// Copyright 2008, Google Inc.
 
// All rights reserved.
 
//
 
// Redistribution and use in source and binary forms, with or without
 
// modification, are permitted provided that the following conditions are
 
// met:
 
//
 
//     * Redistributions of source code must retain the above copyright
 
// notice, this list of conditions and the following disclaimer.
 
//     * Redistributions in binary form must reproduce the above
 
// copyright notice, this list of conditions and the following disclaimer
 
// in the documentation and/or other materials provided with the
 
// distribution.
 
//     * Neither the name of Google Inc. nor the names of its
 
// contributors may be used to endorse or promote products derived from
 
// this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 
 
 
 
#include "gtest/internal/gtest-port.h"
 
 
 
#include <limits.h>
 
#include <stdlib.h>
 
#include <stdio.h>
 
#include <string.h>
 
#include <fstream>
 
 
 
#if GTEST_OS_WINDOWS
 
# include <windows.h>
 
# include <io.h>
 
# include <sys/stat.h>
 
# include <map>  // Used in ThreadLocal.
 
#else
 
# include <unistd.h>
 
#endif  // GTEST_OS_WINDOWS
 
 
 
#if GTEST_OS_MAC
 
# include <mach/mach_init.h>
 
# include <mach/task.h>
 
# include <mach/vm_map.h>
 
#endif  // GTEST_OS_MAC
 
 
 
#if GTEST_OS_QNX
 
# include <devctl.h>
 
# include <fcntl.h>
 
# include <sys/procfs.h>
 
#endif  // GTEST_OS_QNX
 
 
 
#if GTEST_OS_AIX
 
# include <procinfo.h>
 
# include <sys/types.h>
 
#endif  // GTEST_OS_AIX
 
 
 
#if GTEST_OS_FUCHSIA
 
# include <zircon/process.h>
 
# include <zircon/syscalls.h>
 
#endif  // GTEST_OS_FUCHSIA
 
 
 
#include "gtest/gtest-spi.h"
 
#include "gtest/gtest-message.h"
 
#include "gtest/internal/gtest-internal.h"
 
#include "gtest/internal/gtest-string.h"
 
#include "src/gtest-internal-inl.h"
 
 
 
namespace testing {
 
namespace internal {
 
 
 
#if defined(_MSC_VER) || defined(__BORLANDC__)
 
// MSVC and C++Builder do not provide a definition of STDERR_FILENO.
 
const int kStdOutFileno = 1;
 
const int kStdErrFileno = 2;
 
#else
 
const int kStdOutFileno = STDOUT_FILENO;
 
const int kStdErrFileno = STDERR_FILENO;
 
#endif  // _MSC_VER
 
 
 
#if GTEST_OS_LINUX
 
 
 
namespace {
 
template <typename T>
 
T ReadProcFileField(const std::string& filename, int field) {
 
  std::string dummy;
 
  std::ifstream file(filename.c_str());
 
  while (field-- > 0) {
 
    file >> dummy;
 
  }
 
  T output = 0;
 
  file >> output;
 
  return output;
 
}
 
}  // namespace
 
 
 
// Returns the number of active threads, or 0 when there is an error.
 
size_t GetThreadCount() {
 
  const std::string filename =
 
      (Message() << "/proc/" << getpid() << "/stat").GetString();
 
  return ReadProcFileField<int>(filename, 19);
 
}
 
 
 
#elif GTEST_OS_MAC
 
 
 
size_t GetThreadCount() {
 
  const task_t task = mach_task_self();
 
  mach_msg_type_number_t thread_count;
 
  thread_act_array_t thread_list;
 
  const kern_return_t status = task_threads(task, &thread_list, &thread_count);
 
  if (status == KERN_SUCCESS) {
 
    // task_threads allocates resources in thread_list and we need to free them
 
    // to avoid leaks.
 
    vm_deallocate(task,
 
                  reinterpret_cast<vm_address_t>(thread_list),
 
                  sizeof(thread_t) * thread_count);
 
    return static_cast<size_t>(thread_count);
 
  } else {
 
    return 0;
 
  }
 
}
 
 
 
#elif GTEST_OS_QNX
 
 
 
// Returns the number of threads running in the process, or 0 to indicate that
 
// we cannot detect it.
 
size_t GetThreadCount() {
 
  const int fd = open("/proc/self/as", O_RDONLY);
 
  if (fd < 0) {
 
    return 0;
 
  }
 
  procfs_info process_info;
 
  const int status =
 
      devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL);
 
  close(fd);
 
  if (status == EOK) {
 
    return static_cast<size_t>(process_info.num_threads);
 
  } else {
 
    return 0;
 
  }
 
}
 
 
 
#elif GTEST_OS_AIX
 
 
 
size_t GetThreadCount() {
 
  struct procentry64 entry;
 
  pid_t pid = getpid();
 
  int status = getprocs64(&entry, sizeof(entry), NULL, 0, &pid, 1);
 
  if (status == 1) {
 
    return entry.pi_thcount;
 
  } else {
 
    return 0;
 
  }
 
}
 
 
 
#elif GTEST_OS_FUCHSIA
 
 
 
size_t GetThreadCount() {
 
  int dummy_buffer;
 
  size_t avail;
 
  zx_status_t status = zx_object_get_info(
 
      zx_process_self(),
 
      ZX_INFO_PROCESS_THREADS,
 
      &dummy_buffer,
 
      0,
 
      nullptr,
 
      &avail);
 
  if (status == ZX_OK) {
 
    return avail;
 
  } else {
 
    return 0;
 
  }
 
}
 
 
 
#else
 
 
 
size_t GetThreadCount() {
 
  // There's no portable way to detect the number of threads, so we just
 
  // return 0 to indicate that we cannot detect it.
 
  return 0;
 
}
 
 
 
#endif  // GTEST_OS_LINUX
 
 
 
#if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
 
 
 
void SleepMilliseconds(int n) {
 
  ::Sleep(n);
 
