// Copyright 2005, Google Inc.
 
// All rights reserved.
 
//
 
// Redistribution and use in source and binary forms, with or without
 
// modification, are permitted provided that the following conditions are
 
// met:
 
//
 
//     * Redistributions of source code must retain the above copyright
 
// notice, this list of conditions and the following disclaimer.
 
//     * Redistributions in binary form must reproduce the above
 
// copyright notice, this list of conditions and the following disclaimer
 
// in the documentation and/or other materials provided with the
 
// distribution.
 
//     * Neither the name of Google Inc. nor the names of its
 
// contributors may be used to endorse or promote products derived from
 
// this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 
 
//
 
// This file implements death tests.
 
 
 
#include "gtest/gtest-death-test.h"
 
#include "gtest/internal/gtest-port.h"
 
#include "gtest/internal/custom/gtest.h"
 
 
 
#if GTEST_HAS_DEATH_TEST
 
 
 
# if GTEST_OS_MAC
 
#  include <crt_externs.h>
 
# endif  // GTEST_OS_MAC
 
 
 
# include <errno.h>
 
# include <fcntl.h>
 
# include <limits.h>
 
 
 
# if GTEST_OS_LINUX
 
#  include <signal.h>
 
# endif  // GTEST_OS_LINUX
 
 
 
# include <stdarg.h>
 
 
 
# if GTEST_OS_WINDOWS
 
#  include <windows.h>
 
# else
 
#  include <sys/mman.h>
 
#  include <sys/wait.h>
 
# endif  // GTEST_OS_WINDOWS
 
 
 
# if GTEST_OS_QNX
 
#  include <spawn.h>
 
# endif  // GTEST_OS_QNX
 
 
 
# if GTEST_OS_FUCHSIA
 
#  include <lib/fdio/io.h>
 
#  include <lib/fdio/spawn.h>
 
#  include <zircon/processargs.h>
 
#  include <zircon/syscalls.h>
 
#  include <zircon/syscalls/port.h>
 
# endif  // GTEST_OS_FUCHSIA
 
 
 
#endif  // GTEST_HAS_DEATH_TEST
 
 
 
#include "gtest/gtest-message.h"
 
#include "gtest/internal/gtest-string.h"
 
#include "src/gtest-internal-inl.h"
 
 
 
namespace testing {
 
 
 
// Constants.
 
 
 
// The default death test style.
 
//
 
// This is defined in internal/gtest-port.h as "fast", but can be overridden by
 
// a definition in internal/custom/gtest-port.h. The recommended value, which is
 
// used internally at Google, is "threadsafe".
 
static const char kDefaultDeathTestStyle[] = GTEST_DEFAULT_DEATH_TEST_STYLE;
 
 
 
GTEST_DEFINE_string_(
 
    death_test_style,
 
    internal::StringFromGTestEnv("death_test_style", kDefaultDeathTestStyle),
 
    "Indicates how to run a death test in a forked child process: "
 
    "\"threadsafe\" (child process re-executes the test binary "
 
    "from the beginning, running only the specific death test) or "
 
    "\"fast\" (child process runs the death test immediately "
 
    "after forking).");
 
 
 
GTEST_DEFINE_bool_(
 
    death_test_use_fork,
 
    internal::BoolFromGTestEnv("death_test_use_fork", false),
 
    "Instructs to use fork()/_exit() instead of clone() in death tests. "
 
    "Ignored and always uses fork() on POSIX systems where clone() is not "
 
    "implemented. Useful when running under valgrind or similar tools if "
 
    "those do not support clone(). Valgrind 3.3.1 will just fail if "
 
    "it sees an unsupported combination of clone() flags. "
 
    "It is not recommended to use this flag w/o valgrind though it will "
 
    "work in 99% of the cases. Once valgrind is fixed, this flag will "
 
    "most likely be removed.");
 
 
 
namespace internal {
 
GTEST_DEFINE_string_(
 
    internal_run_death_test, "",
 
    "Indicates the file, line number, temporal index of "
 
    "the single death test to run, and a file descriptor to "
 
    "which a success code may be sent, all separated by "
 
    "the '|' characters.  This flag is specified if and only if the current "
 
    "process is a sub-process launched for running a thread-safe "
 
    "death test.  FOR INTERNAL USE ONLY.");
 
}  // namespace internal
 
 
 
#if GTEST_HAS_DEATH_TEST
 
 
 
namespace internal {
 
 
 
// Valid only for fast death tests. Indicates the code is running in the
 
// child process of a fast style death test.
 
# if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
 
static bool g_in_fast_death_test_child = false;
 
# endif
 
 
 
// Returns a Boolean value indicating whether the caller is currently
 
// executing in the context of the death test child process.  Tools such as
 
// Valgrind heap checkers may need this to modify their behavior in death
 
// tests.  IMPORTANT: This is an internal utility.  Using it may break the
 
// implementation of death tests.  User code MUST NOT use it.
 
bool InDeathTestChild() {
 
# if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
 
 
 
  // On Windows and Fuchsia, death tests are thread-safe regardless of the value
 
  // of the death_test_style flag.
 
  return !GTEST_FLAG(internal_run_death_test).empty();
 
 
 
# else
 
 
 
  if (GTEST_FLAG(death_test_style) == "threadsafe")
 
    return !GTEST_FLAG(internal_run_death_test).empty();
 
  else
 
    return g_in_fast_death_test_child;
 
#endif
 
}
 
 
 
}  // namespace internal
 
 
 
// ExitedWithCode constructor.
 
ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) {
 
}
 
 
 
// ExitedWithCode function-call operator.
 
bool ExitedWithCode::operator()(int exit_status) const {
 
# if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
 
 
 
  return exit_status == exit_code_;
 
 
 
# else
 
 
 
  return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_;
 
 
 
# endif  // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
 
}
 
 
 
# if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
 
// KilledBySignal constructor.
 
KilledBySignal::KilledBySignal(int signum) : signum_(signum) {
 
}
 
 
 
// KilledBySignal function-call operator.
 
bool KilledBySignal::operator()(int exit_status) const {
 
#  if defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_)
 
  {
 
    bool result;
 
    if (GTEST_KILLED_BY_SIGNAL_OVERRIDE_(signum_, exit_status, &result)) {
 
      return result;
 
    }
 
  }
 
#  endif  // defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_)
 
  return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_;
 
}
 
# endif  // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
 
 
 
namespace internal {
 
 
 
// Utilities needed for death tests.
 
 
 
// Generates a textual description of a given exit code, in the format
 
// specified by wait(2).
 
static std::string ExitSummary(int exit_code) {
 
  Message m;
 
 
 
# if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
 
 
 
  m << "Exited with exit status " << exit_code;
 
 
 
# else
 
 
 
  if (WIFEXITED(exit_code)) {
 
    m << "Exited with exit status " << WEXITSTATUS(exit_code);
 
  } else if (WIFSIGNALED(exit_code)) {
 
    m << "Terminated by signal " << WTERMSIG(exit_code);
 
  }
 
#  ifdef WCOREDUMP
 
  if (WCOREDUMP(exit_code)) {
 
    m << " (core dumped)";
 
  }
 
#  endif
 
# endif  // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
 
 
 
  return m.GetString();
 
}
 
 
 
// Returns true if exit_status describes a process that was terminated
 
// by a signal, or exited normally with a nonzero exit code.
 
bool ExitedUnsuccessfully(int exit_status) {
 
  return !ExitedWithCode(0)(exit_status);
 
}
 
 
 
# if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
 
// Generates a textual failure message when a death test finds more than
 
// one thread running, or cannot determine the number of threads, prior
 
// to executing the given statement.  It is the responsibility of the
 
// caller not to pass a thread_count of 1.
 
static std::string DeathTestThreadWarning(size_t thread_count) {
 
  Message msg;
 
  msg << "Death tests use fork(), which is unsafe particularly"
 
