// Copyright 2005, Google Inc.
 
// All rights reserved.
 
//
 
// Redistribution and use in source and binary forms, with or without
 
// modification, are permitted provided that the following conditions are
 
// met:
 
//
 
//     * Redistributions of source code must retain the above copyright
 
// notice, this list of conditions and the following disclaimer.
 
//     * Redistributions in binary form must reproduce the above
 
// copyright notice, this list of conditions and the following disclaimer
 
// in the documentation and/or other materials provided with the
 
// distribution.
 
//     * Neither the name of Google Inc. nor the names of its
 
// contributors may be used to endorse or promote products derived from
 
// this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
//
 
// The purpose of this file is to generate Google Test output under
 
// various conditions.  The output will then be verified by
 
// googletest-output-test.py to ensure that Google Test generates the
 
// desired messages.  Therefore, most tests in this file are MEANT TO
 
// FAIL.
 
 
 
#include "gtest/gtest-spi.h"
 
#include "gtest/gtest.h"
 
#include "src/gtest-internal-inl.h"
 
 
 
#include <stdlib.h>
 
 
 
#if GTEST_IS_THREADSAFE
 
using testing::ScopedFakeTestPartResultReporter;
 
using testing::TestPartResultArray;
 
 
 
using testing::internal::Notification;
 
using testing::internal::ThreadWithParam;
 
#endif
 
 
 
namespace posix = ::testing::internal::posix;
 
 
 
// Tests catching fatal failures.
 
 
 
// A subroutine used by the following test.
 
void TestEq1(int x) {
 
  ASSERT_EQ(1, x);
 
}
 
 
 
// This function calls a test subroutine, catches the fatal failure it
 
// generates, and then returns early.
 
void TryTestSubroutine() {
 
  // Calls a subrountine that yields a fatal failure.
 
  TestEq1(2);
 
 
 
  // Catches the fatal failure and aborts the test.
 
  //
 
  // The testing::Test:: prefix is necessary when calling
 
  // HasFatalFailure() outside of a TEST, TEST_F, or test fixture.
 
  if (testing::Test::HasFatalFailure()) return;
 
 
 
  // If we get here, something is wrong.
 
  FAIL() << "This should never be reached.";
 
}
 
 
 
TEST(PassingTest, PassingTest1) {
 
}
 
 
 
TEST(PassingTest, PassingTest2) {
 
}
 
 
 
// Tests that parameters of failing parameterized tests are printed in the
 
// failing test summary.
 
class FailingParamTest : public testing::TestWithParam<int> {};
 
 
 
TEST_P(FailingParamTest, Fails) {
 
  EXPECT_EQ(1, GetParam());
 
}
 
 
 
// This generates a test which will fail. Google Test is expected to print
 
// its parameter when it outputs the list of all failed tests.
 
INSTANTIATE_TEST_CASE_P(PrintingFailingParams,
 
                        FailingParamTest,
 
                        testing::Values(2));
 
 
 
static const char kGoldenString[] = "\"Line\0 1\"\nLine 2";
 
 
 
TEST(NonfatalFailureTest, EscapesStringOperands) {
 
  std::string actual = "actual \"string\"";
 
  EXPECT_EQ(kGoldenString, actual);
 
 
 
  const char* golden = kGoldenString;
 
  EXPECT_EQ(golden, actual);
 
}
 
 
 
TEST(NonfatalFailureTest, DiffForLongStrings) {
 
  std::string golden_str(kGoldenString, sizeof(kGoldenString) - 1);
 
  EXPECT_EQ(golden_str, "Line 2");
 
}
 
 
 
// Tests catching a fatal failure in a subroutine.
 
TEST(FatalFailureTest, FatalFailureInSubroutine) {
 
  printf("(expecting a failure that x should be 1)\n");
 
 
 
  TryTestSubroutine();
 
}
 
 
 
// Tests catching a fatal failure in a nested subroutine.
 
TEST(FatalFailureTest, FatalFailureInNestedSubroutine) {
 
  printf("(expecting a failure that x should be 1)\n");
 
 
 
  // Calls a subrountine that yields a fatal failure.
 
  TryTestSubroutine();
 
 
 
  // Catches the fatal failure and aborts the test.
 
  //
 
  // When calling HasFatalFailure() inside a TEST, TEST_F, or test
 
  // fixture, the testing::Test:: prefix is not needed.
 
  if (HasFatalFailure()) return;
 
 
 
  // If we get here, something is wrong.
 
  FAIL() << "This should never be reached.";
 
}
 
 
 
// Tests HasFatalFailure() after a failed EXPECT check.
 
TEST(FatalFailureTest, NonfatalFailureInSubroutine) {
 
  printf("(expecting a failure on false)\n");
 
  EXPECT_TRUE(false);  // Generates a nonfatal failure
 
  ASSERT_FALSE(HasFatalFailure());  // This should succeed.
 
}
 
 
 
// Tests interleaving user logging and Google Test assertions.
 
