 
-   // when TryAugment returns. 
-   // 
-   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { 
-     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { 
-       if ((*seen)[irhs]) continue; 
-       if (!graph_->HasEdge(ilhs, irhs)) continue; 
-       // There's an available edge from ilhs to irhs. 
-       (*seen)[irhs] = 1; 
-       // Next a search is performed to determine whether 
-       // this edge is a dead end or leads to the sink. 
-       // 
-       // right_[irhs] == kUnused means that there is residual flow from 
-       // right node irhs to the sink, so we can use that to finish this 
-       // flow path and return success. 
-       // 
-       // Otherwise there is residual flow to some ilhs. We push flow 
-       // along that path and call ourselves recursively to see if this 
-       // ultimately leads to sink. 
-       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { 
-         // Add flow from left_[ilhs] to right_[irhs]. 
-         left_[ilhs] = irhs; 
-         right_[irhs] = ilhs; 
-         return true; 
-       } 
-     } 
-     return false; 
-   } 
-   
-   const MatchMatrix* graph_;  // not owned 
-   // Each element of the left_ vector represents a left hand side node 
-   // (i.e. an element) and each element of right_ is a right hand side 
-   // node (i.e. a matcher). The values in the left_ vector indicate 
-   // outflow from that node to a node on the right_ side. The values 
-   // in the right_ indicate inflow, and specify which left_ node is 
-   // feeding that right_ node, if any. For example, left_[3] == 1 means 
-   // there's a flow from element #3 to matcher #1. Such a flow would also 
-   // be redundantly represented in the right_ vector as right_[1] == 3. 
-   // Elements of left_ and right_ are either kUnused or mutually 
-   // referent. Mutually referent means that left_[right_[i]] = i and 
-   // right_[left_[i]] = i. 
-   ::std::vector<size_t> left_; 
-   ::std::vector<size_t> right_; 
-   
-   GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); 
- }; 
-   
- const size_t MaxBipartiteMatchState::kUnused; 
-   
- GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { 
-   return MaxBipartiteMatchState(g).Compute(); 
- } 
-   
- static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, 
-                                      ::std::ostream* stream) { 
-   typedef ElementMatcherPairs::const_iterator Iter; 
-   ::std::ostream& os = *stream; 
-   os << "{"; 
-   const char* sep = ""; 
-   for (Iter it = pairs.begin(); it != pairs.end(); ++it) { 
-     os << sep << "\n  (" 
-        << "element #" << it->first << ", " 
-        << "matcher #" << it->second << ")"; 
-     sep = ","; 
-   } 
-   os << "\n}"; 
- } 
-   
- bool MatchMatrix::NextGraph() { 
-   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 
-     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 
-       char& b = matched_[SpaceIndex(ilhs, irhs)]; 
-       if (!b) { 
-         b = 1; 
-         return true; 
-       } 
-       b = 0; 
-     } 
-   } 
-   return false; 
- } 
-   
- void MatchMatrix::Randomize() { 
-   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 
-     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 
-       char& b = matched_[SpaceIndex(ilhs, irhs)]; 
-       b = static_cast<char>(rand() & 1);  // NOLINT 
-     } 
-   } 
- } 
-   
- std::string MatchMatrix::DebugString() const { 
-   ::std::stringstream ss; 
-   const char* sep = ""; 
-   for (size_t i = 0; i < LhsSize(); ++i) { 
-     ss << sep; 
-     for (size_t j = 0; j < RhsSize(); ++j) { 
-       ss << HasEdge(i, j); 
-     } 
-     sep = ";"; 
-   } 
-   return ss.str(); 
- } 
-   
- void UnorderedElementsAreMatcherImplBase::DescribeToImpl( 
-     ::std::ostream* os) const { 
-   switch (match_flags()) { 
-     case UnorderedMatcherRequire::ExactMatch: 
-       if (matcher_describers_.empty()) { 
-         *os << "is empty"; 
-         return; 
-       } 
-       if (matcher_describers_.size() == 1) { 
-         *os << "has " << Elements(1) << " and that element "; 
-         matcher_describers_[0]->DescribeTo(os); 
-         return; 
-       } 
-       *os << "has " << Elements(matcher_describers_.size()) 
-           << " and there exists some permutation of elements such that:\n"; 
-       break; 
-     case UnorderedMatcherRequire::Superset: 
-       *os << "a surjection from elements to requirements exists such that:\n"; 
-       break; 
-     case UnorderedMatcherRequire::Subset: 
-       *os << "an injection from elements to requirements exists such that:\n"; 
-       break; 
-   } 
-   
-   const char* sep = ""; 
-   for (size_t i = 0; i != matcher_describers_.size(); ++i) { 
-     *os << sep; 
-     if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 
-       *os << " - element #" << i << " "; 
-     } else { 
-       *os << " - an element "; 
-     } 
-     matcher_describers_[i]->DescribeTo(os); 
-     if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 
-       sep = ", and\n"; 
-     } else { 
-       sep = "\n"; 
-     } 
-   } 
- } 
-   
- void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( 