      << " in a threaded context. For this test, " << GTEST_NAME_ << " ";
 
  if (thread_count == 0) {
 
    msg << "couldn't detect the number of threads.";
 
  } else {
 
    msg << "detected " << thread_count << " threads.";
 
  }
 
  msg << " See "
 
         "https://github.com/google/googletest/blob/master/googletest/docs/"
 
         "advanced.md#death-tests-and-threads"
 
      << " for more explanation and suggested solutions, especially if"
 
      << " this is the last message you see before your test times out.";
 
  return msg.GetString();
 
}
 
# endif  // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
 
 
 
// Flag characters for reporting a death test that did not die.
 
static const char kDeathTestLived = 'L';
 
static const char kDeathTestReturned = 'R';
 
static const char kDeathTestThrew = 'T';
 
static const char kDeathTestInternalError = 'I';
 
 
 
#if GTEST_OS_FUCHSIA
 
 
 
// File descriptor used for the pipe in the child process.
 
static const int kFuchsiaReadPipeFd = 3;
 
 
 
#endif
 
 
 
// An enumeration describing all of the possible ways that a death test can
 
// conclude.  DIED means that the process died while executing the test
 
// code; LIVED means that process lived beyond the end of the test code;
 
// RETURNED means that the test statement attempted to execute a return
 
// statement, which is not allowed; THREW means that the test statement
 
// returned control by throwing an exception.  IN_PROGRESS means the test
 
// has not yet concluded.
 
// FIXME: Unify names and possibly values for
 
// AbortReason, DeathTestOutcome, and flag characters above.
 
enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW };
 
 
 
// Routine for aborting the program which is safe to call from an
 
// exec-style death test child process, in which case the error
 
// message is propagated back to the parent process.  Otherwise, the
 
// message is simply printed to stderr.  In either case, the program
 
// then exits with status 1.
 
static void DeathTestAbort(const std::string& message) {
 
  // On a POSIX system, this function may be called from a threadsafe-style
 
  // death test child process, which operates on a very small stack.  Use
 
  // the heap for any additional non-minuscule memory requirements.
 
  const InternalRunDeathTestFlag* const flag =
 
      GetUnitTestImpl()->internal_run_death_test_flag();
 
  if (flag != NULL) {
 
    FILE* parent = posix::FDOpen(flag->write_fd(), "w");
 
    fputc(kDeathTestInternalError, parent);
 
    fprintf(parent, "%s", message.c_str());
 
    fflush(parent);
 
    _exit(1);
 
  } else {
 
    fprintf(stderr, "%s", message.c_str());
 
    fflush(stderr);
 
    posix::Abort();
 
  }
 
}
 
 
 
// A replacement for CHECK that calls DeathTestAbort if the assertion
 
// fails.
 
# define GTEST_DEATH_TEST_CHECK_(expression) \
 
  do { \
 
    if (!::testing::internal::IsTrue(expression)) { \
 
      DeathTestAbort( \
 
          ::std::string("CHECK failed: File ") + __FILE__ +  ", line " \
 
          + ::testing::internal::StreamableToString(__LINE__) + ": " \
 
          + #expression); \
 
    } \
 
  } while (::testing::internal::AlwaysFalse())
 
 
 
// This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for
 
// evaluating any system call that fulfills two conditions: it must return
 
// -1 on failure, and set errno to EINTR when it is interrupted and
 
// should be tried again.  The macro expands to a loop that repeatedly
 
// evaluates the expression as long as it evaluates to -1 and sets
 
// errno to EINTR.  If the expression evaluates to -1 but errno is
 
// something other than EINTR, DeathTestAbort is called.
 
# define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \
 
  do { \
 
    int gtest_retval; \
 
    do { \
 
      gtest_retval = (expression); \
 
    } while (gtest_retval == -1 && errno == EINTR); \
 
    if (gtest_retval == -1) { \
 
      DeathTestAbort( \
 
          ::std::string("CHECK failed: File ") + __FILE__ + ", line " \
 
          + ::testing::internal::StreamableToString(__LINE__) + ": " \
 
          + #expression + " != -1"); \
 
    } \
 
  } while (::testing::internal::AlwaysFalse())
 
 
 
// Returns the message describing the last system error in errno.
 
std::string GetLastErrnoDescription() {
 
    return errno == 0 ? "" : posix::StrError(errno);
 
}
 
 
 
// This is called from a death test parent process to read a failure
 
// message from the death test child process and log it with the FATAL
 
// severity. On Windows, the message is read from a pipe handle. On other
 
// platforms, it is read from a file descriptor.
 
static void FailFromInternalError(int fd) {
 
  Message error;
 
  char buffer[256];
 
  int num_read;
 
 
 
  do {
 
    while ((num_read = posix::Read(fd, buffer, 255)) > 0) {
 
      buffer[num_read] = '\0';
 
      error << buffer;
 
    }
 
  } while (num_read == -1 && errno == EINTR);
 
 
 
  if (num_read == 0) {
 
    GTEST_LOG_(FATAL) << error.GetString();
 
  } else {
 
    const int last_error = errno;
 
    GTEST_LOG_(FATAL) << "Error while reading death test internal: "
 
                      << GetLastErrnoDescription() << " [" << last_error << "]";
 
  }
 
}
 
 
 
// Death test constructor.  Increments the running death test count
 
// for the current test.
 
DeathTest::DeathTest() {
 
  TestInfo* const info = GetUnitTestImpl()->current_test_info();
 
  if (info == NULL) {
 
    DeathTestAbort("Cannot run a death test outside of a TEST or "
 
                   "TEST_F construct");
 
  }
 
}
 
 
 
// Creates and returns a death test by dispatching to the current
 
// death test factory.
 
bool DeathTest::Create(const char* statement, const RE* regex,
 
                       const char* file, int line, DeathTest** test) {
 
  return GetUnitTestImpl()->death_test_factory()->Create(
 
      statement, regex, file, line, test);
 
}
 
 
 
const char* DeathTest::LastMessage() {
 
  return last_death_test_message_.c_str();
 
}
 
 
 
void DeathTest::set_last_death_test_message(const std::string& message) {
 
  last_death_test_message_ = message;
 
}
 
 
 
std::string DeathTest::last_death_test_message_;
 
 
 
// Provides cross platform implementation for some death functionality.
 
class DeathTestImpl : public DeathTest {
 
 protected:
 
  DeathTestImpl(const char* a_statement, const RE* a_regex)
 
      : statement_(a_statement),
 
        regex_(a_regex),
 
        spawned_(false),
 
        status_(-1),
 
        outcome_(IN_PROGRESS),
 
        read_fd_(-1),
 
        write_fd_(-1) {}
 
 
 
  // read_fd_ is expected to be closed and cleared by a derived class.
 
  ~DeathTestImpl() { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); }
 
 
 
  void Abort(AbortReason reason);
 
  virtual bool Passed(bool status_ok);
 
 
 
  const char* statement() const { return statement_; }
 
  const RE* regex() const { return regex_; }
 
  bool spawned() const { return spawned_; }
 
  void set_spawned(bool is_spawned) { spawned_ = is_spawned; }
 
  int status() const { return status_; }
 
  void set_status(int a_status) { status_ = a_status; }
 
  DeathTestOutcome outcome() const { return outcome_; }
 
  void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; }
 
  int read_fd() const { return read_fd_; }
 
  void set_read_fd(int fd) { read_fd_ = fd; }
 
  int write_fd() const { return write_fd_; }
 
  void set_write_fd(int fd) { write_fd_ = fd; }
 
 
 
  // Called in the parent process only. Reads the result code of the death
 
  // test child process via a pipe, interprets it to set the outcome_
 
  // member, and closes read_fd_.  Outputs diagnostics and terminates in
 
  // case of unexpected codes.
 
  void ReadAndInterpretStatusByte();
 
 
 
 private:
 
  // The textual content of the code this object is testing.  This class
 
  // doesn't own this string and should not attempt to delete it.
 
  const char* const statement_;
 
  // The regular expression which test output must match.  DeathTestImpl
 
  // doesn't own this object and should not attempt to delete it.
 
  const RE* const regex_;
 
  // True if the death test child process has been successfully spawned.
 
  bool spawned_;
 
  // The exit status of the child process.
 
  int status_;
 
  // How the death test concluded.
 