TEST(LoggingTest, InterleavingLoggingAndAssertions) {
 
  static const int a[4] = {
 
    3, 9, 2, 6
 
  };
 
 
 
  printf("(expecting 2 failures on (3) >= (a[i]))\n");
 
  for (int i = 0; i < static_cast<int>(sizeof(a)/sizeof(*a)); i++) {
 
    printf("i == %d\n", i);
 
    EXPECT_GE(3, a[i]);
 
  }
 
}
 
 
 
// Tests the SCOPED_TRACE macro.
 
 
 
// A helper function for testing SCOPED_TRACE.
 
void SubWithoutTrace(int n) {
 
  EXPECT_EQ(1, n);
 
  ASSERT_EQ(2, n);
 
}
 
 
 
// Another helper function for testing SCOPED_TRACE.
 
void SubWithTrace(int n) {
 
  SCOPED_TRACE(testing::Message() << "n = " << n);
 
 
 
  SubWithoutTrace(n);
 
}
 
 
 
TEST(SCOPED_TRACETest, AcceptedValues) {
 
  SCOPED_TRACE("literal string");
 
  SCOPED_TRACE(std::string("std::string"));
 
  SCOPED_TRACE(1337);  // streamable type
 
  const char* null_value = NULL;
 
  SCOPED_TRACE(null_value);
 
 
 
  ADD_FAILURE() << "Just checking that all these values work fine.";
 
}
 
 
 
// Tests that SCOPED_TRACE() obeys lexical scopes.
 
TEST(SCOPED_TRACETest, ObeysScopes) {
 
  printf("(expected to fail)\n");
 
 
 
  // There should be no trace before SCOPED_TRACE() is invoked.
 
  ADD_FAILURE() << "This failure is expected, and shouldn't have a trace.";
 
 
 
  {
 
    SCOPED_TRACE("Expected trace");
 
    // After SCOPED_TRACE(), a failure in the current scope should contain
 
    // the trace.
 
    ADD_FAILURE() << "This failure is expected, and should have a trace.";
 
  }
 
 
 
  // Once the control leaves the scope of the SCOPED_TRACE(), there
 
  // should be no trace again.
 
  ADD_FAILURE() << "This failure is expected, and shouldn't have a trace.";
 
}
 
 
 
// Tests that SCOPED_TRACE works inside a loop.
 
TEST(SCOPED_TRACETest, WorksInLoop) {
 
  printf("(expected to fail)\n");
 
 
 
  for (int i = 1; i <= 2; i++) {
 
    SCOPED_TRACE(testing::Message() << "i = " << i);
 
 
 
    SubWithoutTrace(i);
 
  }
 
}
 
 
 
// Tests that SCOPED_TRACE works in a subroutine.
 
TEST(SCOPED_TRACETest, WorksInSubroutine) {
 
  printf("(expected to fail)\n");
 
 
 
  SubWithTrace(1);
 
  SubWithTrace(2);
 
}
 
 
 
// Tests that SCOPED_TRACE can be nested.
 
TEST(SCOPED_TRACETest, CanBeNested) {
 
  printf("(expected to fail)\n");
 
 
 
  SCOPED_TRACE("");  // A trace without a message.
 
 
 
  SubWithTrace(2);
 
}
 
 
 
// Tests that multiple SCOPED_TRACEs can be used in the same scope.
 
TEST(SCOPED_TRACETest, CanBeRepeated) {
 
  printf("(expected to fail)\n");
 
 
 
  SCOPED_TRACE("A");
 
  ADD_FAILURE()
 
      << "This failure is expected, and should contain trace point A.";
 
 
 
  SCOPED_TRACE("B");
 
  ADD_FAILURE()
 
      << "This failure is expected, and should contain trace point A and B.";
 
 
 
  {
 
    SCOPED_TRACE("C");
 
    ADD_FAILURE() << "This failure is expected, and should "
 
                  << "contain trace point A, B, and C.";
 
  }
 
 
 
  SCOPED_TRACE("D");
 
  ADD_FAILURE() << "This failure is expected, and should "
 
                << "contain trace point A, B, and D.";
 
}
 
 
 
#if GTEST_IS_THREADSAFE
 
// Tests that SCOPED_TRACE()s can be used concurrently from multiple
 
// threads.  Namely, an assertion should be affected by
 
// SCOPED_TRACE()s in its own thread only.
 
 
 
// Here's the sequence of actions that happen in the test:
 
//
 
//   Thread A (main)                | Thread B (spawned)
 
//   ===============================|================================
 
//   spawns thread B                |
 
//   -------------------------------+--------------------------------
 
//   waits for n1                   | SCOPED_TRACE("Trace B");
 
//                                  | generates failure #1
 
//                                  | notifies n1
 
//   -------------------------------+--------------------------------
 
//   SCOPED_TRACE("Trace A");       | waits for n2
 
//   generates failure #2           |
 
//   notifies n2                    |
 
//   -------------------------------|--------------------------------
 
//   waits for n3                   | generates failure #3
 
//                                  | trace B dies
 
//                                  | generates failure #4
 
//                                  | notifies n3
 
//   -------------------------------|--------------------------------
 
//   generates failure #5           | finishes
 
//   trace A dies                   |
 
//   generates failure #6           |
 
//   -------------------------------|--------------------------------
 
//   waits for thread B to finish   |
 
 
 
struct CheckPoints {
 
  Notification n1;
 
  Notification n2;
 
  Notification n3;
 
};
 
 
 
static void ThreadWithScopedTrace(CheckPoints* check_points) {
 
  {
 
    SCOPED_TRACE("Trace B");
 
    ADD_FAILURE()
 
        << "Expected failure #1 (in thread B, only trace B alive).";
 
    check_points->n1.Notify();
 
    check_points->n2.WaitForNotification();
 
 
 
    ADD_FAILURE()
 
        << "Expected failure #3 (in thread B, trace A & B both alive).";
 
  }  // Trace B dies here.
 
