- // Copyright 2008 Google Inc. 
- // All Rights Reserved. 
- // 
- // Redistribution and use in source and binary forms, with or without 
- // modification, are permitted provided that the following conditions are 
- // met: 
- // 
- //     * Redistributions of source code must retain the above copyright 
- // notice, this list of conditions and the following disclaimer. 
- //     * Redistributions in binary form must reproduce the above 
- // copyright notice, this list of conditions and the following disclaimer 
- // in the documentation and/or other materials provided with the 
- // distribution. 
- //     * Neither the name of Google Inc. nor the names of its 
- // contributors may be used to endorse or promote products derived from 
- // this software without specific prior written permission. 
- // 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
-   
-   
-   
- // This provides interface PrimeTable that determines whether a number is a 
- // prime and determines a next prime number. This interface is used 
- // in Google Test samples demonstrating use of parameterized tests. 
-   
- #ifndef GTEST_SAMPLES_PRIME_TABLES_H_ 
- #define GTEST_SAMPLES_PRIME_TABLES_H_ 
-   
- #include <algorithm> 
-   
- // The prime table interface. 
- class PrimeTable { 
-  public: 
-   virtual ~PrimeTable() {} 
-   
-   // Returns true iff n is a prime number. 
-   virtual bool IsPrime(int n) const = 0; 
-   
-   // Returns the smallest prime number greater than p; or returns -1 
-   // if the next prime is beyond the capacity of the table. 
-   virtual int GetNextPrime(int p) const = 0; 
- }; 
-   
- // Implementation #1 calculates the primes on-the-fly. 
- class OnTheFlyPrimeTable : public PrimeTable { 
-  public: 
-   virtual bool IsPrime(int n) const { 
-     if (n <= 1) return false; 
-   
-     for (int i = 2; i*i <= n; i++) { 
-       // n is divisible by an integer other than 1 and itself. 
-       if ((n % i) == 0) return false; 
-     } 
-   
-     return true; 
-   } 
-   
-   virtual int GetNextPrime(int p) const { 
-     for (int n = p + 1; n > 0; n++) { 
-       if (IsPrime(n)) return n; 
-     } 
-   
-     return -1; 
-   } 
- }; 
-   
- // Implementation #2 pre-calculates the primes and stores the result 
- // in an array. 
- class PreCalculatedPrimeTable : public PrimeTable { 
-  public: 
-   // 'max' specifies the maximum number the prime table holds. 
-   explicit PreCalculatedPrimeTable(int max) 
-       : is_prime_size_(max + 1), is_prime_(new bool[max + 1]) { 
-     CalculatePrimesUpTo(max); 
-   } 
-   virtual ~PreCalculatedPrimeTable() { delete[] is_prime_; } 
-   
-   virtual bool IsPrime(int n) const { 
-     return 0 <= n && n < is_prime_size_ && is_prime_[n]; 
-   } 
-   
-   virtual int GetNextPrime(int p) const { 
-     for (int n = p + 1; n < is_prime_size_; n++) { 
-       if (is_prime_[n]) return n; 
-     } 
-   
-     return -1; 
-   } 
-   
-  private: 
-   void CalculatePrimesUpTo(int max) { 
-     ::std::fill(is_prime_, is_prime_ + is_prime_size_, true); 
-     is_prime_[0] = is_prime_[1] = false; 
-   
-     // Checks every candidate for prime number (we know that 2 is the only even 
-     // prime). 
-     for (int i = 2; i*i <= max; i += i%2+1) { 
-       if (!is_prime_[i]) continue; 
-   
-       // Marks all multiples of i (except i itself) as non-prime. 
-       // We are starting here from i-th multiplier, because all smaller 
-       // complex numbers were already marked. 
-       for (int j = i*i; j <= max; j += i) { 
-         is_prime_[j] = false; 
-       } 
-     } 
-   } 
-   
-   const int is_prime_size_; 
-   bool* const is_prime_; 
-   
-   // Disables compiler warning "assignment operator could not be generated." 
-   void operator=(const PreCalculatedPrimeTable& rhs); 
- }; 
-   
- #endif  // GTEST_SAMPLES_PRIME_TABLES_H_ 
-