}
 
 
 
AutoHandle::AutoHandle()
 
    : handle_(INVALID_HANDLE_VALUE) {}
 
 
 
AutoHandle::AutoHandle(Handle handle)
 
    : handle_(handle) {}
 
 
 
AutoHandle::~AutoHandle() {
 
  Reset();
 
}
 
 
 
AutoHandle::Handle AutoHandle::Get() const {
 
  return handle_;
 
}
 
 
 
void AutoHandle::Reset() {
 
  Reset(INVALID_HANDLE_VALUE);
 
}
 
 
 
void AutoHandle::Reset(HANDLE handle) {
 
  // Resetting with the same handle we already own is invalid.
 
  if (handle_ != handle) {
 
    if (IsCloseable()) {
 
      ::CloseHandle(handle_);
 
    }
 
    handle_ = handle;
 
  } else {
 
    GTEST_CHECK_(!IsCloseable())
 
        << "Resetting a valid handle to itself is likely a programmer error "
 
            "and thus not allowed.";
 
  }
 
}
 
 
 
bool AutoHandle::IsCloseable() const {
 
  // Different Windows APIs may use either of these values to represent an
 
  // invalid handle.
 
  return handle_ != NULL && handle_ != INVALID_HANDLE_VALUE;
 
}
 
 
 
Notification::Notification()
 
    : event_(::CreateEvent(NULL,   // Default security attributes.
 
                           TRUE,   // Do not reset automatically.
 
                           FALSE,  // Initially unset.
 
                           NULL)) {  // Anonymous event.
 
  GTEST_CHECK_(event_.Get() != NULL);
 
}
 
 
 
void Notification::Notify() {
 
  GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
 
}
 
 
 
void Notification::WaitForNotification() {
 
  GTEST_CHECK_(
 
      ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
 
}
 
 
 
Mutex::Mutex()
 
    : owner_thread_id_(0),
 
      type_(kDynamic),
 
      critical_section_init_phase_(0),
 
      critical_section_(new CRITICAL_SECTION) {
 
  ::InitializeCriticalSection(critical_section_);
 
}
 
 
 
Mutex::~Mutex() {
 
  // Static mutexes are leaked intentionally. It is not thread-safe to try
 
  // to clean them up.
 
  // FIXME: Switch to Slim Reader/Writer (SRW) Locks, which requires
 
  // nothing to clean it up but is available only on Vista and later.
 
  // https://docs.microsoft.com/en-us/windows/desktop/Sync/slim-reader-writer--srw--locks
 
  if (type_ == kDynamic) {
 
    ::DeleteCriticalSection(critical_section_);
 
    delete critical_section_;
 
    critical_section_ = NULL;
 
  }
 
}
 
 
 
void Mutex::Lock() {
 
  ThreadSafeLazyInit();
 
  ::EnterCriticalSection(critical_section_);
 
  owner_thread_id_ = ::GetCurrentThreadId();
 
}
 
 
 
void Mutex::Unlock() {
 
  ThreadSafeLazyInit();
 
  // We don't protect writing to owner_thread_id_ here, as it's the
 
  // caller's responsibility to ensure that the current thread holds the
 
  // mutex when this is called.
 
  owner_thread_id_ = 0;
 
  ::LeaveCriticalSection(critical_section_);
 
}
 
 
 
// Does nothing if the current thread holds the mutex. Otherwise, crashes
 
// with high probability.
 
void Mutex::AssertHeld() {
 
  ThreadSafeLazyInit();
 
  GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
 
      << "The current thread is not holding the mutex @" << this;
 
}
 
 
 
namespace {
 
 
 
// Use the RAII idiom to flag mem allocs that are intentionally never
 
// deallocated. The motivation is to silence the false positive mem leaks
 
// that are reported by the debug version of MS's CRT which can only detect
 
// if an alloc is missing a matching deallocation.
 
// Example:
 
//    MemoryIsNotDeallocated memory_is_not_deallocated;
 
//    critical_section_ = new CRITICAL_SECTION;
 
//
 
class MemoryIsNotDeallocated
 
{
 
 public:
 
  MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
 
#ifdef _MSC_VER
 
    old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
 
    // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
 
    // doesn't report mem leak if there's no matching deallocation.
 
    _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
 
#endif  //  _MSC_VER
 
  }
 
 
 
  ~MemoryIsNotDeallocated() {
 
#ifdef _MSC_VER
 
    // Restore the original _CRTDBG_ALLOC_MEM_DF flag
 
    _CrtSetDbgFlag(old_crtdbg_flag_);
 
#endif  //  _MSC_VER
 
  }
 
 
 
 private:
 
  int old_crtdbg_flag_;
 
 
 
  GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated);
 
};
 
 
 
}  // namespace
 
 
 
// Initializes owner_thread_id_ and critical_section_ in static mutexes.
 
void Mutex::ThreadSafeLazyInit() {
 
  // Dynamic mutexes are initialized in the constructor.
 
  if (type_ == kStatic) {
 
    switch (
 
        ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
 
      case 0:
 
        // If critical_section_init_phase_ was 0 before the exchange, we
 
        // are the first to test it and need to perform the initialization.
 
        owner_thread_id_ = 0;
 
        {
 
          // Use RAII to flag that following mem alloc is never deallocated.
 
          MemoryIsNotDeallocated memory_is_not_deallocated;
 
          critical_section_ = new CRITICAL_SECTION;
 
        }
 
        ::InitializeCriticalSection(critical_section_);
 
        // Updates the critical_section_init_phase_ to 2 to signal
 
        // initialization complete.
 
        GTEST_CHECK_(::InterlockedCompareExchange(
 
                          &critical_section_init_phase_, 2L, 1L) ==
 
                      1L);
 
        break;
 
      case 1:
 
        // Somebody else is already initializing the mutex; spin until they
 
        // are done.
 
        while (::InterlockedCompareExchange(&critical_section_init_phase_,
 
                                            2L,
 
                                            2L) != 2L) {
 
          // Possibly yields the rest of the thread's time slice to other
 
          // threads.
 