  ADD_FAILURE()
 
      << "Expected failure #4 (in thread B, only trace A alive).";
 
  check_points->n3.Notify();
 
}
 
 
 
TEST(SCOPED_TRACETest, WorksConcurrently) {
 
  printf("(expecting 6 failures)\n");
 
 
 
  CheckPoints check_points;
 
  ThreadWithParam<CheckPoints*> thread(&ThreadWithScopedTrace,
 
                                       &check_points,
 
                                       NULL);
 
  check_points.n1.WaitForNotification();
 
 
 
  {
 
    SCOPED_TRACE("Trace A");
 
    ADD_FAILURE()
 
        << "Expected failure #2 (in thread A, trace A & B both alive).";
 
    check_points.n2.Notify();
 
    check_points.n3.WaitForNotification();
 
 
 
    ADD_FAILURE()
 
        << "Expected failure #5 (in thread A, only trace A alive).";
 
  }  // Trace A dies here.
 
  ADD_FAILURE()
 
      << "Expected failure #6 (in thread A, no trace alive).";
 
  thread.Join();
 
}
 
#endif  // GTEST_IS_THREADSAFE
 
 
 
// Tests basic functionality of the ScopedTrace utility (most of its features
 
// are already tested in SCOPED_TRACETest).
 
TEST(ScopedTraceTest, WithExplicitFileAndLine) {
 
  testing::ScopedTrace trace("explicit_file.cc", 123, "expected trace message");
 
  ADD_FAILURE() << "Check that the trace is attached to a particular location.";
 
}
 
 
 
TEST(DisabledTestsWarningTest,
 
     DISABLED_AlsoRunDisabledTestsFlagSuppressesWarning) {
 
  // This test body is intentionally empty.  Its sole purpose is for
 
  // verifying that the --gtest_also_run_disabled_tests flag
 
  // suppresses the "YOU HAVE 12 DISABLED TESTS" warning at the end of
 
  // the test output.
 
}
 
 
 
// Tests using assertions outside of TEST and TEST_F.
 
//
 
// This function creates two failures intentionally.
 
void AdHocTest() {
 
  printf("The non-test part of the code is expected to have 2 failures.\n\n");
 
  EXPECT_TRUE(false);
 
  EXPECT_EQ(2, 3);
 
}
 
 
 
// Runs all TESTs, all TEST_Fs, and the ad hoc test.
 
int RunAllTests() {
 
  AdHocTest();
 
  return RUN_ALL_TESTS();
 
}
 
 
 
// Tests non-fatal failures in the fixture constructor.
 
class NonFatalFailureInFixtureConstructorTest : public testing::Test {
 
 protected:
 
  NonFatalFailureInFixtureConstructorTest() {
 
    printf("(expecting 5 failures)\n");
 
    ADD_FAILURE() << "Expected failure #1, in the test fixture c'tor.";
 
  }
 
 
 
  ~NonFatalFailureInFixtureConstructorTest() {
 
    ADD_FAILURE() << "Expected failure #5, in the test fixture d'tor.";
 
  }
 
 
 
  virtual void SetUp() {
 
    ADD_FAILURE() << "Expected failure #2, in SetUp().";
 
  }
 
 
 
  virtual void TearDown() {
 
    ADD_FAILURE() << "Expected failure #4, in TearDown.";
 
  }
 
};
 
 
 
TEST_F(NonFatalFailureInFixtureConstructorTest, FailureInConstructor) {
 
  ADD_FAILURE() << "Expected failure #3, in the test body.";
 
}
 
 
 
// Tests fatal failures in the fixture constructor.
 
class FatalFailureInFixtureConstructorTest : public testing::Test {
 
 protected:
 
  FatalFailureInFixtureConstructorTest() {
 
    printf("(expecting 2 failures)\n");
 
    Init();
 
  }
 
 
 
  ~FatalFailureInFixtureConstructorTest() {
 
    ADD_FAILURE() << "Expected failure #2, in the test fixture d'tor.";
 
  }
 
 
 
  virtual void SetUp() {
 
    ADD_FAILURE() << "UNEXPECTED failure in SetUp().  "
 
                  << "We should never get here, as the test fixture c'tor "
 
                  << "had a fatal failure.";
 
  }
 
 
 
  virtual void TearDown() {
 
    ADD_FAILURE() << "UNEXPECTED failure in TearDown().  "
 
                  << "We should never get here, as the test fixture c'tor "
 
                  << "had a fatal failure.";
 
