// Copyright 2007, Google Inc.
 
// All rights reserved.
 
//
 
// Redistribution and use in source and binary forms, with or without
 
// modification, are permitted provided that the following conditions are
 
// met:
 
//
 
//     * Redistributions of source code must retain the above copyright
 
// notice, this list of conditions and the following disclaimer.
 
//     * Redistributions in binary form must reproduce the above
 
// copyright notice, this list of conditions and the following disclaimer
 
// in the documentation and/or other materials provided with the
 
// distribution.
 
//     * Neither the name of Google Inc. nor the names of its
 
// contributors may be used to endorse or promote products derived from
 
// this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 
 
 
 
// Google Test - The Google C++ Testing and Mocking Framework
 
//
 
// This file implements a universal value printer that can print a
 
// value of any type T:
 
//
 
//   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
 
//
 
// A user can teach this function how to print a class type T by
 
// defining either operator<<() or PrintTo() in the namespace that
 
// defines T.  More specifically, the FIRST defined function in the
 
// following list will be used (assuming T is defined in namespace
 
// foo):
 
//
 
//   1. foo::PrintTo(const T&, ostream*)
 
//   2. operator<<(ostream&, const T&) defined in either foo or the
 
//      global namespace.
 
//
 
// However if T is an STL-style container then it is printed element-wise
 
// unless foo::PrintTo(const T&, ostream*) is defined. Note that
 
// operator<<() is ignored for container types.
 
//
 
// If none of the above is defined, it will print the debug string of
 
// the value if it is a protocol buffer, or print the raw bytes in the
 
// value otherwise.
 
//
 
// To aid debugging: when T is a reference type, the address of the
 
// value is also printed; when T is a (const) char pointer, both the
 
// pointer value and the NUL-terminated string it points to are
 
// printed.
 
//
 
// We also provide some convenient wrappers:
 
//
 
//   // Prints a value to a string.  For a (const or not) char
 
//   // pointer, the NUL-terminated string (but not the pointer) is
 
//   // printed.
 
//   std::string ::testing::PrintToString(const T& value);
 
//
 
//   // Prints a value tersely: for a reference type, the referenced
 
//   // value (but not the address) is printed; for a (const or not) char
 
//   // pointer, the NUL-terminated string (but not the pointer) is
 
//   // printed.
 
//   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
 
//
 
//   // Prints value using the type inferred by the compiler.  The difference
 
//   // from UniversalTersePrint() is that this function prints both the
 
//   // pointer and the NUL-terminated string for a (const or not) char pointer.
 
//   void ::testing::internal::UniversalPrint(const T& value, ostream*);
 
//
 
//   // Prints the fields of a tuple tersely to a string vector, one
 
//   // element for each field. Tuple support must be enabled in
 
//   // gtest-port.h.
 
//   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
 
//       const Tuple& value);
 
//
 
// Known limitation:
 
//
 
// The print primitives print the elements of an STL-style container
 
// using the compiler-inferred type of *iter where iter is a
 
// const_iterator of the container.  When const_iterator is an input
 
// iterator but not a forward iterator, this inferred type may not
 
// match value_type, and the print output may be incorrect.  In
 
// practice, this is rarely a problem as for most containers
 
// const_iterator is a forward iterator.  We'll fix this if there's an
 
// actual need for it.  Note that this fix cannot rely on value_type
 
// being defined as many user-defined container types don't have
 
// value_type.
 
 
 
// GOOGLETEST_CM0001 DO NOT DELETE
 
 
 
#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
 
#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
 
 
 
#include <ostream>  // NOLINT
 
#include <sstream>
 
#include <string>
 
#include <utility>
 
#include <vector>
 
#include "gtest/internal/gtest-port.h"
 
#include "gtest/internal/gtest-internal.h"
 
 
 
#if GTEST_HAS_STD_TUPLE_
 
# include <tuple>
 
#endif
 
 
 
#if GTEST_HAS_ABSL
 
#include "absl/strings/string_view.h"
 
#include "absl/types/optional.h"
 
#include "absl/types/variant.h"
 
#endif  // GTEST_HAS_ABSL
 
 
 
namespace testing {
 
 
 
// Definitions in the 'internal' and 'internal2' name spaces are
 
// subject to change without notice.  DO NOT USE THEM IN USER CODE!
 
namespace internal2 {
 
 
 
// Prints the given number of bytes in the given object to the given
 
// ostream.
 
GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
 
                                     size_t count,
 
                                     ::std::ostream* os);
 
 
 
// For selecting which printer to use when a given type has neither <<
 
// nor PrintTo().
 
enum TypeKind {
 
  kProtobuf,              // a protobuf type
 
  kConvertibleToInteger,  // a type implicitly convertible to BiggestInt
 
                          // (e.g. a named or unnamed enum type)
 
#if GTEST_HAS_ABSL
 
  kConvertibleToStringView,  // a type implicitly convertible to
 
                             // absl::string_view
 
#endif
 
  kOtherType  // anything else
 
};
 
 
 
// TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
 
// by the universal printer to print a value of type T when neither
 
// operator<< nor PrintTo() is defined for T, where kTypeKind is the
 
// "kind" of T as defined by enum TypeKind.
 
template <typename T, TypeKind kTypeKind>
 
class TypeWithoutFormatter {
 
 public:
 
  // This default version is called when kTypeKind is kOtherType.
 
  static void PrintValue(const T& value, ::std::ostream* os) {
 
    PrintBytesInObjectTo(static_cast<const unsigned char*>(
 
                             reinterpret_cast<const void*>(&value)),
 
                         sizeof(value), os);
 
  }
 
};
 
 
 
// We print a protobuf using its ShortDebugString() when the string
 
// doesn't exceed this many characters; otherwise we print it using
 
// DebugString() for better readability.
 
const size_t kProtobufOneLinerMaxLength = 50;
 
 
 
template <typename T>
 
class TypeWithoutFormatter<T, kProtobuf> {
 
 public:
 
  static void PrintValue(const T& value, ::std::ostream* os) {
 
    std::string pretty_str = value.ShortDebugString();
 
    if (pretty_str.length() > kProtobufOneLinerMaxLength) {
 
      pretty_str = "\n" + value.DebugString();
 
    }
 
    *os << ("<" + pretty_str + ">");
 
  }
 
};
 
 
 
template <typename T>
 
class TypeWithoutFormatter<T, kConvertibleToInteger> {
 
 public:
 
  // Since T has no << operator or PrintTo() but can be implicitly
 
  // converted to BiggestInt, we print it as a BiggestInt.
 
  //
 
  // Most likely T is an enum type (either named or unnamed), in which
 
  // case printing it as an integer is the desired behavior.  In case
 
  // T is not an enum, printing it as an integer is the best we can do
 
  // given that it has no user-defined printer.
 
  static void PrintValue(const T& value, ::std::ostream* os) {
 
    const internal::BiggestInt kBigInt = value;
 
    *os << kBigInt;
 
  }
 
};
 
 
 
#if GTEST_HAS_ABSL
 
template <typename T>
 
class TypeWithoutFormatter<T, kConvertibleToStringView> {
 
 public:
 
  // Since T has neither operator<< nor PrintTo() but can be implicitly
 
  // converted to absl::string_view, we print it as a absl::string_view.
 
  //
 
  // Note: the implementation is further below, as it depends on
 
  // internal::PrintTo symbol which is defined later in the file.
 
  static void PrintValue(const T& value, ::std::ostream* os);
 
};
 
#endif
 
 
 
// Prints the given value to the given ostream.  If the value is a
 
// protocol message, its debug string is printed; if it's an enum or
 
// of a type implicitly convertible to BiggestInt, it's printed as an
 
// integer; otherwise the bytes in the value are printed.  This is
 
// what UniversalPrinter<T>::Print() does when it knows nothing about
 
// type T and T has neither << operator nor PrintTo().
 
//
 
// A user can override this behavior for a class type Foo by defining
 
// a << operator in the namespace where Foo is defined.
 
//
 
// We put this operator in namespace 'internal2' instead of 'internal'
 
// to simplify the implementation, as much code in 'internal' needs to
 
// use << in STL, which would conflict with our own << were it defined
 
// in 'internal'.
 
//
 
// Note that this operator<< takes a generic std::basic_ostream<Char,
 
// CharTraits> type instead of the more restricted std::ostream.  If
 
// we define it to take an std::ostream instead, we'll get an
 
// "ambiguous overloads" compiler error when trying to print a type
 
// Foo that supports streaming to std::basic_ostream<Char,
 
// CharTraits>, as the compiler cannot tell whether
 
// operator<<(std::ostream&, const T&) or
 
// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
 
// specific.
 
template <typename Char, typename CharTraits, typename T>
 
::std::basic_ostream<Char, CharTraits>& operator<<(
 
    ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
 
  TypeWithoutFormatter<T, (internal::IsAProtocolMessage<T>::value
 
                               ? kProtobuf
 
                               : internal::ImplicitlyConvertible<
 
                                     const T&, internal::BiggestInt>::value
 
                                     ? kConvertibleToInteger
 
                                     :
 
#if GTEST_HAS_ABSL
 
                                     internal::ImplicitlyConvertible<
 
                                         const T&, absl::string_view>::value
 
                                         ? kConvertibleToStringView
 
                                         :
 
#endif
 
                                         kOtherType)>::PrintValue(x, &os);
 
  return os;
 
}
 
 
 
}  // namespace internal2
 
}  // namespace testing
 
 
 
// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
 
// magic needed for implementing UniversalPrinter won't work.
 
namespace testing_internal {
 
 
 
// Used to print a value that is not an STL-style container when the
 
// user doesn't define PrintTo() for it.
 
template <typename T>
 
void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
 
  // With the following statement, during unqualified name lookup,
 
  // testing::internal2::operator<< appears as if it was declared in
 
  // the nearest enclosing namespace that contains both
 
  // ::testing_internal and ::testing::internal2, i.e. the global
 
  // namespace.  For more details, refer to the C++ Standard section
 
  // 7.3.4-1 [namespace.udir].  This allows us to fall back onto
 
  // testing::internal2::operator<< in case T doesn't come with a <<
 
  // operator.
 