          ::Sleep(0);
 
        }
 
        break;
 
 
 
      case 2:
 
        break;  // The mutex is already initialized and ready for use.
 
 
 
      default:
 
        GTEST_CHECK_(false)
 
            << "Unexpected value of critical_section_init_phase_ "
 
            << "while initializing a static mutex.";
 
    }
 
  }
 
}
 
 
 
namespace {
 
 
 
class ThreadWithParamSupport : public ThreadWithParamBase {
 
 public:
 
  static HANDLE CreateThread(Runnable* runnable,
 
                             Notification* thread_can_start) {
 
    ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
 
    DWORD thread_id;
 
    // FIXME: Consider to use _beginthreadex instead.
 
    HANDLE thread_handle = ::CreateThread(
 
        NULL,    // Default security.
 
        0,       // Default stack size.
 
        &ThreadWithParamSupport::ThreadMain,
 
        param,   // Parameter to ThreadMainStatic
 
        0x0,     // Default creation flags.
 
        &thread_id);  // Need a valid pointer for the call to work under Win98.
 
    GTEST_CHECK_(thread_handle != NULL) << "CreateThread failed with error "
 
                                        << ::GetLastError() << ".";
 
    if (thread_handle == NULL) {
 
      delete param;
 
    }
 
    return thread_handle;
 
  }
 
 
 
 private:
 
  struct ThreadMainParam {
 
    ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
 
        : runnable_(runnable),
 
          thread_can_start_(thread_can_start) {
 
    }
 
    scoped_ptr<Runnable> runnable_;
 
    // Does not own.
 
    Notification* thread_can_start_;
 
  };
 
 
 
  static DWORD WINAPI ThreadMain(void* ptr) {
 
    // Transfers ownership.
 
    scoped_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
 
    if (param->thread_can_start_ != NULL)
 
      param->thread_can_start_->WaitForNotification();
 
    param->runnable_->Run();
 
    return 0;
 
  }
 
 
 
  // Prohibit instantiation.
 
  ThreadWithParamSupport();
 
 
 
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
 
};
 
 
 
}  // namespace
 
 
 
ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
 
                                         Notification* thread_can_start)
 
      : thread_(ThreadWithParamSupport::CreateThread(runnable,
 
                                                     thread_can_start)) {
 
}
 
 
 
ThreadWithParamBase::~ThreadWithParamBase() {
 
  Join();
 
}
 
 
 
void ThreadWithParamBase::Join() {
 
  GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
 
      << "Failed to join the thread with error " << ::GetLastError() << ".";
 
}
 
 
 
// Maps a thread to a set of ThreadIdToThreadLocals that have values
 
// instantiated on that thread and notifies them when the thread exits.  A
 
// ThreadLocal instance is expected to persist until all threads it has
 
// values on have terminated.
 
class ThreadLocalRegistryImpl {
 
 public:
 
  // Registers thread_local_instance as having value on the current thread.
 
  // Returns a value that can be used to identify the thread from other threads.
 
  static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
 
      const ThreadLocalBase* thread_local_instance) {
 
    DWORD current_thread = ::GetCurrentThreadId();
 
    MutexLock lock(&mutex_);
 
    ThreadIdToThreadLocals* const thread_to_thread_locals =
 
        GetThreadLocalsMapLocked();
 
    ThreadIdToThreadLocals::iterator thread_local_pos =
 
        thread_to_thread_locals->find(current_thread);
 
    if (thread_local_pos == thread_to_thread_locals->end()) {
 
      thread_local_pos = thread_to_thread_locals->insert(
 
          std::make_pair(current_thread, ThreadLocalValues())).first;
 
      StartWatcherThreadFor(current_thread);
 
    }
 
    ThreadLocalValues& thread_local_values = thread_local_pos->second;
 
    ThreadLocalValues::iterator value_pos =
 
        thread_local_values.find(thread_local_instance);
 
    if (value_pos == thread_local_values.end()) {
 
      value_pos =
 
          thread_local_values
 
              .insert(std::make_pair(
 
                  thread_local_instance,
 
                  linked_ptr<ThreadLocalValueHolderBase>(
 
                      thread_local_instance->NewValueForCurrentThread())))
 
              .first;
 
    }
 
    return value_pos->second.get();
 
  }
 
 
 
  static void OnThreadLocalDestroyed(
 
      const ThreadLocalBase* thread_local_instance) {
 
    std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
 
    // Clean up the ThreadLocalValues data structure while holding the lock, but
 
    // defer the destruction of the ThreadLocalValueHolderBases.
 
    {
 
      MutexLock lock(&mutex_);
 
      ThreadIdToThreadLocals* const thread_to_thread_locals =
 
          GetThreadLocalsMapLocked();
 
      for (ThreadIdToThreadLocals::iterator it =
 
          thread_to_thread_locals->begin();
 
          it != thread_to_thread_locals->end();
 
          ++it) {
 
        ThreadLocalValues& thread_local_values = it->second;
 
        ThreadLocalValues::iterator value_pos =
 
            thread_local_values.find(thread_local_instance);
 
        if (value_pos != thread_local_values.end()) {
 
          value_holders.push_back(value_pos->second);
 
          thread_local_values.erase(value_pos);
 
          // This 'if' can only be successful at most once, so theoretically we
 
          // could break out of the loop here, but we don't bother doing so.
 
        }
 
      }
 
    }
 
    // Outside the lock, let the destructor for 'value_holders' deallocate the
 
    // ThreadLocalValueHolderBases.
 
  }
 
 
 
  static void OnThreadExit(DWORD thread_id) {
 
    GTEST_CHECK_(thread_id != 0) << ::GetLastError();
 
    std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
 
    // Clean up the ThreadIdToThreadLocals data structure while holding the
 
    // lock, but defer the destruction of the ThreadLocalValueHolderBases.
 