  }
 
 
 
 private:
 
  void Init() {
 
    FAIL() << "Expected failure #1, in the test fixture c'tor.";
 
  }
 
};
 
 
 
TEST_F(FatalFailureInFixtureConstructorTest, FailureInConstructor) {
 
  ADD_FAILURE() << "UNEXPECTED failure in the test body.  "
 
                << "We should never get here, as the test fixture c'tor "
 
                << "had a fatal failure.";
 
}
 
 
 
// Tests non-fatal failures in SetUp().
 
class NonFatalFailureInSetUpTest : public testing::Test {
 
 protected:
 
  virtual ~NonFatalFailureInSetUpTest() {
 
    Deinit();
 
  }
 
 
 
  virtual void SetUp() {
 
    printf("(expecting 4 failures)\n");
 
    ADD_FAILURE() << "Expected failure #1, in SetUp().";
 
  }
 
 
 
  virtual void TearDown() {
 
    FAIL() << "Expected failure #3, in TearDown().";
 
  }
 
 private:
 
  void Deinit() {
 
    FAIL() << "Expected failure #4, in the test fixture d'tor.";
 
  }
 
};
 
 
 
TEST_F(NonFatalFailureInSetUpTest, FailureInSetUp) {
 
  FAIL() << "Expected failure #2, in the test function.";
 
}
 
 
 
// Tests fatal failures in SetUp().
 
class FatalFailureInSetUpTest : public testing::Test {
 
 protected:
 
  virtual ~FatalFailureInSetUpTest() {
 
    Deinit();
 
  }
 
 
 
  virtual void SetUp() {
 
    printf("(expecting 3 failures)\n");
 
    FAIL() << "Expected failure #1, in SetUp().";
 
  }
 
 
 
  virtual void TearDown() {
 
    FAIL() << "Expected failure #2, in TearDown().";
 
  }
 
 private:
 
  void Deinit() {
 
    FAIL() << "Expected failure #3, in the test fixture d'tor.";
 
  }
 
};
 
 
 
TEST_F(FatalFailureInSetUpTest, FailureInSetUp) {
 
  FAIL() << "UNEXPECTED failure in the test function.  "
 
         << "We should never get here, as SetUp() failed.";
 
}
 
 
 
TEST(AddFailureAtTest, MessageContainsSpecifiedFileAndLineNumber) {
 
  ADD_FAILURE_AT("foo.cc", 42) << "Expected failure in foo.cc";
 
}
 
 
 
#if GTEST_IS_THREADSAFE
 
 
 
// A unary function that may die.
 
void DieIf(bool should_die) {
 
  GTEST_CHECK_(!should_die) << " - death inside DieIf().";
 
}
 
 
 
// Tests running death tests in a multi-threaded context.
 
 
 
// Used for coordination between the main and the spawn thread.
 
struct SpawnThreadNotifications {
 
  SpawnThreadNotifications() {}
 
 
 
  Notification spawn_thread_started;
 
  Notification spawn_thread_ok_to_terminate;
 
 
 
 private:
 
  GTEST_DISALLOW_COPY_AND_ASSIGN_(SpawnThreadNotifications);
 
};
 
 
 
// The function to be executed in the thread spawn by the
 
// MultipleThreads test (below).
 
static void ThreadRoutine(SpawnThreadNotifications* notifications) {
 
  // Signals the main thread that this thread has started.
 
  notifications->spawn_thread_started.Notify();
 
 
 
  // Waits for permission to finish from the main thread.
 
  notifications->spawn_thread_ok_to_terminate.WaitForNotification();
 
}
 
 
 
// This is a death-test test, but it's not named with a DeathTest
 
// suffix.  It starts threads which might interfere with later
 
// death tests, so it must run after all other death tests.
 
class DeathTestAndMultiThreadsTest : public testing::Test {
 
 protected:
 
  // Starts a thread and waits for it to begin.
 
  virtual void SetUp() {
 
    thread_.reset(new ThreadWithParam<SpawnThreadNotifications*>(
 
        &ThreadRoutine, ¬ifications_, NULL));
 
    notifications_.spawn_thread_started.WaitForNotification();
 
  }
 
  // Tells the thread to finish, and reaps it.
 
  // Depending on the version of the thread library in use,
 
  // a manager thread might still be left running that will interfere
 
  // with later death tests.  This is unfortunate, but this class
 
  // cleans up after itself as best it can.
 
  virtual void TearDown() {
 
    notifications_.spawn_thread_ok_to_terminate.Notify();
 
  }
 
 
 
 private:
 
  SpawnThreadNotifications notifications_;
 
  testing::internal::scoped_ptr<ThreadWithParam<SpawnThreadNotifications*> >
 
      thread_;
 
};
 
 
 
#endif  // GTEST_IS_THREADSAFE
 
 
 
// The MixedUpTestCaseTest test case verifies that Google Test will fail a
 
// test if it uses a different fixture class than what other tests in
 
// the same test case use.  It deliberately contains two fixture
 
// classes with the same name but defined in different namespaces.
 
 
 
// The MixedUpTestCaseWithSameTestNameTest test case verifies that
 
// when the user defines two tests with the same test case name AND
 
// same test name (but in different namespaces), the second test will
 
// fail.
 
