// Copyright 2007, Google Inc.
 
// All rights reserved.
 
//
 
// Redistribution and use in source and binary forms, with or without
 
// modification, are permitted provided that the following conditions are
 
// met:
 
//
 
//     * Redistributions of source code must retain the above copyright
 
// notice, this list of conditions and the following disclaimer.
 
//     * Redistributions in binary form must reproduce the above
 
// copyright notice, this list of conditions and the following disclaimer
 
// in the documentation and/or other materials provided with the
 
// distribution.
 
//     * Neither the name of Google Inc. nor the names of its
 
// contributors may be used to endorse or promote products derived from
 
// this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 
 
 
 
// Google Mock - a framework for writing C++ mock classes.
 
//
 
// This file implements Matcher<const string&>, Matcher<string>, and
 
// utilities for defining matchers.
 
 
 
#include "gmock/gmock-matchers.h"
 
#include "gmock/gmock-generated-matchers.h"
 
 
 
#include <string.h>
 
#include <iostream>
 
#include <sstream>
 
#include <string>
 
 
 
namespace testing {
 
 
 
// Constructs a matcher that matches a const std::string& whose value is
 
// equal to s.
 
Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
 
 
 
#if GTEST_HAS_GLOBAL_STRING
 
// Constructs a matcher that matches a const std::string& whose value is
 
// equal to s.
 
Matcher<const std::string&>::Matcher(const ::string& s) {
 
  *this = Eq(static_cast<std::string>(s));
 
}
 
#endif  // GTEST_HAS_GLOBAL_STRING
 
 
 
// Constructs a matcher that matches a const std::string& whose value is
 
// equal to s.
 
Matcher<const std::string&>::Matcher(const char* s) {
 
  *this = Eq(std::string(s));
 
}
 
 
 
// Constructs a matcher that matches a std::string whose value is equal to
 
// s.
 
Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
 
 
 
#if GTEST_HAS_GLOBAL_STRING
 
// Constructs a matcher that matches a std::string whose value is equal to
 
// s.
 
Matcher<std::string>::Matcher(const ::string& s) {
 
  *this = Eq(static_cast<std::string>(s));
 
}
 
#endif  // GTEST_HAS_GLOBAL_STRING
 
 
 
// Constructs a matcher that matches a std::string whose value is equal to
 
// s.
 
Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
 
 
 
#if GTEST_HAS_GLOBAL_STRING
 
// Constructs a matcher that matches a const ::string& whose value is
 
// equal to s.
 
Matcher<const ::string&>::Matcher(const std::string& s) {
 
  *this = Eq(static_cast<::string>(s));
 
}
 
 
 
// Constructs a matcher that matches a const ::string& whose value is
 
// equal to s.
 
Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); }
 
 
 
// Constructs a matcher that matches a const ::string& whose value is
 
// equal to s.
 
Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); }
 
 
 
// Constructs a matcher that matches a ::string whose value is equal to s.
 
Matcher<::string>::Matcher(const std::string& s) {
 
  *this = Eq(static_cast<::string>(s));
 
}
 
 
 
// Constructs a matcher that matches a ::string whose value is equal to s.
 
Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); }
 
 
 
// Constructs a matcher that matches a string whose value is equal to s.
 
Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); }
 
#endif  // GTEST_HAS_GLOBAL_STRING
 
 
 
#if GTEST_HAS_ABSL
 
// Constructs a matcher that matches a const absl::string_view& whose value is
 
// equal to s.
 
Matcher<const absl::string_view&>::Matcher(const std::string& s) {
 
  *this = Eq(s);
 
}
 
 
 
#if GTEST_HAS_GLOBAL_STRING
 
// Constructs a matcher that matches a const absl::string_view& whose value is
 
// equal to s.
 
Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); }
 
#endif  // GTEST_HAS_GLOBAL_STRING
 
 
 
// Constructs a matcher that matches a const absl::string_view& whose value is
 
// equal to s.
 
Matcher<const absl::string_view&>::Matcher(const char* s) {
 
  *this = Eq(std::string(s));
 
}
 
 
 
// Constructs a matcher that matches a const absl::string_view& whose value is
 
// equal to s.
 