    {
 
      MutexLock lock(&mutex_);
 
      ThreadIdToThreadLocals* const thread_to_thread_locals =
 
          GetThreadLocalsMapLocked();
 
      ThreadIdToThreadLocals::iterator thread_local_pos =
 
          thread_to_thread_locals->find(thread_id);
 
      if (thread_local_pos != thread_to_thread_locals->end()) {
 
        ThreadLocalValues& thread_local_values = thread_local_pos->second;
 
        for (ThreadLocalValues::iterator value_pos =
 
            thread_local_values.begin();
 
            value_pos != thread_local_values.end();
 
            ++value_pos) {
 
          value_holders.push_back(value_pos->second);
 
        }
 
        thread_to_thread_locals->erase(thread_local_pos);
 
      }
 
    }
 
    // Outside the lock, let the destructor for 'value_holders' deallocate the
 
    // ThreadLocalValueHolderBases.
 
  }
 
 
 
 private:
 
  // In a particular thread, maps a ThreadLocal object to its value.
 
  typedef std::map<const ThreadLocalBase*,
 
                   linked_ptr<ThreadLocalValueHolderBase> > ThreadLocalValues;
 
  // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
 
  // thread's ID.
 
  typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
 
 
 
  // Holds the thread id and thread handle that we pass from
 
  // StartWatcherThreadFor to WatcherThreadFunc.
 
  typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
 
 
 
  static void StartWatcherThreadFor(DWORD thread_id) {
 
    // The returned handle will be kept in thread_map and closed by
 
    // watcher_thread in WatcherThreadFunc.
 
    HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
 
                                 FALSE,
 
                                 thread_id);
 
    GTEST_CHECK_(thread != NULL);
 
    // We need to pass a valid thread ID pointer into CreateThread for it
 
    // to work correctly under Win98.
 
    DWORD watcher_thread_id;
 
    HANDLE watcher_thread = ::CreateThread(
 
        NULL,   // Default security.
 
        0,      // Default stack size
 
        &ThreadLocalRegistryImpl::WatcherThreadFunc,
 
        reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
 
        CREATE_SUSPENDED,
 
        &watcher_thread_id);
 
    GTEST_CHECK_(watcher_thread != NULL);
 
    // Give the watcher thread the same priority as ours to avoid being
 
    // blocked by it.
 
    ::SetThreadPriority(watcher_thread,
 
                        ::GetThreadPriority(::GetCurrentThread()));
 
    ::ResumeThread(watcher_thread);
 
    ::CloseHandle(watcher_thread);
 
  }
 
 
 
  // Monitors exit from a given thread and notifies those
 
  // ThreadIdToThreadLocals about thread termination.
 
  static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
 
    const ThreadIdAndHandle* tah =
 
        reinterpret_cast<const ThreadIdAndHandle*>(param);
 
    GTEST_CHECK_(
 
        ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
 
    OnThreadExit(tah->first);
 
    ::CloseHandle(tah->second);
 
    delete tah;
 
    return 0;
 
  }
 
 
 
  // Returns map of thread local instances.
 
  static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
 
    mutex_.AssertHeld();
 
    MemoryIsNotDeallocated memory_is_not_deallocated;
 
    static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
 
    return map;
 
  }
 
 
 
  // Protects access to GetThreadLocalsMapLocked() and its return value.
 
  static Mutex mutex_;
 
  // Protects access to GetThreadMapLocked() and its return value.
 
  static Mutex thread_map_mutex_;
 
};
 
 
 
Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
 
Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
 
 
 
ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
 
      const ThreadLocalBase* thread_local_instance) {
 
  return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
 
      thread_local_instance);
 
}
 
 
 
void ThreadLocalRegistry::OnThreadLocalDestroyed(
 
      const ThreadLocalBase* thread_local_instance) {
 
  ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
 
}
 
 
 
#endif  // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
 
 
 
#if GTEST_USES_POSIX_RE
 
 
 
// Implements RE.  Currently only needed for death tests.
 
 
 
RE::~RE() {
 
  if (is_valid_) {
 
    // regfree'ing an invalid regex might crash because the content
 
    // of the regex is undefined. Since the regex's are essentially
 
    // the same, one cannot be valid (or invalid) without the other
 
    // being so too.
 
    regfree(&partial_regex_);
 
    regfree(&full_regex_);
 
  }
 
  free(const_cast<char*>(pattern_));
 
}
 
 
 
// Returns true iff regular expression re matches the entire str.
 
bool RE::FullMatch(const char* str, const RE& re) {
 
  if (!re.is_valid_) return false;
 
 
 
  regmatch_t match;
 
  return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
 
}
 
 
 
// Returns true iff regular expression re matches a substring of str
 
// (including str itself).
 
bool RE::PartialMatch(const char* str, const RE& re) {
 
  if (!re.is_valid_) return false;
 
 
 
  regmatch_t match;
 
  return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
 
}
 
 
 
// Initializes an RE from its string representation.
 
void RE::Init(const char* regex) {
 
  pattern_ = posix::StrDup(regex);
 
 
 
  // Reserves enough bytes to hold the regular expression used for a
 
  // full match.
 
  const size_t full_regex_len = strlen(regex) + 10;
 
  char* const full_pattern = new char[full_regex_len];
 
 
 
  snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
 
  is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
 
  // We want to call regcomp(&partial_regex_, ...) even if the
 
  // previous expression returns false.  Otherwise partial_regex_ may
 
  // not be properly initialized can may cause trouble when it's
 
  // freed.
 