 
 
namespace foo {
 
 
 
class MixedUpTestCaseTest : public testing::Test {
 
};
 
 
 
TEST_F(MixedUpTestCaseTest, FirstTestFromNamespaceFoo) {}
 
TEST_F(MixedUpTestCaseTest, SecondTestFromNamespaceFoo) {}
 
 
 
class MixedUpTestCaseWithSameTestNameTest : public testing::Test {
 
};
 
 
 
TEST_F(MixedUpTestCaseWithSameTestNameTest,
 
       TheSecondTestWithThisNameShouldFail) {}
 
 
 
}  // namespace foo
 
 
 
namespace bar {
 
 
 
class MixedUpTestCaseTest : public testing::Test {
 
};
 
 
 
// The following two tests are expected to fail.  We rely on the
 
// golden file to check that Google Test generates the right error message.
 
TEST_F(MixedUpTestCaseTest, ThisShouldFail) {}
 
TEST_F(MixedUpTestCaseTest, ThisShouldFailToo) {}
 
 
 
class MixedUpTestCaseWithSameTestNameTest : public testing::Test {
 
};
 
 
 
// Expected to fail.  We rely on the golden file to check that Google Test
 
// generates the right error message.
 
TEST_F(MixedUpTestCaseWithSameTestNameTest,
 
       TheSecondTestWithThisNameShouldFail) {}
 
 
 
}  // namespace bar
 
 
 
// The following two test cases verify that Google Test catches the user
 
// error of mixing TEST and TEST_F in the same test case.  The first
 
// test case checks the scenario where TEST_F appears before TEST, and
 
// the second one checks where TEST appears before TEST_F.
 
 
 
class TEST_F_before_TEST_in_same_test_case : public testing::Test {
 
};
 
 
 
TEST_F(TEST_F_before_TEST_in_same_test_case, DefinedUsingTEST_F) {}
 
 
 
// Expected to fail.  We rely on the golden file to check that Google Test
 
// generates the right error message.
 
TEST(TEST_F_before_TEST_in_same_test_case, DefinedUsingTESTAndShouldFail) {}
 
 
 
class TEST_before_TEST_F_in_same_test_case : public testing::Test {
 
};
 
 
 
TEST(TEST_before_TEST_F_in_same_test_case, DefinedUsingTEST) {}
 
 
 
// Expected to fail.  We rely on the golden file to check that Google Test
 
// generates the right error message.
 
TEST_F(TEST_before_TEST_F_in_same_test_case, DefinedUsingTEST_FAndShouldFail) {
 
}
 
 
 
// Used for testing EXPECT_NONFATAL_FAILURE() and EXPECT_FATAL_FAILURE().
 
int global_integer = 0;
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() can reference global variables.
 
TEST(ExpectNonfatalFailureTest, CanReferenceGlobalVariables) {
 
  global_integer = 0;
 
  EXPECT_NONFATAL_FAILURE({
 
    EXPECT_EQ(1, global_integer) << "Expected non-fatal failure.";
 
  }, "Expected non-fatal failure.");
 
}
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() can reference local variables
 
// (static or not).
 
TEST(ExpectNonfatalFailureTest, CanReferenceLocalVariables) {
 
  int m = 0;
 
  static int n;
 
  n = 1;
 
  EXPECT_NONFATAL_FAILURE({
 
    EXPECT_EQ(m, n) << "Expected non-fatal failure.";
 
  }, "Expected non-fatal failure.");
 
}
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() succeeds when there is exactly
 
// one non-fatal failure and no fatal failure.
 
TEST(ExpectNonfatalFailureTest, SucceedsWhenThereIsOneNonfatalFailure) {
 
  EXPECT_NONFATAL_FAILURE({
 
    ADD_FAILURE() << "Expected non-fatal failure.";
 
  }, "Expected non-fatal failure.");
 
}
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() fails when there is no
 
// non-fatal failure.
 
TEST(ExpectNonfatalFailureTest, FailsWhenThereIsNoNonfatalFailure) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_NONFATAL_FAILURE({
 
  }, "");
 
}
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() fails when there are two
 
// non-fatal failures.
 
TEST(ExpectNonfatalFailureTest, FailsWhenThereAreTwoNonfatalFailures) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_NONFATAL_FAILURE({
 
    ADD_FAILURE() << "Expected non-fatal failure 1.";
 
    ADD_FAILURE() << "Expected non-fatal failure 2.";
 
  }, "");
 
}
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() fails when there is one fatal
 
// failure.
 
TEST(ExpectNonfatalFailureTest, FailsWhenThereIsOneFatalFailure) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_NONFATAL_FAILURE({
 
    FAIL() << "Expected fatal failure.";
 
  }, "");
 
}
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() fails when the statement being
 
// tested returns.
 
TEST(ExpectNonfatalFailureTest, FailsWhenStatementReturns) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_NONFATAL_FAILURE({
 
    return;
 
  }, "");
 
}
 
 
 
#if GTEST_HAS_EXCEPTIONS
 
 
 
// Tests that EXPECT_NONFATAL_FAILURE() fails when the statement being
 
// tested throws.
 