Matcher<const absl::string_view&>::Matcher(absl::string_view s) {
 
  *this = Eq(std::string(s));
 
}
 
 
 
// Constructs a matcher that matches a absl::string_view whose value is equal to
 
// s.
 
Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); }
 
 
 
#if GTEST_HAS_GLOBAL_STRING
 
// Constructs a matcher that matches a absl::string_view whose value is equal to
 
// s.
 
Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); }
 
#endif  // GTEST_HAS_GLOBAL_STRING
 
 
 
// Constructs a matcher that matches a absl::string_view whose value is equal to
 
// s.
 
Matcher<absl::string_view>::Matcher(const char* s) {
 
  *this = Eq(std::string(s));
 
}
 
 
 
// Constructs a matcher that matches a absl::string_view whose value is equal to
 
// s.
 
Matcher<absl::string_view>::Matcher(absl::string_view s) {
 
  *this = Eq(std::string(s));
 
}
 
#endif  // GTEST_HAS_ABSL
 
 
 
namespace internal {
 
 
 
// Returns the description for a matcher defined using the MATCHER*()
 
// macro where the user-supplied description string is "", if
 
// 'negation' is false; otherwise returns the description of the
 
// negation of the matcher.  'param_values' contains a list of strings
 
// that are the print-out of the matcher's parameters.
 
GTEST_API_ std::string FormatMatcherDescription(bool negation,
 
                                                const char* matcher_name,
 
                                                const Strings& param_values) {
 
  std::string result = ConvertIdentifierNameToWords(matcher_name);
 
  if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
 
  return negation ? "not (" + result + ")" : result;
 
}
 
 
 
// FindMaxBipartiteMatching and its helper class.
 
//
 
// Uses the well-known Ford-Fulkerson max flow method to find a maximum
 
// bipartite matching. Flow is considered to be from left to right.
 
// There is an implicit source node that is connected to all of the left
 
// nodes, and an implicit sink node that is connected to all of the
 
// right nodes. All edges have unit capacity.
 
//
 
// Neither the flow graph nor the residual flow graph are represented
 
// explicitly. Instead, they are implied by the information in 'graph' and
 
// a vector<int> called 'left_' whose elements are initialized to the
 
// value kUnused. This represents the initial state of the algorithm,
 
// where the flow graph is empty, and the residual flow graph has the
 
// following edges:
 
//   - An edge from source to each left_ node
 
//   - An edge from each right_ node to sink
 
//   - An edge from each left_ node to each right_ node, if the
 
//     corresponding edge exists in 'graph'.
 
//
 
// When the TryAugment() method adds a flow, it sets left_[l] = r for some
 
// nodes l and r. This induces the following changes:
 
//   - The edges (source, l), (l, r), and (r, sink) are added to the
 
//     flow graph.
 
//   - The same three edges are removed from the residual flow graph.
 
//   - The reverse edges (l, source), (r, l), and (sink, r) are added
 
//     to the residual flow graph, which is a directional graph
 
//     representing unused flow capacity.
 
//
 
// When the method augments a flow (moving left_[l] from some r1 to some
 
// other r2), this can be thought of as "undoing" the above steps with
 
// respect to r1 and "redoing" them with respect to r2.
 
//
 
// It bears repeating that the flow graph and residual flow graph are
 
// never represented explicitly, but can be derived by looking at the
 
// information in 'graph' and in left_.
 
//
 
// As an optimization, there is a second vector<int> called right_ which
 
// does not provide any new information. Instead, it enables more
 
// efficient queries about edges entering or leaving the right-side nodes
 
// of the flow or residual flow graphs. The following invariants are
 
// maintained:
 
//
 
// left[l] == kUnused or right[left[l]] == l
 
// right[r] == kUnused or left[right[r]] == r
 
//
 
// . [ source ]                                        .
 
// .   |||                                             .
 
// .   |||                                             .
 
// .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
 
// .   ||                   |                    |     .
 
// .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
 
// .   |                                        ||     .
 
// .   \----> left[2]=2  ------> right[2]=2  --\||     .
 
// .                                           |||     .
 
// .         elements           matchers       vvv     .
 