  //
 
  // Some implementation of POSIX regex (e.g. on at least some
 
  // versions of Cygwin) doesn't accept the empty string as a valid
 
  // regex.  We change it to an equivalent form "()" to be safe.
 
  if (is_valid_) {
 
    const char* const partial_regex = (*regex == '\0') ? "()" : regex;
 
    is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
 
  }
 
  EXPECT_TRUE(is_valid_)
 
      << "Regular expression \"" << regex
 
      << "\" is not a valid POSIX Extended regular expression.";
 
 
 
  delete[] full_pattern;
 
}
 
 
 
#elif GTEST_USES_SIMPLE_RE
 
 
 
// Returns true iff ch appears anywhere in str (excluding the
 
// terminating '\0' character).
 
bool IsInSet(char ch, const char* str) {
 
  return ch != '\0' && strchr(str, ch) != NULL;
 
}
 
 
 
// Returns true iff ch belongs to the given classification.  Unlike
 
// similar functions in <ctype.h>, these aren't affected by the
 
// current locale.
 
bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
 
bool IsAsciiPunct(char ch) {
 
  return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
 
}
 
bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
 
bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
 
bool IsAsciiWordChar(char ch) {
 
  return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
 
      ('0' <= ch && ch <= '9') || ch == '_';
 
}
 
 
 
// Returns true iff "\\c" is a supported escape sequence.
 
bool IsValidEscape(char c) {
 
  return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
 
}
 
 
 
// Returns true iff the given atom (specified by escaped and pattern)
 
// matches ch.  The result is undefined if the atom is invalid.
 
bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
 
  if (escaped) {  // "\\p" where p is pattern_char.
 
    switch (pattern_char) {
 
      case 'd': return IsAsciiDigit(ch);
 
      case 'D': return !IsAsciiDigit(ch);
 
      case 'f': return ch == '\f';
 
      case 'n': return ch == '\n';
 
      case 'r': return ch == '\r';
 
      case 's': return IsAsciiWhiteSpace(ch);
 
      case 'S': return !IsAsciiWhiteSpace(ch);
 
      case 't': return ch == '\t';
 
      case 'v': return ch == '\v';
 
      case 'w': return IsAsciiWordChar(ch);
 
      case 'W': return !IsAsciiWordChar(ch);
 
    }
 
    return IsAsciiPunct(pattern_char) && pattern_char == ch;
 
  }
 
 
 
  return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
 
}
 
 
 
// Helper function used by ValidateRegex() to format error messages.
 
static std::string FormatRegexSyntaxError(const char* regex, int index) {
 
  return (Message() << "Syntax error at index " << index
 
          << " in simple regular expression \"" << regex << "\": ").GetString();
 
}
 
 
 
// Generates non-fatal failures and returns false if regex is invalid;
 
// otherwise returns true.
 
bool ValidateRegex(const char* regex) {
 
  if (regex == NULL) {
 
    // FIXME: fix the source file location in the
 
    // assertion failures to match where the regex is used in user
 
    // code.
 
    ADD_FAILURE() << "NULL is not a valid simple regular expression.";
 
    return false;
 
  }
 
 
 
  bool is_valid = true;
 
 
 
  // True iff ?, *, or + can follow the previous atom.
 
  bool prev_repeatable = false;
 
  for (int i = 0; regex[i]; i++) {
 
    if (regex[i] == '\\') {  // An escape sequence
 
      i++;
 
      if (regex[i] == '\0') {
 
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
 
                      << "'\\' cannot appear at the end.";
 
        return false;
 
      }
 
 
 
      if (!IsValidEscape(regex[i])) {
 
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
 
                      << "invalid escape sequence \"\\" << regex[i] << "\".";
 
        is_valid = false;
 
      }
 
      prev_repeatable = true;
 
    } else {  // Not an escape sequence.
 
      const char ch = regex[i];
 
 
 
      if (ch == '^' && i > 0) {
 
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
 
                      << "'^' can only appear at the beginning.";
 
        is_valid = false;
 
      } else if (ch == '$' && regex[i + 1] != '\0') {
 
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
 
                      << "'$' can only appear at the end.";
 
        is_valid = false;
 
      } else if (IsInSet(ch, "()[]{}|")) {
 
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
 
                      << "'" << ch << "' is unsupported.";
 
        is_valid = false;
 
      } else if (IsRepeat(ch) && !prev_repeatable) {
 
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
 
                      << "'" << ch << "' can only follow a repeatable token.";
 
        is_valid = false;
 
      }
 
 
 
      prev_repeatable = !IsInSet(ch, "^$?*+");
 
    }
 
  }
 
 
 
  return is_valid;
 
}
 
 
 
// Matches a repeated regex atom followed by a valid simple regular
 
// expression.  The regex atom is defined as c if escaped is false,
 
// or \c otherwise.  repeat is the repetition meta character (?, *,
 
// or +).  The behavior is undefined if str contains too many
 
// characters to be indexable by size_t, in which case the test will
 
// probably time out anyway.  We are fine with this limitation as
 
// std::string has it too.
 
bool MatchRepetitionAndRegexAtHead(
 
    bool escaped, char c, char repeat, const char* regex,
 
    const char* str) {
 
  const size_t min_count = (repeat == '+') ? 1 : 0;
 
  const size_t max_count = (repeat == '?') ? 1 :
 
      static_cast<size_t>(-1) - 1;
 
  // We cannot call numeric_limits::max() as it conflicts with the
 
  // max() macro on Windows.
 
 
 
  for (size_t i = 0; i <= max_count; ++i) {
 
    // We know that the atom matches each of the first i characters in str.
 
    if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
 
      // We have enough matches at the head, and the tail matches too.
 