  //
 
  // We cannot write 'using ::testing::internal2::operator<<;', which
 
  // gcc 3.3 fails to compile due to a compiler bug.
 
  using namespace ::testing::internal2;  // NOLINT
 
 
 
  // Assuming T is defined in namespace foo, in the next statement,
 
  // the compiler will consider all of:
 
  //
 
  //   1. foo::operator<< (thanks to Koenig look-up),
 
  //   2. ::operator<< (as the current namespace is enclosed in ::),
 
  //   3. testing::internal2::operator<< (thanks to the using statement above).
 
  //
 
  // The operator<< whose type matches T best will be picked.
 
  //
 
  // We deliberately allow #2 to be a candidate, as sometimes it's
 
  // impossible to define #1 (e.g. when foo is ::std, defining
 
  // anything in it is undefined behavior unless you are a compiler
 
  // vendor.).
 
  *os << value;
 
}
 
 
 
}  // namespace testing_internal
 
 
 
namespace testing {
 
namespace internal {
 
 
 
// FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a
 
// value of type ToPrint that is an operand of a comparison assertion
 
// (e.g. ASSERT_EQ).  OtherOperand is the type of the other operand in
 
// the comparison, and is used to help determine the best way to
 
// format the value.  In particular, when the value is a C string
 
// (char pointer) and the other operand is an STL string object, we
 
// want to format the C string as a string, since we know it is
 
// compared by value with the string object.  If the value is a char
 
// pointer but the other operand is not an STL string object, we don't
 
// know whether the pointer is supposed to point to a NUL-terminated
 
// string, and thus want to print it as a pointer to be safe.
 
//
 
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
 
 
 
// The default case.
 
template <typename ToPrint, typename OtherOperand>
 
class FormatForComparison {
 
 public:
 
  static ::std::string Format(const ToPrint& value) {
 
    return ::testing::PrintToString(value);
 
  }
 
};
 
 
 
// Array.
 
template <typename ToPrint, size_t N, typename OtherOperand>
 
class FormatForComparison<ToPrint[N], OtherOperand> {
 
 public:
 
  static ::std::string Format(const ToPrint* value) {
 
    return FormatForComparison<const ToPrint*, OtherOperand>::Format(value);
 
  }
 
};
 
 
 
// By default, print C string as pointers to be safe, as we don't know
 
// whether they actually point to a NUL-terminated string.
 
 
 
#define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType)                \
 
  template <typename OtherOperand>                                      \
 
  class FormatForComparison<CharType*, OtherOperand> {                  \
 
   public:                                                              \
 
    static ::std::string Format(CharType* value) {                      \
 
      return ::testing::PrintToString(static_cast<const void*>(value)); \
 
    }                                                                   \
 
  }
 
 
 
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char);
 
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char);
 
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t);
 
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t);
 
 
 
#undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
 
 
 
// If a C string is compared with an STL string object, we know it's meant
 
// to point to a NUL-terminated string, and thus can print it as a string.
 
 
 
#define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \
 
  template <>                                                           \
 
  class FormatForComparison<CharType*, OtherStringType> {               \
 
   public:                                                              \
 
    static ::std::string Format(CharType* value) {                      \
 
      return ::testing::PrintToString(value);                           \
 
    }                                                                   \
 
  }
 
 
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string);
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string);
 
 
 
#if GTEST_HAS_GLOBAL_STRING
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::string);
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string);
 
#endif
 
 
 
#if GTEST_HAS_GLOBAL_WSTRING
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::wstring);
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::wstring);
 
#endif
 
 
 
#if GTEST_HAS_STD_WSTRING
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring);
 
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring);
 
#endif
 
 
 
#undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
 
 
 
// Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
 
// operand to be used in a failure message.  The type (but not value)
 
// of the other operand may affect the format.  This allows us to
 
// print a char* as a raw pointer when it is compared against another
 
// char* or void*, and print it as a C string when it is compared
 
// against an std::string object, for example.
 
//
 
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
 
template <typename T1, typename T2>
 
std::string FormatForComparisonFailureMessage(
 
    const T1& value, const T2& /* other_operand */) {
 
  return FormatForComparison<T1, T2>::Format(value);
 
}
 
 
 
// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
 
// value to the given ostream.  The caller must ensure that
 
// 'ostream_ptr' is not NULL, or the behavior is undefined.
 