// .                                         [ sink ]  .
 
//
 
// See Also:
 
//   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
 
//       "Introduction to Algorithms (Second ed.)", pp. 651-664.
 
//   [2] "Ford-Fulkerson algorithm", Wikipedia,
 
//       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
 
class MaxBipartiteMatchState {
 
 public:
 
  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
 
      : graph_(&graph),
 
        left_(graph_->LhsSize(), kUnused),
 
        right_(graph_->RhsSize(), kUnused) {}
 
 
 
  // Returns the edges of a maximal match, each in the form {left, right}.
 
  ElementMatcherPairs Compute() {
 
    // 'seen' is used for path finding { 0: unseen, 1: seen }.
 
    ::std::vector<char> seen;
 
    // Searches the residual flow graph for a path from each left node to
 
    // the sink in the residual flow graph, and if one is found, add flow
 
    // to the graph. It's okay to search through the left nodes once. The
 
    // edge from the implicit source node to each previously-visited left
 
    // node will have flow if that left node has any path to the sink
 
    // whatsoever. Subsequent augmentations can only add flow to the
 
    // network, and cannot take away that previous flow unit from the source.
 
    // Since the source-to-left edge can only carry one flow unit (or,
 
    // each element can be matched to only one matcher), there is no need
 
    // to visit the left nodes more than once looking for augmented paths.
 
    // The flow is known to be possible or impossible by looking at the
 
    // node once.
 
    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
 
      // Reset the path-marking vector and try to find a path from
 
      // source to sink starting at the left_[ilhs] node.
 
      GTEST_CHECK_(left_[ilhs] == kUnused)
 
          << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
 
      // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
 
      seen.assign(graph_->RhsSize(), 0);
 
      TryAugment(ilhs, &seen);
 
    }
 
    ElementMatcherPairs result;
 
    for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
 
      size_t irhs = left_[ilhs];
 
      if (irhs == kUnused) continue;
 
      result.push_back(ElementMatcherPair(ilhs, irhs));
 
    }
 
    return result;
 
  }
 
 
 
 private:
 
  static const size_t kUnused = static_cast<size_t>(-1);
 
 
 
  // Perform a depth-first search from left node ilhs to the sink.  If a
 
  // path is found, flow is added to the network by linking the left and
 
  // right vector elements corresponding each segment of the path.
 
  // Returns true if a path to sink was found, which means that a unit of
 
  // flow was added to the network. The 'seen' vector elements correspond
 
  // to right nodes and are marked to eliminate cycles from the search.
 
  //
 
  // Left nodes will only be explored at most once because they
 
  // are accessible from at most one right node in the residual flow
 
  // graph.
 
  //
 
  // Note that left_[ilhs] is the only element of left_ that TryAugment will
 
  // potentially transition from kUnused to another value. Any other
 
  // left_ element holding kUnused before TryAugment will be holding it
 
  // when TryAugment returns.
 
  //
 
  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
 
    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
 
      if ((*seen)[irhs]) continue;
 
      if (!graph_->HasEdge(ilhs, irhs)) continue;
 
      // There's an available edge from ilhs to irhs.
 
      (*seen)[irhs] = 1;
 
      // Next a search is performed to determine whether
 
      // this edge is a dead end or leads to the sink.
 
      //
 
      // right_[irhs] == kUnused means that there is residual flow from
 
      // right node irhs to the sink, so we can use that to finish this
 
      // flow path and return success.
 
      //
 
      // Otherwise there is residual flow to some ilhs. We push flow
 
      // along that path and call ourselves recursively to see if this
 
      // ultimately leads to sink.
 
      if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
 
        // Add flow from left_[ilhs] to right_[irhs].
 
        left_[ilhs] = irhs;
 
        right_[irhs] = ilhs;
 
        return true;
 
      }
 
    }
 
    return false;
 
  }
 
 
 
  const MatchMatrix* graph_;  // not owned
 
  // Each element of the left_ vector represents a left hand side node
 
  // (i.e. an element) and each element of right_ is a right hand side
 
  // node (i.e. a matcher). The values in the left_ vector indicate
 
  // outflow from that node to a node on the right_ side. The values
 
  // in the right_ indicate inflow, and specify which left_ node is
 
  // feeding that right_ node, if any. For example, left_[3] == 1 means
 
  // there's a flow from element #3 to matcher #1. Such a flow would also
 
  // be redundantly represented in the right_ vector as right_[1] == 3.
 