TEST(ExpectNonfatalFailureTest, FailsWhenStatementThrows) {
 
  printf("(expecting a failure)\n");
 
  try {
 
    EXPECT_NONFATAL_FAILURE({
 
      throw 0;
 
    }, "");
 
  } catch(int) {  // NOLINT
 
  }
 
}
 
 
 
#endif  // GTEST_HAS_EXCEPTIONS
 
 
 
// Tests that EXPECT_FATAL_FAILURE() can reference global variables.
 
TEST(ExpectFatalFailureTest, CanReferenceGlobalVariables) {
 
  global_integer = 0;
 
  EXPECT_FATAL_FAILURE({
 
    ASSERT_EQ(1, global_integer) << "Expected fatal failure.";
 
  }, "Expected fatal failure.");
 
}
 
 
 
// Tests that EXPECT_FATAL_FAILURE() can reference local static
 
// variables.
 
TEST(ExpectFatalFailureTest, CanReferenceLocalStaticVariables) {
 
  static int n;
 
  n = 1;
 
  EXPECT_FATAL_FAILURE({
 
    ASSERT_EQ(0, n) << "Expected fatal failure.";
 
  }, "Expected fatal failure.");
 
}
 
 
 
// Tests that EXPECT_FATAL_FAILURE() succeeds when there is exactly
 
// one fatal failure and no non-fatal failure.
 
TEST(ExpectFatalFailureTest, SucceedsWhenThereIsOneFatalFailure) {
 
  EXPECT_FATAL_FAILURE({
 
    FAIL() << "Expected fatal failure.";
 
  }, "Expected fatal failure.");
 
}
 
 
 
// Tests that EXPECT_FATAL_FAILURE() fails when there is no fatal
 
// failure.
 
TEST(ExpectFatalFailureTest, FailsWhenThereIsNoFatalFailure) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_FATAL_FAILURE({
 
  }, "");
 
}
 
 
 
// A helper for generating a fatal failure.
 
void FatalFailure() {
 
  FAIL() << "Expected fatal failure.";
 
}
 
 
 
// Tests that EXPECT_FATAL_FAILURE() fails when there are two
 
// fatal failures.
 
TEST(ExpectFatalFailureTest, FailsWhenThereAreTwoFatalFailures) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_FATAL_FAILURE({
 
    FatalFailure();
 
    FatalFailure();
 
  }, "");
 
}
 
 
 
// Tests that EXPECT_FATAL_FAILURE() fails when there is one non-fatal
 
// failure.
 
TEST(ExpectFatalFailureTest, FailsWhenThereIsOneNonfatalFailure) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_FATAL_FAILURE({
 
    ADD_FAILURE() << "Expected non-fatal failure.";
 
  }, "");
 
}
 
 
 
// Tests that EXPECT_FATAL_FAILURE() fails when the statement being
 
// tested returns.
 
TEST(ExpectFatalFailureTest, FailsWhenStatementReturns) {
 
  printf("(expecting a failure)\n");
 
  EXPECT_FATAL_FAILURE({
 
    return;
 
  }, "");
 
}
 
 
 
#if GTEST_HAS_EXCEPTIONS
 
 
 
// Tests that EXPECT_FATAL_FAILURE() fails when the statement being
 
// tested throws.
 
TEST(ExpectFatalFailureTest, FailsWhenStatementThrows) {
 
  printf("(expecting a failure)\n");
 
  try {
 
    EXPECT_FATAL_FAILURE({
 
      throw 0;
 
    }, "");
 
  } catch(int) {  // NOLINT
 
  }
 
}
 
 
 
#endif  // GTEST_HAS_EXCEPTIONS
 
 
 
// This #ifdef block tests the output of value-parameterized tests.
 
 
 
std::string ParamNameFunc(const testing::TestParamInfo<std::string>& info) {
 
  return info.param;
 
}
 
 
 
class ParamTest : public testing::TestWithParam<std::string> {
 
};
 
 
 
TEST_P(ParamTest, Success) {
 
  EXPECT_EQ("a", GetParam());
 
}
 
 
 
TEST_P(ParamTest, Failure) {
 
  EXPECT_EQ("b", GetParam()) << "Expected failure";
 
}
 
 
 
INSTANTIATE_TEST_CASE_P(PrintingStrings,
 
                        ParamTest,
 
                        testing::Values(std::string("a")),
 
                        ParamNameFunc);
 
 
 
// This #ifdef block tests the output of typed tests.
 
#if GTEST_HAS_TYPED_TEST
 
 
 
template <typename T>
 
class TypedTest : public testing::Test {
 
};
 
 
 
TYPED_TEST_CASE(TypedTest, testing::Types<int>);
 
 
 
TYPED_TEST(TypedTest, Success) {
 
  EXPECT_EQ(0, TypeParam());
 
}
 
 
 
TYPED_TEST(TypedTest, Failure) {
 
  EXPECT_EQ(1, TypeParam()) << "Expected failure";
 
}
 
 
 
#endif  // GTEST_HAS_TYPED_TEST
 
 
 
// This #ifdef block tests the output of type-parameterized tests.
 