-     ::std::ostream* os) const { 
-   switch (match_flags()) { 
-     case UnorderedMatcherRequire::ExactMatch: 
-       if (matcher_describers_.empty()) { 
-         *os << "isn't empty"; 
-         return; 
-       } 
-       if (matcher_describers_.size() == 1) { 
-         *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) 
-             << " that "; 
-         matcher_describers_[0]->DescribeNegationTo(os); 
-         return; 
-       } 
-       *os << "doesn't have " << Elements(matcher_describers_.size()) 
-           << ", or there exists no permutation of elements such that:\n"; 
-       break; 
-     case UnorderedMatcherRequire::Superset: 
-       *os << "no surjection from elements to requirements exists such that:\n"; 
-       break; 
-     case UnorderedMatcherRequire::Subset: 
-       *os << "no injection from elements to requirements exists such that:\n"; 
-       break; 
-   } 
-   const char* sep = ""; 
-   for (size_t i = 0; i != matcher_describers_.size(); ++i) { 
-     *os << sep; 
-     if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 
-       *os << " - element #" << i << " "; 
-     } else { 
-       *os << " - an element "; 
-     } 
-     matcher_describers_[i]->DescribeTo(os); 
-     if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 
-       sep = ", and\n"; 
-     } else { 
-       sep = "\n"; 
-     } 
-   } 
- } 
-   
- // Checks that all matchers match at least one element, and that all 
- // elements match at least one matcher. This enables faster matching 
- // and better error reporting. 
- // Returns false, writing an explanation to 'listener', if and only 
- // if the success criteria are not met. 
- bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix( 
-     const ::std::vector<std::string>& element_printouts, 
-     const MatchMatrix& matrix, MatchResultListener* listener) const { 
-   bool result = true; 
-   ::std::vector<char> element_matched(matrix.LhsSize(), 0); 
-   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); 
-   
-   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { 
-     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { 
-       char matched = matrix.HasEdge(ilhs, irhs); 
-       element_matched[ilhs] |= matched; 
-       matcher_matched[irhs] |= matched; 
-     } 
-   } 
-   
-   if (match_flags() & UnorderedMatcherRequire::Superset) { 
-     const char* sep = 
-         "where the following matchers don't match any elements:\n"; 
-     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { 
-       if (matcher_matched[mi]) continue; 
-       result = false; 
-       if (listener->IsInterested()) { 
-         *listener << sep << "matcher #" << mi << ": "; 
-         matcher_describers_[mi]->DescribeTo(listener->stream()); 
-         sep = ",\n"; 
-       } 
-     } 
-   } 
-   
-   if (match_flags() & UnorderedMatcherRequire::Subset) { 
-     const char* sep = 
-         "where the following elements don't match any matchers:\n"; 
-     const char* outer_sep = ""; 
-     if (!result) { 
-       outer_sep = "\nand "; 
-     } 
-     for (size_t ei = 0; ei < element_matched.size(); ++ei) { 
-       if (element_matched[ei]) continue; 
-       result = false; 
-       if (listener->IsInterested()) { 
-         *listener << outer_sep << sep << "element #" << ei << ": " 
-                   << element_printouts[ei]; 
-         sep = ",\n"; 
-         outer_sep = ""; 
-       } 
-     } 
-   } 
-   return result; 
- } 
-   
- bool UnorderedElementsAreMatcherImplBase::FindPairing( 
-     const MatchMatrix& matrix, MatchResultListener* listener) const { 
-   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); 
-   
-   size_t max_flow = matches.size(); 
-   if ((match_flags() & UnorderedMatcherRequire::Superset) && 
-       max_flow < matrix.RhsSize()) { 
-     if (listener->IsInterested()) { 
-       *listener << "where no permutation of the elements can satisfy all " 
-                    "matchers, and the closest match is " 
-                 << max_flow << " of " << matrix.RhsSize() 
-                 << " matchers with the pairings:\n"; 
-       LogElementMatcherPairVec(matches, listener->stream()); 
-     } 
-     return false; 
-   } 
-   if ((match_flags() & UnorderedMatcherRequire::Subset) && 
-       max_flow < matrix.LhsSize()) { 
-     if (listener->IsInterested()) { 
-       *listener 
-           << "where not all elements can be matched, and the closest match is " 
-           << max_flow << " of " << matrix.RhsSize() 
-           << " matchers with the pairings:\n"; 
-       LogElementMatcherPairVec(matches, listener->stream()); 
-     } 
-     return false; 
-   } 
-   
-   if (matches.size() > 1) { 
-     if (listener->IsInterested()) { 
-       const char* sep = "where:\n"; 
-       for (size_t mi = 0; mi < matches.size(); ++mi) { 
-         *listener << sep << " - element #" << matches[mi].first 
-                   << " is matched by matcher #" << matches[mi].second; 
-         sep = ",\n"; 
-       } 
-     } 
-   } 
-   return true; 
- } 
-   
- }  // namespace internal 
- }  // namespace testing 
-