  // Elements of left_ and right_ are either kUnused or mutually
 
  // referent. Mutually referent means that left_[right_[i]] = i and
 
  // right_[left_[i]] = i.
 
  ::std::vector<size_t> left_;
 
  ::std::vector<size_t> right_;
 
 
 
  GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
 
};
 
 
 
const size_t MaxBipartiteMatchState::kUnused;
 
 
 
GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
 
  return MaxBipartiteMatchState(g).Compute();
 
}
 
 
 
static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
 
                                     ::std::ostream* stream) {
 
  typedef ElementMatcherPairs::const_iterator Iter;
 
  ::std::ostream& os = *stream;
 
  os << "{";
 
  const char* sep = "";
 
  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
 
    os << sep << "\n  ("
 
       << "element #" << it->first << ", "
 
       << "matcher #" << it->second << ")";
 
    sep = ",";
 
  }
 
  os << "\n}";
 
}
 
 
 
bool MatchMatrix::NextGraph() {
 
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
 
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
 
      char& b = matched_[SpaceIndex(ilhs, irhs)];
 
      if (!b) {
 
        b = 1;
 
        return true;
 
      }
 
      b = 0;
 
    }
 
  }
 
  return false;
 
}
 
 
 
void MatchMatrix::Randomize() {
 
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
 
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
 
      char& b = matched_[SpaceIndex(ilhs, irhs)];
 
      b = static_cast<char>(rand() & 1);  // NOLINT
 
    }
 
  }
 
}
 
 
 
std::string MatchMatrix::DebugString() const {
 
  ::std::stringstream ss;
 
  const char* sep = "";
 
  for (size_t i = 0; i < LhsSize(); ++i) {
 
    ss << sep;
 
    for (size_t j = 0; j < RhsSize(); ++j) {
 
      ss << HasEdge(i, j);
 
    }
 
    sep = ";";
 
  }
 
  return ss.str();
 
}
 
 
 
void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
 
    ::std::ostream* os) const {
 
  switch (match_flags()) {
 
    case UnorderedMatcherRequire::ExactMatch:
 
      if (matcher_describers_.empty()) {
 
        *os << "is empty";
 
        return;
 
      }
 
      if (matcher_describers_.size() == 1) {
 
        *os << "has " << Elements(1) << " and that element ";
 
        matcher_describers_[0]->DescribeTo(os);
 
        return;
 
      }
 
      *os << "has " << Elements(matcher_describers_.size())
 
          << " and there exists some permutation of elements such that:\n";
 
      break;
 
    case UnorderedMatcherRequire::Superset:
 
      *os << "a surjection from elements to requirements exists such that:\n";
 
      break;
 
    case UnorderedMatcherRequire::Subset:
 
      *os << "an injection from elements to requirements exists such that:\n";
 
      break;
 
  }
 
 
 
  const char* sep = "";
 
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
 
    *os << sep;
 
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 
      *os << " - element #" << i << " ";
 
    } else {
 
      *os << " - an element ";
 
    }
 
    matcher_describers_[i]->DescribeTo(os);
 
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 
      sep = ", and\n";
 
    } else {
 
      sep = "\n";
 
    }
 
  }
 
}
 
 
 
void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
 
    ::std::ostream* os) const {
 
  switch (match_flags()) {
 
    case UnorderedMatcherRequire::ExactMatch:
 
      if (matcher_describers_.empty()) {
 
        *os << "isn't empty";
 
        return;
 
      }
 
      if (matcher_describers_.size() == 1) {
 
        *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
 
            << " that ";
 
        matcher_describers_[0]->DescribeNegationTo(os);
 
        return;
 
      }
 
      *os << "doesn't have " << Elements(matcher_describers_.size())
 
          << ", or there exists no permutation of elements such that:\n";
 
      break;
 
    case UnorderedMatcherRequire::Superset:
 