//
 
// We define UniversalPrinter as a class template (as opposed to a
 
// function template), as we need to partially specialize it for
 
// reference types, which cannot be done with function templates.
 
template <typename T>
 
class UniversalPrinter;
 
 
 
template <typename T>
 
void UniversalPrint(const T& value, ::std::ostream* os);
 
 
 
enum DefaultPrinterType {
 
  kPrintContainer,
 
  kPrintPointer,
 
  kPrintFunctionPointer,
 
  kPrintOther,
 
};
 
template <DefaultPrinterType type> struct WrapPrinterType {};
 
 
 
// Used to print an STL-style container when the user doesn't define
 
// a PrintTo() for it.
 
template <typename C>
 
void DefaultPrintTo(WrapPrinterType<kPrintContainer> /* dummy */,
 
                    const C& container, ::std::ostream* os) {
 
  const size_t kMaxCount = 32;  // The maximum number of elements to print.
 
  *os << '{';
 
  size_t count = 0;
 
  for (typename C::const_iterator it = container.begin();
 
       it != container.end(); ++it, ++count) {
 
    if (count > 0) {
 
      *os << ',';
 
      if (count == kMaxCount) {  // Enough has been printed.
 
        *os << " ...";
 
        break;
 
      }
 
    }
 
    *os << ' ';
 
    // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
 
    // handle *it being a native array.
 
    internal::UniversalPrint(*it, os);
 
  }
 
 
 
  if (count > 0) {
 
    *os << ' ';
 
  }
 
  *os << '}';
 
}
 
 
 
// Used to print a pointer that is neither a char pointer nor a member
 
// pointer, when the user doesn't define PrintTo() for it.  (A member
 
// variable pointer or member function pointer doesn't really point to
 
// a location in the address space.  Their representation is
 
// implementation-defined.  Therefore they will be printed as raw
 
// bytes.)
 
template <typename T>
 
void DefaultPrintTo(WrapPrinterType<kPrintPointer> /* dummy */,
 
                    T* p, ::std::ostream* os) {
 
  if (p == NULL) {
 
    *os << "NULL";
 
  } else {
 
    // T is not a function type.  We just call << to print p,
 
    // relying on ADL to pick up user-defined << for their pointer
 
    // types, if any.
 
    *os << p;
 
  }
 
}
 
template <typename T>
 
void DefaultPrintTo(WrapPrinterType<kPrintFunctionPointer> /* dummy */,
 
                    T* p, ::std::ostream* os) {
 
  if (p == NULL) {
 
    *os << "NULL";
 
  } else {
 
    // T is a function type, so '*os << p' doesn't do what we want
 
    // (it just prints p as bool).  We want to print p as a const
 
    // void*.
 
    *os << reinterpret_cast<const void*>(p);
 
  }
 
}
 
 
 
// Used to print a non-container, non-pointer value when the user
 
// doesn't define PrintTo() for it.
 
template <typename T>
 
void DefaultPrintTo(WrapPrinterType<kPrintOther> /* dummy */,
 
                    const T& value, ::std::ostream* os) {
 
  ::testing_internal::DefaultPrintNonContainerTo(value, os);
 
}
 
 
 
// Prints the given value using the << operator if it has one;
 
// otherwise prints the bytes in it.  This is what
 
// UniversalPrinter<T>::Print() does when PrintTo() is not specialized
 
// or overloaded for type T.
 
//
 
// A user can override this behavior for a class type Foo by defining
 
// an overload of PrintTo() in the namespace where Foo is defined.  We
 
// give the user this option as sometimes defining a << operator for
 
// Foo is not desirable (e.g. the coding style may prevent doing it,
 
// or there is already a << operator but it doesn't do what the user
 
// wants).
 
template <typename T>
 
void PrintTo(const T& value, ::std::ostream* os) {
 
  // DefaultPrintTo() is overloaded.  The type of its first argument
 
  // determines which version will be picked.
 
  //
 
  // Note that we check for container types here, prior to we check
 
  // for protocol message types in our operator<<.  The rationale is:
 
  //
 
  // For protocol messages, we want to give people a chance to
 
  // override Google Mock's format by defining a PrintTo() or
 
  // operator<<.  For STL containers, other formats can be
 
  // incompatible with Google Mock's format for the container
 
  // elements; therefore we check for container types here to ensure
 
  // that our format is used.
 
  //
 
  // Note that MSVC and clang-cl do allow an implicit conversion from
 
  // pointer-to-function to pointer-to-object, but clang-cl warns on it.
 
  // So don't use ImplicitlyConvertible if it can be helped since it will
 
  // cause this warning, and use a separate overload of DefaultPrintTo for
 
  // function pointers so that the `*os << p` in the object pointer overload
 
  // doesn't cause that warning either.
 