  DeathTestOutcome outcome_;
 
  // Descriptor to the read end of the pipe to the child process.  It is
 
  // always -1 in the child process.  The child keeps its write end of the
 
  // pipe in write_fd_.
 
  int read_fd_;
 
  // Descriptor to the child's write end of the pipe to the parent process.
 
  // It is always -1 in the parent process.  The parent keeps its end of the
 
  // pipe in read_fd_.
 
  int write_fd_;
 
};
 
 
 
// Called in the parent process only. Reads the result code of the death
 
// test child process via a pipe, interprets it to set the outcome_
 
// member, and closes read_fd_.  Outputs diagnostics and terminates in
 
// case of unexpected codes.
 
void DeathTestImpl::ReadAndInterpretStatusByte() {
 
  char flag;
 
  int bytes_read;
 
 
 
  // The read() here blocks until data is available (signifying the
 
  // failure of the death test) or until the pipe is closed (signifying
 
  // its success), so it's okay to call this in the parent before
 
  // the child process has exited.
 
  do {
 
    bytes_read = posix::Read(read_fd(), &flag, 1);
 
  } while (bytes_read == -1 && errno == EINTR);
 
 
 
  if (bytes_read == 0) {
 
    set_outcome(DIED);
 
  } else if (bytes_read == 1) {
 
    switch (flag) {
 
      case kDeathTestReturned:
 
        set_outcome(RETURNED);
 
        break;
 
      case kDeathTestThrew:
 
        set_outcome(THREW);
 
        break;
 
      case kDeathTestLived:
 
        set_outcome(LIVED);
 
        break;
 
      case kDeathTestInternalError:
 
        FailFromInternalError(read_fd());  // Does not return.
 
        break;
 
      default:
 
        GTEST_LOG_(FATAL) << "Death test child process reported "
 
                          << "unexpected status byte ("
 
                          << static_cast<unsigned int>(flag) << ")";
 
    }
 
  } else {
 
    GTEST_LOG_(FATAL) << "Read from death test child process failed: "
 
                      << GetLastErrnoDescription();
 
  }
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd()));
 
  set_read_fd(-1);
 
}
 
 
 
// Signals that the death test code which should have exited, didn't.
 
// Should be called only in a death test child process.
 
// Writes a status byte to the child's status file descriptor, then
 
// calls _exit(1).
 
void DeathTestImpl::Abort(AbortReason reason) {
 
  // The parent process considers the death test to be a failure if
 
  // it finds any data in our pipe.  So, here we write a single flag byte
 
  // to the pipe, then exit.
 
  const char status_ch =
 
      reason == TEST_DID_NOT_DIE ? kDeathTestLived :
 
      reason == TEST_THREW_EXCEPTION ? kDeathTestThrew : kDeathTestReturned;
 
 
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1));
 
  // We are leaking the descriptor here because on some platforms (i.e.,
 
  // when built as Windows DLL), destructors of global objects will still
 
  // run after calling _exit(). On such systems, write_fd_ will be
 
  // indirectly closed from the destructor of UnitTestImpl, causing double
 
  // close if it is also closed here. On debug configurations, double close
 
  // may assert. As there are no in-process buffers to flush here, we are
 
  // relying on the OS to close the descriptor after the process terminates
 
  // when the destructors are not run.
 
  _exit(1);  // Exits w/o any normal exit hooks (we were supposed to crash)
 
}
 
 
 
// Returns an indented copy of stderr output for a death test.
 
// This makes distinguishing death test output lines from regular log lines
 
// much easier.
 
static ::std::string FormatDeathTestOutput(const ::std::string& output) {
 
  ::std::string ret;
 
  for (size_t at = 0; ; ) {
 
    const size_t line_end = output.find('\n', at);
 
    ret += "[  DEATH   ] ";
 
    if (line_end == ::std::string::npos) {
 
      ret += output.substr(at);
 
      break;
 
    }
 
    ret += output.substr(at, line_end + 1 - at);
 
    at = line_end + 1;
 
  }
 
  return ret;
 
}
 
 
 
// Assesses the success or failure of a death test, using both private
 
// members which have previously been set, and one argument:
 
//
 
// Private data members:
 
//   outcome:  An enumeration describing how the death test
 
//             concluded: DIED, LIVED, THREW, or RETURNED.  The death test
 
//             fails in the latter three cases.
 
//   status:   The exit status of the child process. On *nix, it is in the
 
//             in the format specified by wait(2). On Windows, this is the
 
//             value supplied to the ExitProcess() API or a numeric code
 
//             of the exception that terminated the program.
 
//   regex:    A regular expression object to be applied to
 
//             the test's captured standard error output; the death test
 
//             fails if it does not match.
 
//
 
// Argument:
 
//   status_ok: true if exit_status is acceptable in the context of
 
//              this particular death test, which fails if it is false
 
//
 
// Returns true iff all of the above conditions are met.  Otherwise, the
 
// first failing condition, in the order given above, is the one that is
 
// reported. Also sets the last death test message string.
 
bool DeathTestImpl::Passed(bool status_ok) {
 
  if (!spawned())
 
    return false;
 
 
 
  const std::string error_message = GetCapturedStderr();
 
 
 
  bool success = false;
 
  Message buffer;
 
 
 
  buffer << "Death test: " << statement() << "\n";
 
  switch (outcome()) {
 
    case LIVED:
 
      buffer << "    Result: failed to die.\n"
 
             << " Error msg:\n" << FormatDeathTestOutput(error_message);
 
      break;
 
    case THREW:
 
      buffer << "    Result: threw an exception.\n"
 
             << " Error msg:\n" << FormatDeathTestOutput(error_message);
 
      break;
 
    case RETURNED:
 
      buffer << "    Result: illegal return in test statement.\n"
 
             << " Error msg:\n" << FormatDeathTestOutput(error_message);
 
      break;
 
    case DIED:
 
      if (status_ok) {
 
# if GTEST_USES_PCRE
 
        // PCRE regexes support embedded NULs.
 
        const bool matched = RE::PartialMatch(error_message, *regex());
 
# else
 
        const bool matched = RE::PartialMatch(error_message.c_str(), *regex());
 
# endif  // GTEST_USES_PCRE
 
        if (matched) {
 
          success = true;
 
        } else {
 
          buffer << "    Result: died but not with expected error.\n"
 
                 << "  Expected: " << regex()->pattern() << "\n"
 
                 << "Actual msg:\n" << FormatDeathTestOutput(error_message);
 
        }
 
      } else {
 
        buffer << "    Result: died but not with expected exit code:\n"
 
               << "            " << ExitSummary(status()) << "\n"
 
               << "Actual msg:\n" << FormatDeathTestOutput(error_message);
 
      }
 
      break;
 
    case IN_PROGRESS:
 
    default:
 
      GTEST_LOG_(FATAL)
 
          << "DeathTest::Passed somehow called before conclusion of test";
 
  }
 
 
 
  DeathTest::set_last_death_test_message(buffer.GetString());
 
  return success;
 
}
 
 
 
# if GTEST_OS_WINDOWS
 
// WindowsDeathTest implements death tests on Windows. Due to the
 
// specifics of starting new processes on Windows, death tests there are
 
// always threadsafe, and Google Test considers the
 
// --gtest_death_test_style=fast setting to be equivalent to
 
// --gtest_death_test_style=threadsafe there.
 