      // Since we only care about *whether* the pattern matches str
 
      // (as opposed to *how* it matches), there is no need to find a
 
      // greedy match.
 
      return true;
 
    }
 
    if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
 
      return false;
 
  }
 
  return false;
 
}
 
 
 
// Returns true iff regex matches a prefix of str.  regex must be a
 
// valid simple regular expression and not start with "^", or the
 
// result is undefined.
 
bool MatchRegexAtHead(const char* regex, const char* str) {
 
  if (*regex == '\0')  // An empty regex matches a prefix of anything.
 
    return true;
 
 
 
  // "$" only matches the end of a string.  Note that regex being
 
  // valid guarantees that there's nothing after "$" in it.
 
  if (*regex == '$')
 
    return *str == '\0';
 
 
 
  // Is the first thing in regex an escape sequence?
 
  const bool escaped = *regex == '\\';
 
  if (escaped)
 
    ++regex;
 
  if (IsRepeat(regex[1])) {
 
    // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
 
    // here's an indirect recursion.  It terminates as the regex gets
 
    // shorter in each recursion.
 
    return MatchRepetitionAndRegexAtHead(
 
        escaped, regex[0], regex[1], regex + 2, str);
 
  } else {
 
    // regex isn't empty, isn't "$", and doesn't start with a
 
    // repetition.  We match the first atom of regex with the first
 
    // character of str and recurse.
 
    return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
 
        MatchRegexAtHead(regex + 1, str + 1);
 
  }
 
}
 
 
 
// Returns true iff regex matches any substring of str.  regex must be
 
// a valid simple regular expression, or the result is undefined.
 
//
 
// The algorithm is recursive, but the recursion depth doesn't exceed
 
// the regex length, so we won't need to worry about running out of
 
// stack space normally.  In rare cases the time complexity can be
 
// exponential with respect to the regex length + the string length,
 
// but usually it's must faster (often close to linear).
 
bool MatchRegexAnywhere(const char* regex, const char* str) {
 
  if (regex == NULL || str == NULL)
 
    return false;
 
 
 
  if (*regex == '^')
 
    return MatchRegexAtHead(regex + 1, str);
 
 
 
  // A successful match can be anywhere in str.
 
  do {
 
    if (MatchRegexAtHead(regex, str))
 
      return true;
 
  } while (*str++ != '\0');
 
  return false;
 
}
 
 
 
// Implements the RE class.
 
 
 
RE::~RE() {
 
  free(const_cast<char*>(pattern_));
 
  free(const_cast<char*>(full_pattern_));
 
}
 
 
 
// Returns true iff regular expression re matches the entire str.
 
bool RE::FullMatch(const char* str, const RE& re) {
 
  return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
 
}
 
 
 
// Returns true iff regular expression re matches a substring of str
 
// (including str itself).
 
bool RE::PartialMatch(const char* str, const RE& re) {
 
  return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
 
}
 
 
 
// Initializes an RE from its string representation.
 
void RE::Init(const char* regex) {
 
  pattern_ = full_pattern_ = NULL;
 
  if (regex != NULL) {
 
    pattern_ = posix::StrDup(regex);
 
  }
 
 
 
  is_valid_ = ValidateRegex(regex);
 
  if (!is_valid_) {
 
    // No need to calculate the full pattern when the regex is invalid.
 
    return;
 
  }
 
 
 
  const size_t len = strlen(regex);
 
  // Reserves enough bytes to hold the regular expression used for a
 
  // full match: we need space to prepend a '^', append a '$', and
 
  // terminate the string with '\0'.
 
  char* buffer = static_cast<char*>(malloc(len + 3));
 
  full_pattern_ = buffer;
 
 
 
  if (*regex != '^')
 
    *buffer++ = '^';  // Makes sure full_pattern_ starts with '^'.
 
 
 
  // We don't use snprintf or strncpy, as they trigger a warning when
 
  // compiled with VC++ 8.0.
 
  memcpy(buffer, regex, len);
 
  buffer += len;
 
 
 
  if (len == 0 || regex[len - 1] != '$')
 
    *buffer++ = '$';  // Makes sure full_pattern_ ends with '$'.
 
 
 
  *buffer = '\0';
 
}
 
 
 
#endif  // GTEST_USES_POSIX_RE
 
 
 
const char kUnknownFile[] = "unknown file";
 
 
 
// Formats a source file path and a line number as they would appear
 
// in an error message from the compiler used to compile this code.
 
GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
 
  const std::string file_name(file == NULL ? kUnknownFile : file);
 
 
 
  if (line < 0) {
 
    return file_name + ":";
 
  }
 
#ifdef _MSC_VER
 
  return file_name + "(" + StreamableToString(line) + "):";
 
#else
 
  return file_name + ":" + StreamableToString(line) + ":";
 
#endif  // _MSC_VER
 
}
 
 
 
// Formats a file location for compiler-independent XML output.
 
// Although this function is not platform dependent, we put it next to
 
// FormatFileLocation in order to contrast the two functions.
 
// Note that FormatCompilerIndependentFileLocation() does NOT append colon
 
// to the file location it produces, unlike FormatFileLocation().
 
GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
 
    const char* file, int line) {
 
  const std::string file_name(file == NULL ? kUnknownFile : file);
 
 
 
  if (line < 0)
 
    return file_name;
 
  else
 
    return file_name + ":" + StreamableToString(line);
 
}
 
 
 
GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
 
    : severity_(severity) {
 
  const char* const marker =
 
      severity == GTEST_INFO ?    "[  INFO ]" :
 
      severity == GTEST_WARNING ? "[WARNING]" :
 
      severity == GTEST_ERROR ?   "[ ERROR ]" : "[ FATAL ]";
 
  GetStream() << ::std::endl << marker << " "
 
              << FormatFileLocation(file, line).c_str() << ": ";
 
}
 
 
 
// Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
 
GTestLog::~GTestLog() {
 
  GetStream() << ::std::endl;
 
  if (severity_ == GTEST_FATAL) {
 
    fflush(stderr);
 
    posix::Abort();
 
  }
 
}
 
 
 
// Disable Microsoft deprecation warnings for POSIX functions called from
 
// this class (creat, dup, dup2, and close)
 
GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
 
 
 
#if GTEST_HAS_STREAM_REDIRECTION
 
 
 
// Object that captures an output stream (stdout/stderr).
 
class CapturedStream {
 
 public:
 
  // The ctor redirects the stream to a temporary file.
 
  explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
 
# if GTEST_OS_WINDOWS
 
    char temp_dir_path[MAX_PATH + 1] = { '\0' };  // NOLINT
 
    char temp_file_path[MAX_PATH + 1] = { '\0' };  // NOLINT
 
 
 
    ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
 
    const UINT success = ::GetTempFileNameA(temp_dir_path,
 
                                            "gtest_redir",
 
                                            0,  // Generate unique file name.
 