  DefaultPrintTo(
 
      WrapPrinterType <
 
                  (sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) &&
 
              !IsRecursiveContainer<T>::value
 
          ? kPrintContainer
 
          : !is_pointer<T>::value
 
                ? kPrintOther
 
#if GTEST_LANG_CXX11
 
                : std::is_function<typename std::remove_pointer<T>::type>::value
 
#else
 
                : !internal::ImplicitlyConvertible<T, const void*>::value
 
#endif
 
                      ? kPrintFunctionPointer
 
                      : kPrintPointer > (),
 
      value, os);
 
}
 
 
 
// The following list of PrintTo() overloads tells
 
// UniversalPrinter<T>::Print() how to print standard types (built-in
 
// types, strings, plain arrays, and pointers).
 
 
 
// Overloads for various char types.
 
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
 
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
 
inline void PrintTo(char c, ::std::ostream* os) {
 
  // When printing a plain char, we always treat it as unsigned.  This
 
  // way, the output won't be affected by whether the compiler thinks
 
  // char is signed or not.
 
  PrintTo(static_cast<unsigned char>(c), os);
 
}
 
 
 
// Overloads for other simple built-in types.
 
inline void PrintTo(bool x, ::std::ostream* os) {
 
  *os << (x ? "true" : "false");
 
}
 
 
 
// Overload for wchar_t type.
 
// Prints a wchar_t as a symbol if it is printable or as its internal
 
// code otherwise and also as its decimal code (except for L'\0').
 
// The L'\0' char is printed as "L'\\0'". The decimal code is printed
 
// as signed integer when wchar_t is implemented by the compiler
 
// as a signed type and is printed as an unsigned integer when wchar_t
 
// is implemented as an unsigned type.
 
GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
 
 
 
// Overloads for C strings.
 
GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
 
inline void PrintTo(char* s, ::std::ostream* os) {
 
  PrintTo(ImplicitCast_<const char*>(s), os);
 
}
 
 
 
// signed/unsigned char is often used for representing binary data, so
 
// we print pointers to it as void* to be safe.
 
inline void PrintTo(const signed char* s, ::std::ostream* os) {
 
  PrintTo(ImplicitCast_<const void*>(s), os);
 
}
 
inline void PrintTo(signed char* s, ::std::ostream* os) {
 
  PrintTo(ImplicitCast_<const void*>(s), os);
 
}
 
inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
 
  PrintTo(ImplicitCast_<const void*>(s), os);
 
}
 
inline void PrintTo(unsigned char* s, ::std::ostream* os) {
 
  PrintTo(ImplicitCast_<const void*>(s), os);
 
}
 
 
 
// MSVC can be configured to define wchar_t as a typedef of unsigned
 
// short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
 
// type.  When wchar_t is a typedef, defining an overload for const
 
// wchar_t* would cause unsigned short* be printed as a wide string,
 
// possibly causing invalid memory accesses.
 
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
 
// Overloads for wide C strings
 
GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
 
inline void PrintTo(wchar_t* s, ::std::ostream* os) {
 
  PrintTo(ImplicitCast_<const wchar_t*>(s), os);
 
}
 
#endif
 
 
 
// Overload for C arrays.  Multi-dimensional arrays are printed
 
// properly.
 
 
 
// Prints the given number of elements in an array, without printing
 
// the curly braces.
 
template <typename T>
 
void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
 
  UniversalPrint(a[0], os);
 
  for (size_t i = 1; i != count; i++) {
 
    *os << ", ";
 
    UniversalPrint(a[i], os);
 
  }
 
}
 
 
 
// Overloads for ::string and ::std::string.
 
#if GTEST_HAS_GLOBAL_STRING
 
GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
 
inline void PrintTo(const ::string& s, ::std::ostream* os) {
 
  PrintStringTo(s, os);
 
}
 
#endif  // GTEST_HAS_GLOBAL_STRING
 
 
 
GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
 
inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
 
  PrintStringTo(s, os);
 
}
 
 
 
// Overloads for ::wstring and ::std::wstring.
 
#if GTEST_HAS_GLOBAL_WSTRING
 
GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
 
inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
 
  PrintWideStringTo(s, os);
 
}
 
#endif  // GTEST_HAS_GLOBAL_WSTRING
 
 
 
#if GTEST_HAS_STD_WSTRING
 
GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
 
inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
 
  PrintWideStringTo(s, os);
 
}
 
#endif  // GTEST_HAS_STD_WSTRING
 
 
 
#if GTEST_HAS_ABSL
 
// Overload for absl::string_view.
 
inline void PrintTo(absl::string_view sp, ::std::ostream* os) {
 
  PrintTo(::std::string(sp), os);
 
}
 
#endif  // GTEST_HAS_ABSL
 
 
 
#if GTEST_LANG_CXX11
 
inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)"; }
 
#endif  // GTEST_LANG_CXX11
 
 
 
#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
 
// Helper function for printing a tuple.  T must be instantiated with
 
// a tuple type.
 
template <typename T>
 
void PrintTupleTo(const T& t, ::std::ostream* os);
 
#endif  // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
 
 
 
#if GTEST_HAS_TR1_TUPLE
 
// Overload for ::std::tr1::tuple.  Needed for printing function arguments,
 
// which are packed as tuples.
 