#if GTEST_HAS_TYPED_TEST_P
 
 
 
template <typename T>
 
class TypedTestP : public testing::Test {
 
};
 
 
 
TYPED_TEST_CASE_P(TypedTestP);
 
 
 
TYPED_TEST_P(TypedTestP, Success) {
 
  EXPECT_EQ(0U, TypeParam());
 
}
 
 
 
TYPED_TEST_P(TypedTestP, Failure) {
 
  EXPECT_EQ(1U, TypeParam()) << "Expected failure";
 
}
 
 
 
REGISTER_TYPED_TEST_CASE_P(TypedTestP, Success, Failure);
 
 
 
typedef testing::Types<unsigned char, unsigned int> UnsignedTypes;
 
INSTANTIATE_TYPED_TEST_CASE_P(Unsigned, TypedTestP, UnsignedTypes);
 
 
 
#endif  // GTEST_HAS_TYPED_TEST_P
 
 
 
#if GTEST_HAS_DEATH_TEST
 
 
 
// We rely on the golden file to verify that tests whose test case
 
// name ends with DeathTest are run first.
 
 
 
TEST(ADeathTest, ShouldRunFirst) {
 
}
 
 
 
# if GTEST_HAS_TYPED_TEST
 
 
 
// We rely on the golden file to verify that typed tests whose test
 
// case name ends with DeathTest are run first.
 
 
 
template <typename T>
 
class ATypedDeathTest : public testing::Test {
 
};
 
 
 
typedef testing::Types<int, double> NumericTypes;
 
TYPED_TEST_CASE(ATypedDeathTest, NumericTypes);
 
 
 
TYPED_TEST(ATypedDeathTest, ShouldRunFirst) {
 
}
 
 
 
# endif  // GTEST_HAS_TYPED_TEST
 
 
 
# if GTEST_HAS_TYPED_TEST_P
 
 
 
 
 
// We rely on the golden file to verify that type-parameterized tests
 
// whose test case name ends with DeathTest are run first.
 
 
 
template <typename T>
 
class ATypeParamDeathTest : public testing::Test {
 
};
 
 
 
TYPED_TEST_CASE_P(ATypeParamDeathTest);
 
 
 
TYPED_TEST_P(ATypeParamDeathTest, ShouldRunFirst) {
 
}
 
 
 
REGISTER_TYPED_TEST_CASE_P(ATypeParamDeathTest, ShouldRunFirst);
 
 
 
INSTANTIATE_TYPED_TEST_CASE_P(My, ATypeParamDeathTest, NumericTypes);
 
 
 
# endif  // GTEST_HAS_TYPED_TEST_P
 
 
 
#endif  // GTEST_HAS_DEATH_TEST
 
 
 
// Tests various failure conditions of
 
// EXPECT_{,NON}FATAL_FAILURE{,_ON_ALL_THREADS}.
 
class ExpectFailureTest : public testing::Test {
 
 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
 
  enum FailureMode {
 
    FATAL_FAILURE,
 
    NONFATAL_FAILURE
 
  };
 
  static void AddFailure(FailureMode failure) {
 
    if (failure == FATAL_FAILURE) {
 
      FAIL() << "Expected fatal failure.";
 
    } else {
 
      ADD_FAILURE() << "Expected non-fatal failure.";
 
    }
 
  }
 
};
 
 
 
TEST_F(ExpectFailureTest, ExpectFatalFailure) {
 
  // Expected fatal failure, but succeeds.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_FATAL_FAILURE(SUCCEED(), "Expected fatal failure.");
 
  // Expected fatal failure, but got a non-fatal failure.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_FATAL_FAILURE(AddFailure(NONFATAL_FAILURE), "Expected non-fatal "
 
                       "failure.");
 
  // Wrong message.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_FATAL_FAILURE(AddFailure(FATAL_FAILURE), "Some other fatal failure "
 
                       "expected.");
 
}
 
 
 
TEST_F(ExpectFailureTest, ExpectNonFatalFailure) {
 
  // Expected non-fatal failure, but succeeds.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_NONFATAL_FAILURE(SUCCEED(), "Expected non-fatal failure.");
 
  // Expected non-fatal failure, but got a fatal failure.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_NONFATAL_FAILURE(AddFailure(FATAL_FAILURE), "Expected fatal failure.");
 
  // Wrong message.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_NONFATAL_FAILURE(AddFailure(NONFATAL_FAILURE), "Some other non-fatal "
 
                          "failure.");
 
}
 
 
 
#if GTEST_IS_THREADSAFE
 
 
 
class ExpectFailureWithThreadsTest : public ExpectFailureTest {
 
 protected:
 
  static void AddFailureInOtherThread(FailureMode failure) {
 
    ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
 
    thread.Join();
 
  }
 
};
 
 
 
TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailure) {
 
  // We only intercept the current thread.
 
  printf("(expecting 2 failures)\n");
 
  EXPECT_FATAL_FAILURE(AddFailureInOtherThread(FATAL_FAILURE),
 
                       "Expected fatal failure.");
 
}
 
 
 
TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailure) {
 
  // We only intercept the current thread.
 
  printf("(expecting 2 failures)\n");
 
  EXPECT_NONFATAL_FAILURE(AddFailureInOtherThread(NONFATAL_FAILURE),
 
                          "Expected non-fatal failure.");
 
}
 
 
 
typedef ExpectFailureWithThreadsTest ScopedFakeTestPartResultReporterTest;
 
 
 
// Tests that the ScopedFakeTestPartResultReporter only catches failures from
 
// the current thread if it is instantiated with INTERCEPT_ONLY_CURRENT_THREAD.
 