                                            temp_file_path);
 
    GTEST_CHECK_(success != 0)
 
        << "Unable to create a temporary file in " << temp_dir_path;
 
    const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
 
    GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
 
                                    << temp_file_path;
 
    filename_ = temp_file_path;
 
# else
 
    // There's no guarantee that a test has write access to the current
 
    // directory, so we create the temporary file in the /tmp directory
 
    // instead. We use /tmp on most systems, and /sdcard on Android.
 
    // That's because Android doesn't have /tmp.
 
#  if GTEST_OS_LINUX_ANDROID
 
    // Note: Android applications are expected to call the framework's
 
    // Context.getExternalStorageDirectory() method through JNI to get
 
    // the location of the world-writable SD Card directory. However,
 
    // this requires a Context handle, which cannot be retrieved
 
    // globally from native code. Doing so also precludes running the
 
    // code as part of a regular standalone executable, which doesn't
 
    // run in a Dalvik process (e.g. when running it through 'adb shell').
 
    //
 
    // The location /sdcard is directly accessible from native code
 
    // and is the only location (unofficially) supported by the Android
 
    // team. It's generally a symlink to the real SD Card mount point
 
    // which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or
 
    // other OEM-customized locations. Never rely on these, and always
 
    // use /sdcard.
 
    char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX";
 
#  else
 
    char name_template[] = "/tmp/captured_stream.XXXXXX";
 
#  endif  // GTEST_OS_LINUX_ANDROID
 
    const int captured_fd = mkstemp(name_template);
 
    filename_ = name_template;
 
# endif  // GTEST_OS_WINDOWS
 
    fflush(NULL);
 
    dup2(captured_fd, fd_);
 
    close(captured_fd);
 
  }
 
 
 
  ~CapturedStream() {
 
    remove(filename_.c_str());
 
  }
 
 
 
  std::string GetCapturedString() {
 
    if (uncaptured_fd_ != -1) {
 
      // Restores the original stream.
 
      fflush(NULL);
 
      dup2(uncaptured_fd_, fd_);
 
      close(uncaptured_fd_);
 
      uncaptured_fd_ = -1;
 
    }
 
 
 
    FILE* const file = posix::FOpen(filename_.c_str(), "r");
 
    const std::string content = ReadEntireFile(file);
 
    posix::FClose(file);
 
    return content;
 
  }
 
 
 
 private:
 
  const int fd_;  // A stream to capture.
 
  int uncaptured_fd_;
 
  // Name of the temporary file holding the stderr output.
 
  ::std::string filename_;
 
 
 
  GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
 
};
 
 
 
GTEST_DISABLE_MSC_DEPRECATED_POP_()
 
 
 
static CapturedStream* g_captured_stderr = NULL;
 
static CapturedStream* g_captured_stdout = NULL;
 
 
 
// Starts capturing an output stream (stdout/stderr).
 
static void CaptureStream(int fd, const char* stream_name,
 
                          CapturedStream** stream) {
 
  if (*stream != NULL) {
 
    GTEST_LOG_(FATAL) << "Only one " << stream_name
 
                      << " capturer can exist at a time.";
 
  }
 
  *stream = new CapturedStream(fd);
 
}
 
 
 
// Stops capturing the output stream and returns the captured string.
 
static std::string GetCapturedStream(CapturedStream** captured_stream) {
 
  const std::string content = (*captured_stream)->GetCapturedString();
 
 
 
  delete *captured_stream;
 
  *captured_stream = NULL;
 
 
 
  return content;
 
}
 
 
 
// Starts capturing stdout.
 
void CaptureStdout() {
 
  CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
 
}
 
 
 
// Starts capturing stderr.
 
void CaptureStderr() {
 
  CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
 
}
 
 
 
// Stops capturing stdout and returns the captured string.
 
std::string GetCapturedStdout() {
 
  return GetCapturedStream(&g_captured_stdout);
 
}
 
 
 
// Stops capturing stderr and returns the captured string.
 
std::string GetCapturedStderr() {
 
  return GetCapturedStream(&g_captured_stderr);
 
}
 
 
 
#endif  // GTEST_HAS_STREAM_REDIRECTION
 
 
 
 
 
 
 
 
 
 
 
size_t GetFileSize(FILE* file) {
 
  fseek(file, 0, SEEK_END);
 
  return static_cast<size_t>(ftell(file));
 
}
 
 
 
std::string ReadEntireFile(FILE* file) {
 
  const size_t file_size = GetFileSize(file);
 
  char* const buffer = new char[file_size];
 
 
 
  size_t bytes_last_read = 0;  // # of bytes read in the last fread()
 
  size_t bytes_read = 0;       // # of bytes read so far
 
 
 
  fseek(file, 0, SEEK_SET);
 
 
 
  // Keeps reading the file until we cannot read further or the
 
  // pre-determined file size is reached.
 
  do {
 
    bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
 
    bytes_read += bytes_last_read;
 
  } while (bytes_last_read > 0 && bytes_read < file_size);
 
 
 
  const std::string content(buffer, bytes_read);
 
  delete[] buffer;
 
 
 
  return content;
 
}
 
 
 
#if GTEST_HAS_DEATH_TEST
 
static const std::vector<std::string>* g_injected_test_argvs = NULL;  // Owned.
 