 
 
// Overloaded PrintTo() for tuples of various arities.  We support
 
// tuples of up-to 10 fields.  The following implementation works
 
// regardless of whether tr1::tuple is implemented using the
 
// non-standard variadic template feature or not.
 
 
 
inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1>
 
void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2>
 
void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3>
 
void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3, typename T4>
 
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3, typename T4, typename T5>
 
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
 
             ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3, typename T4, typename T5,
 
          typename T6>
 
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
 
             ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3, typename T4, typename T5,
 
          typename T6, typename T7>
 
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
 
             ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3, typename T4, typename T5,
 
          typename T6, typename T7, typename T8>
 
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
 
             ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3, typename T4, typename T5,
 
          typename T6, typename T7, typename T8, typename T9>
 
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
 
             ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
 
 
template <typename T1, typename T2, typename T3, typename T4, typename T5,
 
          typename T6, typename T7, typename T8, typename T9, typename T10>
 
void PrintTo(
 
    const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
 
    ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
#endif  // GTEST_HAS_TR1_TUPLE
 
 
 
#if GTEST_HAS_STD_TUPLE_
 
template <typename... Types>
 
void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) {
 
  PrintTupleTo(t, os);
 
}
 
#endif  // GTEST_HAS_STD_TUPLE_
 
 
 
// Overload for std::pair.
 
template <typename T1, typename T2>
 
void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
 
  *os << '(';
 
  // We cannot use UniversalPrint(value.first, os) here, as T1 may be
 
  // a reference type.  The same for printing value.second.
 
  UniversalPrinter<T1>::Print(value.first, os);
 
  *os << ", ";
 
  UniversalPrinter<T2>::Print(value.second, os);
 
  *os << ')';
 
}
 
 
 
// Implements printing a non-reference type T by letting the compiler
 
// pick the right overload of PrintTo() for T.
 
template <typename T>
 
class UniversalPrinter {
 
 public:
 
  // MSVC warns about adding const to a function type, so we want to
 
  // disable the warning.
 
  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
 
 
 
  // Note: we deliberately don't call this PrintTo(), as that name
 
  // conflicts with ::testing::internal::PrintTo in the body of the
 
  // function.
 
  static void Print(const T& value, ::std::ostream* os) {
 
    // By default, ::testing::internal::PrintTo() is used for printing
 
    // the value.
 
    //
 
    // Thanks to Koenig look-up, if T is a class and has its own
 
    // PrintTo() function defined in its namespace, that function will
 
    // be visible here.  Since it is more specific than the generic ones
 
    // in ::testing::internal, it will be picked by the compiler in the
 
    // following statement - exactly what we want.
 
    PrintTo(value, os);
 
  }
 
 
 
  GTEST_DISABLE_MSC_WARNINGS_POP_()
 
};
 
 
 
#if GTEST_HAS_ABSL
 
 
 
// Printer for absl::optional
 
 
 
template <typename T>
 
class UniversalPrinter<::absl::optional<T>> {
 
 public:
 
  static void Print(const ::absl::optional<T>& value, ::std::ostream* os) {
 
    *os << '(';
 
    if (!value) {
 
      *os << "nullopt";
 
    } else {
 
      UniversalPrint(*value, os);
 
    }
 
    *os << ')';
 
  }
 
};
 
 
 
// Printer for absl::variant
 
 
 
template <typename... T>
 
class UniversalPrinter<::absl::variant<T...>> {
 
 public:
 
  static void Print(const ::absl::variant<T...>& value, ::std::ostream* os) {
 
    *os << '(';
 
    absl::visit(Visitor{os}, value);
 
    *os << ')';
 
  }
 
 
 
 private:
 
  struct Visitor {
 
    template <typename U>
 
    void operator()(const U& u) const {
 
      *os << "'" << GetTypeName<U>() << "' with value ";
 
      UniversalPrint(u, os);
 
    }
 
    ::std::ostream* os;
 
  };
 
};
 
 
 
#endif  // GTEST_HAS_ABSL
 
 
 
// UniversalPrintArray(begin, len, os) prints an array of 'len'
 
// elements, starting at address 'begin'.
 
template <typename T>
 
void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
 
  if (len == 0) {
 
    *os << "{}";
 
  } else {
 
    *os << "{ ";
 
    const size_t kThreshold = 18;
 
    const size_t kChunkSize = 8;
 
    // If the array has more than kThreshold elements, we'll have to
 
    // omit some details by printing only the first and the last
 
    // kChunkSize elements.
 