      *os << "no surjection from elements to requirements exists such that:\n";
 
      break;
 
    case UnorderedMatcherRequire::Subset:
 
      *os << "no injection from elements to requirements exists such that:\n";
 
      break;
 
  }
 
  const char* sep = "";
 
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
 
    *os << sep;
 
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 
      *os << " - element #" << i << " ";
 
    } else {
 
      *os << " - an element ";
 
    }
 
    matcher_describers_[i]->DescribeTo(os);
 
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 
      sep = ", and\n";
 
    } else {
 
      sep = "\n";
 
    }
 
  }
 
}
 
 
 
// Checks that all matchers match at least one element, and that all
 
// elements match at least one matcher. This enables faster matching
 
// and better error reporting.
 
// Returns false, writing an explanation to 'listener', if and only
 
// if the success criteria are not met.
 
bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
 
    const ::std::vector<std::string>& element_printouts,
 
    const MatchMatrix& matrix, MatchResultListener* listener) const {
 
  bool result = true;
 
  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
 
  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
 
 
 
  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
 
    for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
 
      char matched = matrix.HasEdge(ilhs, irhs);
 
      element_matched[ilhs] |= matched;
 
      matcher_matched[irhs] |= matched;
 
    }
 
  }
 
 
 
  if (match_flags() & UnorderedMatcherRequire::Superset) {
 
    const char* sep =
 
        "where the following matchers don't match any elements:\n";
 
    for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
 
      if (matcher_matched[mi]) continue;
 
      result = false;
 
      if (listener->IsInterested()) {
 
        *listener << sep << "matcher #" << mi << ": ";
 
        matcher_describers_[mi]->DescribeTo(listener->stream());
 
        sep = ",\n";
 
      }
 
    }
 
  }
 
 
 
  if (match_flags() & UnorderedMatcherRequire::Subset) {
 
    const char* sep =
 
        "where the following elements don't match any matchers:\n";
 
    const char* outer_sep = "";
 
    if (!result) {
 
      outer_sep = "\nand ";
 
    }
 
    for (size_t ei = 0; ei < element_matched.size(); ++ei) {
 
      if (element_matched[ei]) continue;
 
      result = false;
 
      if (listener->IsInterested()) {
 
        *listener << outer_sep << sep << "element #" << ei << ": "
 
                  << element_printouts[ei];
 
        sep = ",\n";
 
        outer_sep = "";
 
      }
 
    }
 
  }
 
  return result;
 
}
 
 
 
bool UnorderedElementsAreMatcherImplBase::FindPairing(
 
    const MatchMatrix& matrix, MatchResultListener* listener) const {
 
  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
 
 
 
  size_t max_flow = matches.size();
 
  if ((match_flags() & UnorderedMatcherRequire::Superset) &&
 
      max_flow < matrix.RhsSize()) {
 
    if (listener->IsInterested()) {
 
      *listener << "where no permutation of the elements can satisfy all "
 
                   "matchers, and the closest match is "
 
                << max_flow << " of " << matrix.RhsSize()
 
                << " matchers with the pairings:\n";
 
      LogElementMatcherPairVec(matches, listener->stream());
 
    }
 
    return false;
 
  }
 
  if ((match_flags() & UnorderedMatcherRequire::Subset) &&
 
      max_flow < matrix.LhsSize()) {
 
    if (listener->IsInterested()) {
 
      *listener
 
          << "where not all elements can be matched, and the closest match is "
 
          << max_flow << " of " << matrix.RhsSize()
 
          << " matchers with the pairings:\n";
 
      LogElementMatcherPairVec(matches, listener->stream());
 
    }
 
    return false;
 
  }
 
 
 
  if (matches.size() > 1) {
 
    if (listener->IsInterested()) {
 
      const char* sep = "where:\n";
 
      for (size_t mi = 0; mi < matches.size(); ++mi) {
 
        *listener << sep << " - element #" << matches[mi].first
 
                  << " is matched by matcher #" << matches[mi].second;
 
        sep = ",\n";
 
      }
 
    }
 
  }
 
  return true;
 
}
 
 
 
}  // namespace internal
 
}  // namespace testing