 
 
std::vector<std::string> GetInjectableArgvs() {
 
  if (g_injected_test_argvs != NULL) {
 
    return *g_injected_test_argvs;
 
  }
 
  return GetArgvs();
 
}
 
 
 
void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
 
  if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
 
  g_injected_test_argvs = new_argvs;
 
}
 
 
 
void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
 
  SetInjectableArgvs(
 
      new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
 
}
 
 
 
#if GTEST_HAS_GLOBAL_STRING
 
void SetInjectableArgvs(const std::vector< ::string>& new_argvs) {
 
  SetInjectableArgvs(
 
      new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
 
}
 
#endif  // GTEST_HAS_GLOBAL_STRING
 
 
 
void ClearInjectableArgvs() {
 
  delete g_injected_test_argvs;
 
  g_injected_test_argvs = NULL;
 
}
 
#endif  // GTEST_HAS_DEATH_TEST
 
 
 
#if GTEST_OS_WINDOWS_MOBILE
 
namespace posix {
 
void Abort() {
 
  DebugBreak();
 
  TerminateProcess(GetCurrentProcess(), 1);
 
}
 
}  // namespace posix
 
#endif  // GTEST_OS_WINDOWS_MOBILE
 
 
 
// Returns the name of the environment variable corresponding to the
 
// given flag.  For example, FlagToEnvVar("foo") will return
 
// "GTEST_FOO" in the open-source version.
 
static std::string FlagToEnvVar(const char* flag) {
 
  const std::string full_flag =
 
      (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
 
 
 
  Message env_var;
 
  for (size_t i = 0; i != full_flag.length(); i++) {
 
    env_var << ToUpper(full_flag.c_str()[i]);
 
  }
 
 
 
  return env_var.GetString();
 
}
 
 
 
// Parses 'str' for a 32-bit signed integer.  If successful, writes
 
// the result to *value and returns true; otherwise leaves *value
 
// unchanged and returns false.
 
bool ParseInt32(const Message& src_text, const char* str, Int32* value) {
 
  // Parses the environment variable as a decimal integer.
 
  char* end = NULL;
 
  const long long_value = strtol(str, &end, 10);  // NOLINT
 
 
 
  // Has strtol() consumed all characters in the string?
 
  if (*end != '\0') {
 
    // No - an invalid character was encountered.
 
    Message msg;
 
    msg << "WARNING: " << src_text
 
        << " is expected to be a 32-bit integer, but actually"
 
        << " has value \"" << str << "\".\n";
 
    printf("%s", msg.GetString().c_str());
 
    fflush(stdout);
 
    return false;
 
  }
 
 
 
  // Is the parsed value in the range of an Int32?
 
  const Int32 result = static_cast<Int32>(long_value);
 
  if (long_value == LONG_MAX || long_value == LONG_MIN ||
 
      // The parsed value overflows as a long.  (strtol() returns
 
      // LONG_MAX or LONG_MIN when the input overflows.)
 
      result != long_value
 
      // The parsed value overflows as an Int32.
 
      ) {
 
    Message msg;
 
    msg << "WARNING: " << src_text
 
        << " is expected to be a 32-bit integer, but actually"
 
        << " has value " << str << ", which overflows.\n";
 
    printf("%s", msg.GetString().c_str());
 
    fflush(stdout);
 
    return false;
 
  }
 
 
 
  *value = result;
 
  return true;
 
}
 
 
 
// Reads and returns the Boolean environment variable corresponding to
 
// the given flag; if it's not set, returns default_value.
 
//
 
// The value is considered true iff it's not "0".
 
bool BoolFromGTestEnv(const char* flag, bool default_value) {
 
#if defined(GTEST_GET_BOOL_FROM_ENV_)
 
  return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
 
#else
 
  const std::string env_var = FlagToEnvVar(flag);
 
  const char* const string_value = posix::GetEnv(env_var.c_str());
 
  return string_value == NULL ?
 
      default_value : strcmp(string_value, "0") != 0;
 
#endif  // defined(GTEST_GET_BOOL_FROM_ENV_)
 
}
 
 
 
// Reads and returns a 32-bit integer stored in the environment
 
// variable corresponding to the given flag; if it isn't set or
 
// doesn't represent a valid 32-bit integer, returns default_value.
 
Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) {
 
#if defined(GTEST_GET_INT32_FROM_ENV_)
 
  return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
 
#else
 
  const std::string env_var = FlagToEnvVar(flag);
 
  const char* const string_value = posix::GetEnv(env_var.c_str());
 
  if (string_value == NULL) {
 
    // The environment variable is not set.
 
    return default_value;
 
  }
 
 
 
  Int32 result = default_value;
 
  if (!ParseInt32(Message() << "Environment variable " << env_var,
 
                  string_value, &result)) {
 
    printf("The default value %s is used.\n",
 
           (Message() << default_value).GetString().c_str());
 
    fflush(stdout);
 
    return default_value;
 
  }
 
 
 
  return result;
 
#endif  // defined(GTEST_GET_INT32_FROM_ENV_)
 
}
 
 
 
// As a special case for the 'output' flag, if GTEST_OUTPUT is not
 
// set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
 
// system.  The value of XML_OUTPUT_FILE is a filename without the
 
// "xml:" prefix of GTEST_OUTPUT.
 
// Note that this is meant to be called at the call site so it does
 
// not check that the flag is 'output'
 
// In essence this checks an env variable called XML_OUTPUT_FILE
 
// and if it is set we prepend "xml:" to its value, if it not set we return ""
 
std::string OutputFlagAlsoCheckEnvVar(){
 
  std::string default_value_for_output_flag = "";
 
  const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
 
  if (NULL != xml_output_file_env) {
 
    default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
 
  }
 
  return default_value_for_output_flag;
 
}
 
 
 
// Reads and returns the string environment variable corresponding to
 
// the given flag; if it's not set, returns default_value.
 
const char* StringFromGTestEnv(const char* flag, const char* default_value) {
 
#if defined(GTEST_GET_STRING_FROM_ENV_)
 
  return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
 
#else
 
  const std::string env_var = FlagToEnvVar(flag);
 
  const char* const value = posix::GetEnv(env_var.c_str());
 
  return value == NULL ? default_value : value;
 
#endif  // defined(GTEST_GET_STRING_FROM_ENV_)
 
}
 
 
 
}  // namespace internal
 
}  // namespace testing