TEST_F(ScopedFakeTestPartResultReporterTest, InterceptOnlyCurrentThread) {
 
  printf("(expecting 2 failures)\n");
 
  TestPartResultArray results;
 
  {
 
    ScopedFakeTestPartResultReporter reporter(
 
        ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
 
        &results);
 
    AddFailureInOtherThread(FATAL_FAILURE);
 
    AddFailureInOtherThread(NONFATAL_FAILURE);
 
  }
 
  // The two failures should not have been intercepted.
 
  EXPECT_EQ(0, results.size()) << "This shouldn't fail.";
 
}
 
 
 
#endif  // GTEST_IS_THREADSAFE
 
 
 
TEST_F(ExpectFailureTest, ExpectFatalFailureOnAllThreads) {
 
  // Expected fatal failure, but succeeds.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(SUCCEED(), "Expected fatal failure.");
 
  // Expected fatal failure, but got a non-fatal failure.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailure(NONFATAL_FAILURE),
 
                                      "Expected non-fatal failure.");
 
  // Wrong message.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailure(FATAL_FAILURE),
 
                                      "Some other fatal failure expected.");
 
}
 
 
 
TEST_F(ExpectFailureTest, ExpectNonFatalFailureOnAllThreads) {
 
  // Expected non-fatal failure, but succeeds.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(SUCCEED(), "Expected non-fatal "
 
                                         "failure.");
 
  // Expected non-fatal failure, but got a fatal failure.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddFailure(FATAL_FAILURE),
 
                                         "Expected fatal failure.");
 
  // Wrong message.
 
  printf("(expecting 1 failure)\n");
 
  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddFailure(NONFATAL_FAILURE),
 
                                         "Some other non-fatal failure.");
 
}
 
 
 
 
 
// Two test environments for testing testing::AddGlobalTestEnvironment().
 
 
 
class FooEnvironment : public testing::Environment {
 
 public:
 
  virtual void SetUp() {
 
    printf("%s", "FooEnvironment::SetUp() called.\n");
 
  }
 
 
 
  virtual void TearDown() {
 
    printf("%s", "FooEnvironment::TearDown() called.\n");
 
    FAIL() << "Expected fatal failure.";
 
  }
 
};
 
 
 
class BarEnvironment : public testing::Environment {
 
 public:
 
  virtual void SetUp() {
 
    printf("%s", "BarEnvironment::SetUp() called.\n");
 
  }
 
 
 
  virtual void TearDown() {
 
    printf("%s", "BarEnvironment::TearDown() called.\n");
 
    ADD_FAILURE() << "Expected non-fatal failure.";
 
  }
 
};
 
 
 
// The main function.
 
//
 
// The idea is to use Google Test to run all the tests we have defined (some
 
// of them are intended to fail), and then compare the test results
 
// with the "golden" file.
 
int main(int argc, char **argv) {
 
  testing::GTEST_FLAG(print_time) = false;
 
 
 
  // We just run the tests, knowing some of them are intended to fail.
 
  // We will use a separate Python script to compare the output of
 
  // this program with the golden file.
 
 
 
  // It's hard to test InitGoogleTest() directly, as it has many
 
  // global side effects.  The following line serves as a sanity test
 
  // for it.
 
  testing::InitGoogleTest(&argc, argv);
 
  bool internal_skip_environment_and_ad_hoc_tests =
 
      std::count(argv, argv + argc,
 
                 std::string("internal_skip_environment_and_ad_hoc_tests")) > 0;
 
 
 
#if GTEST_HAS_DEATH_TEST
 
  if (testing::internal::GTEST_FLAG(internal_run_death_test) != "") {
 
    // Skip the usual output capturing if we're running as the child
 
    // process of an threadsafe-style death test.
 
# if GTEST_OS_WINDOWS
 
    posix::FReopen("nul:", "w", stdout);
 
# else
 
    posix::FReopen("/dev/null", "w", stdout);
 
# endif  // GTEST_OS_WINDOWS
 
    return RUN_ALL_TESTS();
 
  }
 
#endif  // GTEST_HAS_DEATH_TEST
 
 
 
  if (internal_skip_environment_and_ad_hoc_tests)
 
    return RUN_ALL_TESTS();
 
 
 
  // Registers two global test environments.
 
  // The golden file verifies that they are set up in the order they
 
  // are registered, and torn down in the reverse order.
 
  testing::AddGlobalTestEnvironment(new FooEnvironment);
 
  testing::AddGlobalTestEnvironment(new BarEnvironment);
 
 
 
  return RunAllTests();
 
}