//
 
// A few implementation notes:  Like the Linux version, the Windows
 
// implementation uses pipes for child-to-parent communication. But due to
 
// the specifics of pipes on Windows, some extra steps are required:
 
//
 
// 1. The parent creates a communication pipe and stores handles to both
 
//    ends of it.
 
// 2. The parent starts the child and provides it with the information
 
//    necessary to acquire the handle to the write end of the pipe.
 
// 3. The child acquires the write end of the pipe and signals the parent
 
//    using a Windows event.
 
// 4. Now the parent can release the write end of the pipe on its side. If
 
//    this is done before step 3, the object's reference count goes down to
 
//    0 and it is destroyed, preventing the child from acquiring it. The
 
//    parent now has to release it, or read operations on the read end of
 
//    the pipe will not return when the child terminates.
 
// 5. The parent reads child's output through the pipe (outcome code and
 
//    any possible error messages) from the pipe, and its stderr and then
 
//    determines whether to fail the test.
 
//
 
// Note: to distinguish Win32 API calls from the local method and function
 
// calls, the former are explicitly resolved in the global namespace.
 
//
 
class WindowsDeathTest : public DeathTestImpl {
 
 public:
 
  WindowsDeathTest(const char* a_statement,
 
                   const RE* a_regex,
 
                   const char* file,
 
                   int line)
 
      : DeathTestImpl(a_statement, a_regex), file_(file), line_(line) {}
 
 
 
  // All of these virtual functions are inherited from DeathTest.
 
  virtual int Wait();
 
  virtual TestRole AssumeRole();
 
 
 
 private:
 
  // The name of the file in which the death test is located.
 
  const char* const file_;
 
  // The line number on which the death test is located.
 
  const int line_;
 
  // Handle to the write end of the pipe to the child process.
 
  AutoHandle write_handle_;
 
  // Child process handle.
 
  AutoHandle child_handle_;
 
  // Event the child process uses to signal the parent that it has
 
  // acquired the handle to the write end of the pipe. After seeing this
 
  // event the parent can release its own handles to make sure its
 
  // ReadFile() calls return when the child terminates.
 
  AutoHandle event_handle_;
 
};
 
 
 
// Waits for the child in a death test to exit, returning its exit
 
// status, or 0 if no child process exists.  As a side effect, sets the
 
// outcome data member.
 
int WindowsDeathTest::Wait() {
 
  if (!spawned())
 
    return 0;
 
 
 
  // Wait until the child either signals that it has acquired the write end
 
  // of the pipe or it dies.
 
  const HANDLE wait_handles[2] = { child_handle_.Get(), event_handle_.Get() };
 
  switch (::WaitForMultipleObjects(2,
 
                                   wait_handles,
 
                                   FALSE,  // Waits for any of the handles.
 
                                   INFINITE)) {
 
    case WAIT_OBJECT_0:
 
    case WAIT_OBJECT_0 + 1:
 
      break;
 
    default:
 
      GTEST_DEATH_TEST_CHECK_(false);  // Should not get here.
 
  }
 
 
 
  // The child has acquired the write end of the pipe or exited.
 
  // We release the handle on our side and continue.
 
  write_handle_.Reset();
 
  event_handle_.Reset();
 
 
 
  ReadAndInterpretStatusByte();
 
 
 
  // Waits for the child process to exit if it haven't already. This
 
  // returns immediately if the child has already exited, regardless of
 
  // whether previous calls to WaitForMultipleObjects synchronized on this
 
  // handle or not.
 
  GTEST_DEATH_TEST_CHECK_(
 
      WAIT_OBJECT_0 == ::WaitForSingleObject(child_handle_.Get(),
 
                                             INFINITE));
 
  DWORD status_code;
 
  GTEST_DEATH_TEST_CHECK_(
 
      ::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE);
 
  child_handle_.Reset();
 
  set_status(static_cast<int>(status_code));
 
  return status();
 
}
 
 
 
// The AssumeRole process for a Windows death test.  It creates a child
 
// process with the same executable as the current process to run the
 
// death test.  The child process is given the --gtest_filter and
 
// --gtest_internal_run_death_test flags such that it knows to run the
 
// current death test only.
 
DeathTest::TestRole WindowsDeathTest::AssumeRole() {
 
  const UnitTestImpl* const impl = GetUnitTestImpl();
 
  const InternalRunDeathTestFlag* const flag =
 
      impl->internal_run_death_test_flag();
 
  const TestInfo* const info = impl->current_test_info();
 
  const int death_test_index = info->result()->death_test_count();
 
 
 
  if (flag != NULL) {
 
    // ParseInternalRunDeathTestFlag() has performed all the necessary
 
    // processing.
 
    set_write_fd(flag->write_fd());
 
    return EXECUTE_TEST;
 
  }
 
 
 
  // WindowsDeathTest uses an anonymous pipe to communicate results of
 
  // a death test.
 
  SECURITY_ATTRIBUTES handles_are_inheritable = {
 
    sizeof(SECURITY_ATTRIBUTES), NULL, TRUE };
 
  HANDLE read_handle, write_handle;
 
  GTEST_DEATH_TEST_CHECK_(
 
      ::CreatePipe(&read_handle, &write_handle, &handles_are_inheritable,
 
                   0)  // Default buffer size.
 
      != FALSE);
 
  set_read_fd(::_open_osfhandle(reinterpret_cast<intptr_t>(read_handle),
 
                                O_RDONLY));
 
  write_handle_.Reset(write_handle);
 
  event_handle_.Reset(::CreateEvent(
 
      &handles_are_inheritable,
 
      TRUE,    // The event will automatically reset to non-signaled state.
 
      FALSE,   // The initial state is non-signalled.
 
      NULL));  // The even is unnamed.
 
  GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != NULL);
 
  const std::string filter_flag =
 
      std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" +
 
      info->test_case_name() + "." + info->name();
 
  const std::string internal_flag =
 
      std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag +
 
      "=" + file_ + "|" + StreamableToString(line_) + "|" +
 
      StreamableToString(death_test_index) + "|" +
 
      StreamableToString(static_cast<unsigned int>(::GetCurrentProcessId())) +
 
      // size_t has the same width as pointers on both 32-bit and 64-bit
 
      // Windows platforms.
 
      // See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx.
 
      "|" + StreamableToString(reinterpret_cast<size_t>(write_handle)) +
 
      "|" + StreamableToString(reinterpret_cast<size_t>(event_handle_.Get()));
 
 
 
  char executable_path[_MAX_PATH + 1];  // NOLINT
 
  GTEST_DEATH_TEST_CHECK_(
 
      _MAX_PATH + 1 != ::GetModuleFileNameA(NULL,
 
                                            executable_path,
 
                                            _MAX_PATH));
 
 
 
  std::string command_line =
 
      std::string(::GetCommandLineA()) + " " + filter_flag + " \"" +
 
      internal_flag + "\"";
 
 
 
  DeathTest::set_last_death_test_message("");
 
 
 
  CaptureStderr();
 
  // Flush the log buffers since the log streams are shared with the child.
 
  FlushInfoLog();
 
 
 
  // The child process will share the standard handles with the parent.
 
  STARTUPINFOA startup_info;
 
  memset(&startup_info, 0, sizeof(STARTUPINFO));
 
  startup_info.dwFlags = STARTF_USESTDHANDLES;
 
  startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE);
 
  startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE);
 
  startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE);
 
 
 
  PROCESS_INFORMATION process_info;
 
  GTEST_DEATH_TEST_CHECK_(::CreateProcessA(
 
      executable_path,
 
      const_cast<char*>(command_line.c_str()),
 
      NULL,   // Retuned process handle is not inheritable.
 
      NULL,   // Retuned thread handle is not inheritable.
 
