// Copyright 2008 Google Inc.
 
// All Rights Reserved.
 
//
 
// Redistribution and use in source and binary forms, with or without
 
// modification, are permitted provided that the following conditions are
 
// met:
 
//
 
//     * Redistributions of source code must retain the above copyright
 
// notice, this list of conditions and the following disclaimer.
 
//     * Redistributions in binary form must reproduce the above
 
// copyright notice, this list of conditions and the following disclaimer
 
// in the documentation and/or other materials provided with the
 
// distribution.
 
//     * Neither the name of Google Inc. nor the names of its
 
// contributors may be used to endorse or promote products derived from
 
// this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 
 
 
 
 
 
// This provides interface PrimeTable that determines whether a number is a
 
// prime and determines a next prime number. This interface is used
 
// in Google Test samples demonstrating use of parameterized tests.
 
 
 
#ifndef GTEST_SAMPLES_PRIME_TABLES_H_
 
#define GTEST_SAMPLES_PRIME_TABLES_H_
 
 
 
#include <algorithm>
 
 
 
// The prime table interface.
 
class PrimeTable {
 
 public:
 
  virtual ~PrimeTable() {}
 
 
 
  // Returns true iff n is a prime number.
 
  virtual bool IsPrime(int n) const = 0;
 
 
 
  // Returns the smallest prime number greater than p; or returns -1
 
  // if the next prime is beyond the capacity of the table.
 
  virtual int GetNextPrime(int p) const = 0;
 
};
 
 
 
// Implementation #1 calculates the primes on-the-fly.
 
class OnTheFlyPrimeTable : public PrimeTable {
 
 public:
 
  virtual bool IsPrime(int n) const {
 
    if (n <= 1) return false;
 
 
 
    for (int i = 2; i*i <= n; i++) {
 
      // n is divisible by an integer other than 1 and itself.
 
      if ((n % i) == 0) return false;
 
    }
 
 
 
    return true;
 
  }
 
 
 
  virtual int GetNextPrime(int p) const {
 
    for (int n = p + 1; n > 0; n++) {
 
      if (IsPrime(n)) return n;
 
    }
 
 
 
    return -1;
 
  }
 
};
 
 
 
// Implementation #2 pre-calculates the primes and stores the result
 
// in an array.
 
class PreCalculatedPrimeTable : public PrimeTable {
 
 public:
 
  // 'max' specifies the maximum number the prime table holds.
 
  explicit PreCalculatedPrimeTable(int max)
 
      : is_prime_size_(max + 1), is_prime_(new bool[max + 1]) {
 
    CalculatePrimesUpTo(max);
 
  }
 
  virtual ~PreCalculatedPrimeTable() { delete[] is_prime_; }
 
 
 
  virtual bool IsPrime(int n) const {
 
    return 0 <= n && n < is_prime_size_ && is_prime_[n];
 
  }
 
 
 
  virtual int GetNextPrime(int p) const {
 
    for (int n = p + 1; n < is_prime_size_; n++) {
 
      if (is_prime_[n]) return n;
 
    }
 
 
 
    return -1;
 
  }
 
 
 
 private:
 
  void CalculatePrimesUpTo(int max) {
 
    ::std::fill(is_prime_, is_prime_ + is_prime_size_, true);
 
    is_prime_[0] = is_prime_[1] = false;
 
 
 
    // Checks every candidate for prime number (we know that 2 is the only even
 
    // prime).
 
    for (int i = 2; i*i <= max; i += i%2+1) {
 
      if (!is_prime_[i]) continue;
 
 
 
      // Marks all multiples of i (except i itself) as non-prime.
 
      // We are starting here from i-th multiplier, because all smaller
 
      // complex numbers were already marked.
 
      for (int j = i*i; j <= max; j += i) {
 
        is_prime_[j] = false;
 
      }
 
    }
 
  }
 
 
 
  const int is_prime_size_;
 
  bool* const is_prime_;
 
 
 
  // Disables compiler warning "assignment operator could not be generated."
 
  void operator=(const PreCalculatedPrimeTable& rhs);
 
};
 
 
 
#endif  // GTEST_SAMPLES_PRIME_TABLES_H_