    // FIXME: let the user control the threshold using a flag.
 
    if (len <= kThreshold) {
 
      PrintRawArrayTo(begin, len, os);
 
    } else {
 
      PrintRawArrayTo(begin, kChunkSize, os);
 
      *os << ", ..., ";
 
      PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
 
    }
 
    *os << " }";
 
  }
 
}
 
// This overload prints a (const) char array compactly.
 
GTEST_API_ void UniversalPrintArray(
 
    const char* begin, size_t len, ::std::ostream* os);
 
 
 
// This overload prints a (const) wchar_t array compactly.
 
GTEST_API_ void UniversalPrintArray(
 
    const wchar_t* begin, size_t len, ::std::ostream* os);
 
 
 
// Implements printing an array type T[N].
 
template <typename T, size_t N>
 
class UniversalPrinter<T[N]> {
 
 public:
 
  // Prints the given array, omitting some elements when there are too
 
  // many.
 
  static void Print(const T (&a)[N], ::std::ostream* os) {
 
    UniversalPrintArray(a, N, os);
 
  }
 
};
 
 
 
// Implements printing a reference type T&.
 
template <typename T>
 
class UniversalPrinter<T&> {
 
 public:
 
  // MSVC warns about adding const to a function type, so we want to
 
  // disable the warning.
 
  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
 
 
 
  static void Print(const T& value, ::std::ostream* os) {
 
    // Prints the address of the value.  We use reinterpret_cast here
 
    // as static_cast doesn't compile when T is a function type.
 
    *os << "@" << reinterpret_cast<const void*>(&value) << " ";
 
 
 
    // Then prints the value itself.
 
    UniversalPrint(value, os);
 
  }
 
 
 
  GTEST_DISABLE_MSC_WARNINGS_POP_()
 
};
 
 
 
// Prints a value tersely: for a reference type, the referenced value
 
// (but not the address) is printed; for a (const) char pointer, the
 
// NUL-terminated string (but not the pointer) is printed.
 
 
 
template <typename T>
 
class UniversalTersePrinter {
 
 public:
 
  static void Print(const T& value, ::std::ostream* os) {
 
    UniversalPrint(value, os);
 
  }
 
};
 
template <typename T>
 
class UniversalTersePrinter<T&> {
 
 public:
 
  static void Print(const T& value, ::std::ostream* os) {
 
    UniversalPrint(value, os);
 
  }
 
};
 
template <typename T, size_t N>
 
class UniversalTersePrinter<T[N]> {
 
 public:
 
  static void Print(const T (&value)[N], ::std::ostream* os) {
 
    UniversalPrinter<T[N]>::Print(value, os);
 
  }
 
};
 
template <>
 
class UniversalTersePrinter<const char*> {
 
 public:
 
  static void Print(const char* str, ::std::ostream* os) {
 
    if (str == NULL) {
 
      *os << "NULL";
 
    } else {
 
      UniversalPrint(std::string(str), os);
 
    }
 
  }
 
};
 
template <>
 
class UniversalTersePrinter<char*> {
 
 public:
 
  static void Print(char* str, ::std::ostream* os) {
 
    UniversalTersePrinter<const char*>::Print(str, os);
 
  }
 
};
 
 
 
#if GTEST_HAS_STD_WSTRING
 
template <>
 
class UniversalTersePrinter<const wchar_t*> {
 
 public:
 
  static void Print(const wchar_t* str, ::std::ostream* os) {
 
    if (str == NULL) {
 
      *os << "NULL";
 
    } else {
 
      UniversalPrint(::std::wstring(str), os);
 
    }
 
  }
 
};
 
#endif
 
 
 
template <>
 
class UniversalTersePrinter<wchar_t*> {
 
 public:
 
  static void Print(wchar_t* str, ::std::ostream* os) {
 
    UniversalTersePrinter<const wchar_t*>::Print(str, os);
 
  }
 
};
 
 
 
template <typename T>
 
void UniversalTersePrint(const T& value, ::std::ostream* os) {
 
  UniversalTersePrinter<T>::Print(value, os);
 
}
 
 
 
// Prints a value using the type inferred by the compiler.  The
 
// difference between this and UniversalTersePrint() is that for a
 
// (const) char pointer, this prints both the pointer and the
 
// NUL-terminated string.
 
template <typename T>
 
void UniversalPrint(const T& value, ::std::ostream* os) {
 
  // A workarond for the bug in VC++ 7.1 that prevents us from instantiating
 
  // UniversalPrinter with T directly.
 
  typedef T T1;
 
  UniversalPrinter<T1>::Print(value, os);
 
}
 
 
 
typedef ::std::vector< ::std::string> Strings;
 
 
 
// TuplePolicy<TupleT> must provide:
 
// - tuple_size
 
//     size of tuple TupleT.
 
// - get<size_t I>(const TupleT& t)
 
//     static function extracting element I of tuple TupleT.
 