      TRUE,   // Child inherits all inheritable handles (for write_handle_).
 
      0x0,    // Default creation flags.
 
      NULL,   // Inherit the parent's environment.
 
      UnitTest::GetInstance()->original_working_dir(),
 
      &startup_info,
 
      &process_info) != FALSE);
 
  child_handle_.Reset(process_info.hProcess);
 
  ::CloseHandle(process_info.hThread);
 
  set_spawned(true);
 
  return OVERSEE_TEST;
 
}
 
 
 
# elif GTEST_OS_FUCHSIA
 
 
 
class FuchsiaDeathTest : public DeathTestImpl {
 
 public:
 
  FuchsiaDeathTest(const char* a_statement,
 
                   const RE* a_regex,
 
                   const char* file,
 
                   int line)
 
      : DeathTestImpl(a_statement, a_regex), file_(file), line_(line) {}
 
  virtual ~FuchsiaDeathTest() {
 
    zx_status_t status = zx_handle_close(child_process_);
 
    GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
 
    status = zx_handle_close(port_);
 
    GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
 
  }
 
 
 
  // All of these virtual functions are inherited from DeathTest.
 
  virtual int Wait();
 
  virtual TestRole AssumeRole();
 
 
 
 private:
 
  // The name of the file in which the death test is located.
 
  const char* const file_;
 
  // The line number on which the death test is located.
 
  const int line_;
 
 
 
  zx_handle_t child_process_ = ZX_HANDLE_INVALID;
 
  zx_handle_t port_ = ZX_HANDLE_INVALID;
 
};
 
 
 
// Utility class for accumulating command-line arguments.
 
class Arguments {
 
 public:
 
  Arguments() {
 
    args_.push_back(NULL);
 
  }
 
 
 
  ~Arguments() {
 
    for (std::vector<char*>::iterator i = args_.begin(); i != args_.end();
 
         ++i) {
 
      free(*i);
 
    }
 
  }
 
  void AddArgument(const char* argument) {
 
    args_.insert(args_.end() - 1, posix::StrDup(argument));
 
  }
 
 
 
  template <typename Str>
 
  void AddArguments(const ::std::vector<Str>& arguments) {
 
    for (typename ::std::vector<Str>::const_iterator i = arguments.begin();
 
         i != arguments.end();
 
         ++i) {
 
      args_.insert(args_.end() - 1, posix::StrDup(i->c_str()));
 
    }
 
  }
 
  char* const* Argv() {
 
    return &args_[0];
 
  }
 
 
 
  int size() {
 
    return args_.size() - 1;
 
  }
 
 
 
 private:
 
  std::vector<char*> args_;
 
};
 
 
 
// Waits for the child in a death test to exit, returning its exit
 
// status, or 0 if no child process exists.  As a side effect, sets the
 
// outcome data member.
 
int FuchsiaDeathTest::Wait() {
 
  if (!spawned())
 
    return 0;
 
 
 
  // Register to wait for the child process to terminate.
 
  zx_status_t status_zx;
 
  status_zx = zx_object_wait_async(child_process_,
 
                                   port_,
 
                                   0 /* key */,
 
                                   ZX_PROCESS_TERMINATED,
 
                                   ZX_WAIT_ASYNC_ONCE);
 
  GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
 
 
 
  // Wait for it to terminate, or an exception to be received.
 
  zx_port_packet_t packet;
 
  status_zx = zx_port_wait(port_, ZX_TIME_INFINITE, &packet);
 
  GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
 
 
 
  if (ZX_PKT_IS_EXCEPTION(packet.type)) {
 
    // Process encountered an exception. Kill it directly rather than letting
 
    // other handlers process the event.
 
    status_zx = zx_task_kill(child_process_);
 
    GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
 
 
 
    // Now wait for |child_process_| to terminate.
 
    zx_signals_t signals = 0;
 
    status_zx = zx_object_wait_one(
 
        child_process_, ZX_PROCESS_TERMINATED, ZX_TIME_INFINITE, &signals);
 
    GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
 
    GTEST_DEATH_TEST_CHECK_(signals & ZX_PROCESS_TERMINATED);
 
  } else {
 
    // Process terminated.
 
    GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type));
 
    GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_PROCESS_TERMINATED);
 
  }
 
 
 
  ReadAndInterpretStatusByte();
 
 
 
  zx_info_process_t buffer;
 
  status_zx = zx_object_get_info(
 
      child_process_,
 
      ZX_INFO_PROCESS,
 
      &buffer,
 
      sizeof(buffer),
 
      nullptr,
 
      nullptr);
 
  GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
 
 
 
  GTEST_DEATH_TEST_CHECK_(buffer.exited);
 
  set_status(buffer.return_code);
 
  return status();
 
}
 
 
 
// The AssumeRole process for a Fuchsia death test.  It creates a child
 
// process with the same executable as the current process to run the
 
// death test.  The child process is given the --gtest_filter and
 
// --gtest_internal_run_death_test flags such that it knows to run the
 
// current death test only.
 
DeathTest::TestRole FuchsiaDeathTest::AssumeRole() {
 
  const UnitTestImpl* const impl = GetUnitTestImpl();
 
  const InternalRunDeathTestFlag* const flag =
 
      impl->internal_run_death_test_flag();
 
  const TestInfo* const info = impl->current_test_info();
 
  const int death_test_index = info->result()->death_test_count();
 
 
 
  if (flag != NULL) {
 
    // ParseInternalRunDeathTestFlag() has performed all the necessary
 
    // processing.
 
    set_write_fd(kFuchsiaReadPipeFd);
 
    return EXECUTE_TEST;
 
  }
 
 
 
  CaptureStderr();
 
  // Flush the log buffers since the log streams are shared with the child.
 
  FlushInfoLog();
 
 
 
  // Build the child process command line.
 
  const std::string filter_flag =
 
      std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "="
 
      + info->test_case_name() + "." + info->name();
 
  const std::string internal_flag =
 
      std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "="
 
      + file_ + "|"
 
      + StreamableToString(line_) + "|"
 
      + StreamableToString(death_test_index);
 
  Arguments args;
 
  args.AddArguments(GetInjectableArgvs());
 
  args.AddArgument(filter_flag.c_str());
 
  args.AddArgument(internal_flag.c_str());
 
 
 
  // Build the pipe for communication with the child.
 
  zx_status_t status;
 
  zx_handle_t child_pipe_handle;
 
  uint32_t type;
 
  status = fdio_pipe_half(&child_pipe_handle, &type);
 
  GTEST_DEATH_TEST_CHECK_(status >= 0);
 
  set_read_fd(status);
 
 
 
  // Set the pipe handle for the child.
 
  fdio_spawn_action_t add_handle_action = {};
 
  add_handle_action.action = FDIO_SPAWN_ACTION_ADD_HANDLE;
 
  add_handle_action.h.id = PA_HND(type, kFuchsiaReadPipeFd);
 
  add_handle_action.h.handle = child_pipe_handle;
 
 
 
  // Spawn the child process.
 
  status = fdio_spawn_etc(ZX_HANDLE_INVALID, FDIO_SPAWN_CLONE_ALL,
 
                          args.Argv()[0], args.Argv(), nullptr, 1,
 
                          &add_handle_action, &child_process_, nullptr);
 
  GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
 
 
 
  // Create an exception port and attach it to the |child_process_|, to allow
 
  // us to suppress the system default exception handler from firing.
 
  status = zx_port_create(0, &port_);
 
  GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
 
  status = zx_task_bind_exception_port(
 
      child_process_, port_, 0 /* key */, 0 /*options */);
 
  GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
 
 
 
  set_spawned(true);
 
  return OVERSEE_TEST;
 
}
 
 
 
#else  // We are neither on Windows, nor on Fuchsia.
 
 
 
// ForkingDeathTest provides implementations for most of the abstract
 
// methods of the DeathTest interface.  Only the AssumeRole method is
 
// left undefined.
 
class ForkingDeathTest : public DeathTestImpl {
 
 public:
 
  ForkingDeathTest(const char* statement, const RE* regex);
 
 
 
  // All of these virtual functions are inherited from DeathTest.
 
  virtual int Wait();
 
 
 
 protected:
 
  void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; }
 
 
 
 private:
 
  // PID of child process during death test; 0 in the child process itself.
 
  pid_t child_pid_;
 
};
 
 
 
// Constructs a ForkingDeathTest.
 
ForkingDeathTest::ForkingDeathTest(const char* a_statement, const RE* a_regex)
 
    : DeathTestImpl(a_statement, a_regex),
 
      child_pid_(-1) {}
 
 
 
// Waits for the child in a death test to exit, returning its exit
 
// status, or 0 if no child process exists.  As a side effect, sets the
 
// outcome data member.
 
int ForkingDeathTest::Wait() {
 
  if (!spawned())
 
    return 0;
 
 
 
  ReadAndInterpretStatusByte();
 
 
 
  int status_value;
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0));
 
  set_status(status_value);
 
  return status_value;
 
}
 
 
 
// A concrete death test class that forks, then immediately runs the test
 
// in the child process.
 
class NoExecDeathTest : public ForkingDeathTest {
 
 public:
 
  NoExecDeathTest(const char* a_statement, const RE* a_regex) :
 
      ForkingDeathTest(a_statement, a_regex) { }
 
  virtual TestRole AssumeRole();
 
};
 
 
 
// The AssumeRole process for a fork-and-run death test.  It implements a
 
// straightforward fork, with a simple pipe to transmit the status byte.
 
DeathTest::TestRole NoExecDeathTest::AssumeRole() {
 
  const size_t thread_count = GetThreadCount();
 
  if (thread_count != 1) {
 
    GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count);
 
  }
 
 
 
  int pipe_fd[2];
 
  GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
 
 
 
  DeathTest::set_last_death_test_message("");
 
  CaptureStderr();
 
  // When we fork the process below, the log file buffers are copied, but the
 
  // file descriptors are shared.  We flush all log files here so that closing
 
  // the file descriptors in the child process doesn't throw off the
 
  // synchronization between descriptors and buffers in the parent process.
 
  // This is as close to the fork as possible to avoid a race condition in case
 
  // there are multiple threads running before the death test, and another
 
  // thread writes to the log file.
 
  FlushInfoLog();
 
 
 
  const pid_t child_pid = fork();
 
  GTEST_DEATH_TEST_CHECK_(child_pid != -1);
 
  set_child_pid(child_pid);
 
  if (child_pid == 0) {
 
    GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0]));
 
    set_write_fd(pipe_fd[1]);
 
    // Redirects all logging to stderr in the child process to prevent
 
    // concurrent writes to the log files.  We capture stderr in the parent
 
    // process and append the child process' output to a log.
 
    LogToStderr();
 
    // Event forwarding to the listeners of event listener API mush be shut
 
    // down in death test subprocesses.
 
    GetUnitTestImpl()->listeners()->SuppressEventForwarding();
 
    g_in_fast_death_test_child = true;
 
    return EXECUTE_TEST;
 
  } else {
 
    GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
 
    set_read_fd(pipe_fd[0]);
 
    set_spawned(true);
 
    return OVERSEE_TEST;
 
  }
 
}
 
 
 
// A concrete death test class that forks and re-executes the main
 
// program from the beginning, with command-line flags set that cause
 
// only this specific death test to be run.
 
class ExecDeathTest : public ForkingDeathTest {
 
 public:
 
  ExecDeathTest(const char* a_statement, const RE* a_regex,
 
                const char* file, int line) :
 
      ForkingDeathTest(a_statement, a_regex), file_(file), line_(line) { }
 
  virtual TestRole AssumeRole();
 
 private:
 
  static ::std::vector<std::string> GetArgvsForDeathTestChildProcess() {
 
    ::std::vector<std::string> args = GetInjectableArgvs();
 
#  if defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_)
 
    ::std::vector<std::string> extra_args =
 
        GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_();
 
    args.insert(args.end(), extra_args.begin(), extra_args.end());
 
#  endif  // defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_)
 
    return args;
 
  }
 
  // The name of the file in which the death test is located.
 
  const char* const file_;
 
  // The line number on which the death test is located.
 
  const int line_;
 
};
 
 
 
// Utility class for accumulating command-line arguments.
 
class Arguments {
 
 public:
 
  Arguments() {
 
    args_.push_back(NULL);
 
  }
 
 
 
  ~Arguments() {
 
    for (std::vector<char*>::iterator i = args_.begin(); i != args_.end();
 
         ++i) {
 
      free(*i);
 
    }
 
  }
 
  void AddArgument(const char* argument) {
 
    args_.insert(args_.end() - 1, posix::StrDup(argument));
 
  }
 
 
 
  template <typename Str>
 
  void AddArguments(const ::std::vector<Str>& arguments) {
 
    for (typename ::std::vector<Str>::const_iterator i = arguments.begin();
 
         i != arguments.end();
 
         ++i) {
 
      args_.insert(args_.end() - 1, posix::StrDup(i->c_str()));
 
    }
 
  }
 
  char* const* Argv() {
 
    return &args_[0];
 
  }
 
 
 
 private:
 
  std::vector<char*> args_;
 
};
 
 
 
// A struct that encompasses the arguments to the child process of a
 
// threadsafe-style death test process.
 
struct ExecDeathTestArgs {
 
  char* const* argv;  // Command-line arguments for the child's call to exec
 
  int close_fd;       // File descriptor to close; the read end of a pipe
 
};
 
 
 
#  if GTEST_OS_MAC
 
inline char** GetEnviron() {
 
  // When Google Test is built as a framework on MacOS X, the environ variable
 
  // is unavailable. Apple's documentation (man environ) recommends using
 
  // _NSGetEnviron() instead.
 
  return *_NSGetEnviron();
 
}
 
#  else
 
// Some POSIX platforms expect you to declare environ. extern "C" makes
 
// it reside in the global namespace.
 
extern "C" char** environ;
 
inline char** GetEnviron() { return environ; }
 
#  endif  // GTEST_OS_MAC
 
 
 
#  if !GTEST_OS_QNX
 
// The main function for a threadsafe-style death test child process.
 
// This function is called in a clone()-ed process and thus must avoid
 
// any potentially unsafe operations like malloc or libc functions.
 
static int ExecDeathTestChildMain(void* child_arg) {
 
  ExecDeathTestArgs* const args = static_cast<ExecDeathTestArgs*>(child_arg);
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd));
 
 
 
  // We need to execute the test program in the same environment where
 
  // it was originally invoked.  Therefore we change to the original
 
  // working directory first.
 
  const char* const original_dir =
 
      UnitTest::GetInstance()->original_working_dir();
 
  // We can safely call chdir() as it's a direct system call.
 
  if (chdir(original_dir) != 0) {
 
    DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " +
 
                   GetLastErrnoDescription());
 
    return EXIT_FAILURE;
 
  }
 
 
 
  // We can safely call execve() as it's a direct system call.  We
 
  // cannot use execvp() as it's a libc function and thus potentially
 
  // unsafe.  Since execve() doesn't search the PATH, the user must
 
  // invoke the test program via a valid path that contains at least
 
  // one path separator.
 
  execve(args->argv[0], args->argv, GetEnviron());
 
  DeathTestAbort(std::string("execve(") + args->argv[0] + ", ...) in " +
 
                 original_dir + " failed: " +
 
                 GetLastErrnoDescription());
 
  return EXIT_FAILURE;
 
}
 
#  endif  // !GTEST_OS_QNX
 
 
 
#  if GTEST_HAS_CLONE
 
// Two utility routines that together determine the direction the stack
 
// grows.
 