// - tuple_element<size_t I>::type
 
//     type of element I of tuple TupleT.
 
template <typename TupleT>
 
struct TuplePolicy;
 
 
 
#if GTEST_HAS_TR1_TUPLE
 
template <typename TupleT>
 
struct TuplePolicy {
 
  typedef TupleT Tuple;
 
  static const size_t tuple_size = ::std::tr1::tuple_size<Tuple>::value;
 
 
 
  template <size_t I>
 
  struct tuple_element : ::std::tr1::tuple_element<static_cast<int>(I), Tuple> {
 
  };
 
 
 
  template <size_t I>
 
  static typename AddReference<const typename ::std::tr1::tuple_element<
 
      static_cast<int>(I), Tuple>::type>::type
 
  get(const Tuple& tuple) {
 
    return ::std::tr1::get<I>(tuple);
 
  }
 
};
 
template <typename TupleT>
 
const size_t TuplePolicy<TupleT>::tuple_size;
 
#endif  // GTEST_HAS_TR1_TUPLE
 
 
 
#if GTEST_HAS_STD_TUPLE_
 
template <typename... Types>
 
struct TuplePolicy< ::std::tuple<Types...> > {
 
  typedef ::std::tuple<Types...> Tuple;
 
  static const size_t tuple_size = ::std::tuple_size<Tuple>::value;
 
 
 
  template <size_t I>
 
  struct tuple_element : ::std::tuple_element<I, Tuple> {};
 
 
 
  template <size_t I>
 
  static const typename ::std::tuple_element<I, Tuple>::type& get(
 
      const Tuple& tuple) {
 
    return ::std::get<I>(tuple);
 
  }
 
};
 
template <typename... Types>
 
const size_t TuplePolicy< ::std::tuple<Types...> >::tuple_size;
 
#endif  // GTEST_HAS_STD_TUPLE_
 
 
 
#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
 
// This helper template allows PrintTo() for tuples and
 
// UniversalTersePrintTupleFieldsToStrings() to be defined by
 
// induction on the number of tuple fields.  The idea is that
 
// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
 
// fields in tuple t, and can be defined in terms of
 
// TuplePrefixPrinter<N - 1>.
 
//
 
// The inductive case.
 
template <size_t N>
 
struct TuplePrefixPrinter {
 
  // Prints the first N fields of a tuple.
 
  template <typename Tuple>
 
  static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
 
    TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
 
    GTEST_INTENTIONAL_CONST_COND_PUSH_()
 
    if (N > 1) {
 
    GTEST_INTENTIONAL_CONST_COND_POP_()
 
      *os << ", ";
 
    }
 
    UniversalPrinter<
 
        typename TuplePolicy<Tuple>::template tuple_element<N - 1>::type>
 
        ::Print(TuplePolicy<Tuple>::template get<N - 1>(t), os);
 
  }
 
 
 
  // Tersely prints the first N fields of a tuple to a string vector,
 
  // one element for each field.
 
  template <typename Tuple>
 
  static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
 
    TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
 
    ::std::stringstream ss;
 
    UniversalTersePrint(TuplePolicy<Tuple>::template get<N - 1>(t), &ss);
 
    strings->push_back(ss.str());
 
  }
 
};
 
 
 
// Base case.
 
template <>
 
struct TuplePrefixPrinter<0> {
 
  template <typename Tuple>
 
  static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
 
 
 
  template <typename Tuple>
 
  static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
 
};
 
 
 
// Helper function for printing a tuple.
 
// Tuple must be either std::tr1::tuple or std::tuple type.
 
template <typename Tuple>
 
void PrintTupleTo(const Tuple& t, ::std::ostream* os) {
 
  *os << "(";
 
  TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::PrintPrefixTo(t, os);
 
  *os << ")";
 
}
 
 
 
// Prints the fields of a tuple tersely to a string vector, one
 
// element for each field.  See the comment before
 
// UniversalTersePrint() for how we define "tersely".
 
template <typename Tuple>
 
Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
 
  Strings result;
 
  TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::
 
      TersePrintPrefixToStrings(value, &result);
 
  return result;
 
}
 
#endif  // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
 
 
 
}  // namespace internal
 
 
 
#if GTEST_HAS_ABSL
 
namespace internal2 {
 
template <typename T>
 
void TypeWithoutFormatter<T, kConvertibleToStringView>::PrintValue(
 
    const T& value, ::std::ostream* os) {
 
  internal::PrintTo(absl::string_view(value), os);
 
}
 
}  // namespace internal2
 
#endif
 
 
 
template <typename T>
 
::std::string PrintToString(const T& value) {
 
  ::std::stringstream ss;
 
  internal::UniversalTersePrinter<T>::Print(value, &ss);
 
  return ss.str();
 
}
 
 
 
}  // namespace testing
 
 
 
// Include any custom printer added by the local installation.
 
// We must include this header at the end to make sure it can use the
 
// declarations from this file.
 
#include "gtest/internal/custom/gtest-printers.h"
 
 
 
#endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_