// This could be accomplished more elegantly by a single recursive
 
// function, but we want to guard against the unlikely possibility of
 
// a smart compiler optimizing the recursion away.
 
//
 
// GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining
 
// StackLowerThanAddress into StackGrowsDown, which then doesn't give
 
// correct answer.
 
static void StackLowerThanAddress(const void* ptr,
 
                                  bool* result) GTEST_NO_INLINE_;
 
static void StackLowerThanAddress(const void* ptr, bool* result) {
 
  int dummy;
 
  *result = (&dummy < ptr);
 
}
 
 
 
// Make sure AddressSanitizer does not tamper with the stack here.
 
GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
 
static bool StackGrowsDown() {
 
  int dummy;
 
  bool result;
 
  StackLowerThanAddress(&dummy, &result);
 
  return result;
 
}
 
#  endif  // GTEST_HAS_CLONE
 
 
 
// Spawns a child process with the same executable as the current process in
 
// a thread-safe manner and instructs it to run the death test.  The
 
// implementation uses fork(2) + exec.  On systems where clone(2) is
 
// available, it is used instead, being slightly more thread-safe.  On QNX,
 
// fork supports only single-threaded environments, so this function uses
 
// spawn(2) there instead.  The function dies with an error message if
 
// anything goes wrong.
 
static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) {
 
  ExecDeathTestArgs args = { argv, close_fd };
 
  pid_t child_pid = -1;
 
 
 
#  if GTEST_OS_QNX
 
  // Obtains the current directory and sets it to be closed in the child
 
  // process.
 
  const int cwd_fd = open(".", O_RDONLY);
 
  GTEST_DEATH_TEST_CHECK_(cwd_fd != -1);
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC));
 
  // We need to execute the test program in the same environment where
 
  // it was originally invoked.  Therefore we change to the original
 
  // working directory first.
 
  const char* const original_dir =
 
      UnitTest::GetInstance()->original_working_dir();
 
  // We can safely call chdir() as it's a direct system call.
 
  if (chdir(original_dir) != 0) {
 
    DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " +
 
                   GetLastErrnoDescription());
 
    return EXIT_FAILURE;
 
  }
 
 
 
  int fd_flags;
 
  // Set close_fd to be closed after spawn.
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD));
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(close_fd, F_SETFD,
 
                                        fd_flags | FD_CLOEXEC));
 
  struct inheritance inherit = {0};
 
  // spawn is a system call.
 
  child_pid = spawn(args.argv[0], 0, NULL, &inherit, args.argv, GetEnviron());
 
  // Restores the current working directory.
 
  GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1);
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd));
 
 
 
#  else   // GTEST_OS_QNX
 
#   if GTEST_OS_LINUX
 
  // When a SIGPROF signal is received while fork() or clone() are executing,
 
  // the process may hang. To avoid this, we ignore SIGPROF here and re-enable
 
  // it after the call to fork()/clone() is complete.
 
  struct sigaction saved_sigprof_action;
 
  struct sigaction ignore_sigprof_action;
 
  memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action));
 
  sigemptyset(&ignore_sigprof_action.sa_mask);
 
  ignore_sigprof_action.sa_handler = SIG_IGN;
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(sigaction(
 
      SIGPROF, &ignore_sigprof_action, &saved_sigprof_action));
 
#   endif  // GTEST_OS_LINUX
 
 
 
#   if GTEST_HAS_CLONE
 
  const bool use_fork = GTEST_FLAG(death_test_use_fork);
 
 
 
  if (!use_fork) {
 
    static const bool stack_grows_down = StackGrowsDown();
 
    const size_t stack_size = getpagesize();
 
    // MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead.
 
    void* const stack = mmap(NULL, stack_size, PROT_READ | PROT_WRITE,
 
                             MAP_ANON | MAP_PRIVATE, -1, 0);
 
    GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED);
 
 
 
    // Maximum stack alignment in bytes:  For a downward-growing stack, this
 
    // amount is subtracted from size of the stack space to get an address
 
    // that is within the stack space and is aligned on all systems we care
 
    // about.  As far as I know there is no ABI with stack alignment greater
 
    // than 64.  We assume stack and stack_size already have alignment of
 
    // kMaxStackAlignment.
 
    const size_t kMaxStackAlignment = 64;
 
    void* const stack_top =
 
        static_cast<char*>(stack) +
 
            (stack_grows_down ? stack_size - kMaxStackAlignment : 0);
 
    GTEST_DEATH_TEST_CHECK_(stack_size > kMaxStackAlignment &&
 
        reinterpret_cast<intptr_t>(stack_top) % kMaxStackAlignment == 0);
 
 
 
    child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args);
 
 
 
    GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1);
 
  }
 
#   else
 
  const bool use_fork = true;
 
#   endif  // GTEST_HAS_CLONE
 
 
 
  if (use_fork && (child_pid = fork()) == 0) {
 
      ExecDeathTestChildMain(&args);
 
      _exit(0);
 
  }
 
#  endif  // GTEST_OS_QNX
 
#  if GTEST_OS_LINUX
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(
 
      sigaction(SIGPROF, &saved_sigprof_action, NULL));
 
#  endif  // GTEST_OS_LINUX
 
 
 
  GTEST_DEATH_TEST_CHECK_(child_pid != -1);
 
  return child_pid;
 
}
 
 
 
// The AssumeRole process for a fork-and-exec death test.  It re-executes the
 
// main program from the beginning, setting the --gtest_filter
 
// and --gtest_internal_run_death_test flags to cause only the current
 
// death test to be re-run.
 
DeathTest::TestRole ExecDeathTest::AssumeRole() {
 
  const UnitTestImpl* const impl = GetUnitTestImpl();
 
  const InternalRunDeathTestFlag* const flag =
 
      impl->internal_run_death_test_flag();
 
  const TestInfo* const info = impl->current_test_info();
 
  const int death_test_index = info->result()->death_test_count();
 
 
 
  if (flag != NULL) {
 
    set_write_fd(flag->write_fd());
 
    return EXECUTE_TEST;
 
  }
 
 
 
  int pipe_fd[2];
 
  GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
 
  // Clear the close-on-exec flag on the write end of the pipe, lest
 
  // it be closed when the child process does an exec:
 
  GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1);
 
 
 
  const std::string filter_flag =
 
      std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "="
 
      + info->test_case_name() + "." + info->name();
 
  const std::string internal_flag =
 
      std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "="
 
      + file_ + "|" + StreamableToString(line_) + "|"
 
      + StreamableToString(death_test_index) + "|"
 
      + StreamableToString(pipe_fd[1]);
 
  Arguments args;
 
  args.AddArguments(GetArgvsForDeathTestChildProcess());
 
  args.AddArgument(filter_flag.c_str());
 
  args.AddArgument(internal_flag.c_str());
 
 
 
  DeathTest::set_last_death_test_message("");
 
 
 
  CaptureStderr();
 
  // See the comment in NoExecDeathTest::AssumeRole for why the next line
 
  // is necessary.
 
  FlushInfoLog();
 
 
 
  const pid_t child_pid = ExecDeathTestSpawnChild(args.Argv(), pipe_fd[0]);
 
  GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
 
  set_child_pid(child_pid);
 
  set_read_fd(pipe_fd[0]);
 
  set_spawned(true);
 
  return OVERSEE_TEST;
 
}
 
 
 
# endif  // !GTEST_OS_WINDOWS
 
 
 
// Creates a concrete DeathTest-derived class that depends on the
 
// --gtest_death_test_style flag, and sets the pointer pointed to
 
// by the "test" argument to its address.  If the test should be
 
// skipped, sets that pointer to NULL.  Returns true, unless the
 
// flag is set to an invalid value.
 
bool DefaultDeathTestFactory::Create(const char* statement, const RE* regex,
 
                                     const char* file, int line,
 
                                     DeathTest** test) {
 
  UnitTestImpl* const impl = GetUnitTestImpl();
 
  const InternalRunDeathTestFlag* const flag =
 
      impl->internal_run_death_test_flag();
 
  const int death_test_index = impl->current_test_info()
 
      ->increment_death_test_count();
 
 
 
  if (flag != NULL) {
 
    if (death_test_index > flag->index()) {
 
      DeathTest::set_last_death_test_message(
 
          "Death test count (" + StreamableToString(death_test_index)
 
          + ") somehow exceeded expected maximum ("
 
          + StreamableToString(flag->index()) + ")");
 
      return false;
 
    }
 
 
 
    if (!(flag->file() == file && flag->line() == line &&
 
          flag->index() == death_test_index)) {
 
      *test = NULL;
 
      return true;
 
    }
 
  }
 
 
 
# if GTEST_OS_WINDOWS
 
 
 
  if (GTEST_FLAG(death_test_style) == "threadsafe" ||
 
      GTEST_FLAG(death_test_style) == "fast") {
 
    *test = new WindowsDeathTest(statement, regex, file, line);
 
  }
 
 
 
# elif GTEST_OS_FUCHSIA
 
 
 
  if (GTEST_FLAG(death_test_style) == "threadsafe" ||
 
      GTEST_FLAG(death_test_style) == "fast") {
 
    *test = new FuchsiaDeathTest(statement, regex, file, line);
 
  }
 
 
 
# else
 
 
 
  if (GTEST_FLAG(death_test_style) == "threadsafe") {
 
    *test = new ExecDeathTest(statement, regex, file, line);
 
  } else if (GTEST_FLAG(death_test_style) == "fast") {
 
    *test = new NoExecDeathTest(statement, regex);
 
  }
 
 
 
# endif  // GTEST_OS_WINDOWS
 
 
 
  else {  // NOLINT - this is more readable than unbalanced brackets inside #if.
 
    DeathTest::set_last_death_test_message(
 
        "Unknown death test style \"" + GTEST_FLAG(death_test_style)
 
        + "\" encountered");
 
    return false;
 
  }
 
 
 
  return true;
 
}
 
 
 
# if GTEST_OS_WINDOWS
 
// Recreates the pipe and event handles from the provided parameters,
 
// signals the event, and returns a file descriptor wrapped around the pipe
 
// handle. This function is called in the child process only.
 
static int GetStatusFileDescriptor(unsigned int parent_process_id,
 
                            size_t write_handle_as_size_t,
 
                            size_t event_handle_as_size_t) {
 
  AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE,
 
                                                   FALSE,  // Non-inheritable.
 
                                                   parent_process_id));
 
  if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) {
 
    DeathTestAbort("Unable to open parent process " +
 
                   StreamableToString(parent_process_id));
 
  }
 
 
 
  // FIXME: Replace the following check with a
 
  // compile-time assertion when available.
 
  GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t));
 
 
 
  const HANDLE write_handle =
 
      reinterpret_cast<HANDLE>(write_handle_as_size_t);
 
  HANDLE dup_write_handle;
 
 
 
  // The newly initialized handle is accessible only in the parent
 
  // process. To obtain one accessible within the child, we need to use
 
  // DuplicateHandle.
 
  if (!::DuplicateHandle(parent_process_handle.Get(), write_handle,
 
                         ::GetCurrentProcess(), &dup_write_handle,
 
                         0x0,    // Requested privileges ignored since
 
                                 // DUPLICATE_SAME_ACCESS is used.
 
                         FALSE,  // Request non-inheritable handler.
 
                         DUPLICATE_SAME_ACCESS)) {
 
    DeathTestAbort("Unable to duplicate the pipe handle " +
 
                   StreamableToString(write_handle_as_size_t) +
 
                   " from the parent process " +
 
                   StreamableToString(parent_process_id));
 
  }
 
 
 
  const HANDLE event_handle = reinterpret_cast<HANDLE>(event_handle_as_size_t);
 
  HANDLE dup_event_handle;
 
 
 
  if (!::DuplicateHandle(parent_process_handle.Get(), event_handle,
 
                         ::GetCurrentProcess(), &dup_event_handle,
 
                         0x0,
 
                         FALSE,
 
                         DUPLICATE_SAME_ACCESS)) {
 
    DeathTestAbort("Unable to duplicate the event handle " +
 
                   StreamableToString(event_handle_as_size_t) +
 
                   " from the parent process " +
 
                   StreamableToString(parent_process_id));
 
  }
 
 
 
  const int write_fd =
 
      ::_open_osfhandle(reinterpret_cast<intptr_t>(dup_write_handle), O_APPEND);
 
  if (write_fd == -1) {
 
    DeathTestAbort("Unable to convert pipe handle " +
 
                   StreamableToString(write_handle_as_size_t) +
 
                   " to a file descriptor");
 
  }
 
 
 
  // Signals the parent that the write end of the pipe has been acquired
 
  // so the parent can release its own write end.
 
  ::SetEvent(dup_event_handle);
 
 
 
  return write_fd;
 
}
 
# endif  // GTEST_OS_WINDOWS
 
 
 
// Returns a newly created InternalRunDeathTestFlag object with fields
 
// initialized from the GTEST_FLAG(internal_run_death_test) flag if
 
// the flag is specified; otherwise returns NULL.
 
InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() {
 
  if (GTEST_FLAG(internal_run_death_test) == "") return NULL;
 
 
 
  // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we
 
  // can use it here.
 
  int line = -1;
 
  int index = -1;
 
  ::std::vector< ::std::string> fields;
 
  SplitString(GTEST_FLAG(internal_run_death_test).c_str(), '|', &fields);
 
  int write_fd = -1;
 
 
 
# if GTEST_OS_WINDOWS
 
 
 
  unsigned int parent_process_id = 0;
 
  size_t write_handle_as_size_t = 0;
 
  size_t event_handle_as_size_t = 0;
 
 
 
  if (fields.size() != 6
 
      || !ParseNaturalNumber(fields[1], &line)
 
      || !ParseNaturalNumber(fields[2], &index)
 
      || !ParseNaturalNumber(fields[3], &parent_process_id)
 
      || !ParseNaturalNumber(fields[4], &write_handle_as_size_t)
 
      || !ParseNaturalNumber(fields[5], &event_handle_as_size_t)) {
 
    DeathTestAbort("Bad --gtest_internal_run_death_test flag: " +
 
                   GTEST_FLAG(internal_run_death_test));
 
  }
 
  write_fd = GetStatusFileDescriptor(parent_process_id,
 
                                     write_handle_as_size_t,
 
                                     event_handle_as_size_t);
 
 
 
# elif GTEST_OS_FUCHSIA
 
 
 
  if (fields.size() != 3
 
      || !ParseNaturalNumber(fields[1], &line)
 
      || !ParseNaturalNumber(fields[2], &index)) {
 
    DeathTestAbort("Bad --gtest_internal_run_death_test flag: "
 
        + GTEST_FLAG(internal_run_death_test));
 
  }
 
 
 
# else
 
 
 
  if (fields.size() != 4
 
      || !ParseNaturalNumber(fields[1], &line)
 
      || !ParseNaturalNumber(fields[2], &index)
 
      || !ParseNaturalNumber(fields[3], &write_fd)) {
 
    DeathTestAbort("Bad --gtest_internal_run_death_test flag: "
 
        + GTEST_FLAG(internal_run_death_test));
 
  }
 
 
 
# endif  // GTEST_OS_WINDOWS
 
 
 
  return new InternalRunDeathTestFlag(fields[0], line, index, write_fd);
 
}
 
 
 
}  // namespace internal
 
 
 
#endif  // GTEST_HAS_DEATH_TEST
 
 
 
}  // namespace testing