// Copyright 2008, Google Inc.
 
// All rights reserved.
 
//
 
// Redistribution and use in source and binary forms, with or without
 
// modification, are permitted provided that the following conditions are
 
// met:
 
//
 
//     * Redistributions of source code must retain the above copyright
 
// notice, this list of conditions and the following disclaimer.
 
//     * Redistributions in binary form must reproduce the above
 
// copyright notice, this list of conditions and the following disclaimer
 
// in the documentation and/or other materials provided with the
 
// distribution.
 
//     * Neither the name of Google Inc. nor the names of its
 
// contributors may be used to endorse or promote products derived from
 
// this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
//
 
// This file tests the internal cross-platform support utilities.
 
#include <stdio.h>
 
 
 
#include "gtest/internal/gtest-port.h"
 
 
 
#if GTEST_OS_MAC
 
# include <time.h>
 
#endif  // GTEST_OS_MAC
 
 
 
#include <list>
 
#include <utility>  // For std::pair and std::make_pair.
 
#include <vector>
 
 
 
#include "gtest/gtest.h"
 
#include "gtest/gtest-spi.h"
 
#include "src/gtest-internal-inl.h"
 
 
 
using std::make_pair;
 
using std::pair;
 
 
 
namespace testing {
 
namespace internal {
 
 
 
TEST(IsXDigitTest, WorksForNarrowAscii) {
 
  EXPECT_TRUE(IsXDigit('0'));
 
  EXPECT_TRUE(IsXDigit('9'));
 
  EXPECT_TRUE(IsXDigit('A'));
 
  EXPECT_TRUE(IsXDigit('F'));
 
  EXPECT_TRUE(IsXDigit('a'));
 
  EXPECT_TRUE(IsXDigit('f'));
 
 
 
  EXPECT_FALSE(IsXDigit('-'));
 
  EXPECT_FALSE(IsXDigit('g'));
 
  EXPECT_FALSE(IsXDigit('G'));
 
}
 
 
 
TEST(IsXDigitTest, ReturnsFalseForNarrowNonAscii) {
 
  EXPECT_FALSE(IsXDigit(static_cast<char>('\x80')));
 
  EXPECT_FALSE(IsXDigit(static_cast<char>('0' | '\x80')));
 
}
 
 
 
TEST(IsXDigitTest, WorksForWideAscii) {
 
  EXPECT_TRUE(IsXDigit(L'0'));
 
  EXPECT_TRUE(IsXDigit(L'9'));
 
  EXPECT_TRUE(IsXDigit(L'A'));
 
  EXPECT_TRUE(IsXDigit(L'F'));
 
  EXPECT_TRUE(IsXDigit(L'a'));
 
  EXPECT_TRUE(IsXDigit(L'f'));
 
 
 
  EXPECT_FALSE(IsXDigit(L'-'));
 
  EXPECT_FALSE(IsXDigit(L'g'));
 
  EXPECT_FALSE(IsXDigit(L'G'));
 
}
 
 
 
TEST(IsXDigitTest, ReturnsFalseForWideNonAscii) {
 
  EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(0x80)));
 
  EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(L'0' | 0x80)));
 
  EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(L'0' | 0x100)));
 
}
 
 
 
class Base {
 
 public:
 
  // Copy constructor and assignment operator do exactly what we need, so we
 
  // use them.
 
  Base() : member_(0) {}
 
  explicit Base(int n) : member_(n) {}
 
  virtual ~Base() {}
 
  int member() { return member_; }
 
 
 
 private:
 
  int member_;
 
};
 
 
 
class Derived : public Base {
 
 public:
 
  explicit Derived(int n) : Base(n) {}
 
};
 
 
 
TEST(ImplicitCastTest, ConvertsPointers) {
 
  Derived derived(0);
 
  EXPECT_TRUE(&derived == ::testing::internal::ImplicitCast_<Base*>(&derived));
 
}
 
 
 
TEST(ImplicitCastTest, CanUseInheritance) {
 
  Derived derived(1);
 
  Base base = ::testing::internal::ImplicitCast_<Base>(derived);
 
  EXPECT_EQ(derived.member(), base.member());
 
}
 
 
 
class Castable {
 
 public:
 
  explicit Castable(bool* converted) : converted_(converted) {}
 
  operator Base() {
 
    *converted_ = true;
 
    return Base();
 
  }
 
 
 
 private:
 
  bool* converted_;
 
};
 
 
 
TEST(ImplicitCastTest, CanUseNonConstCastOperator) {
 
  bool converted = false;
 
  Castable castable(&converted);
 
  Base base = ::testing::internal::ImplicitCast_<Base>(castable);
 
  EXPECT_TRUE(converted);
 
}
 
 
 
class ConstCastable {
 
 public:
 
  explicit ConstCastable(bool* converted) : converted_(converted) {}
 
  operator Base() const {
 
    *converted_ = true;
 
    return Base();
 
  }
 
 
 
 private:
 
  bool* converted_;
 
};
 
 
 
TEST(ImplicitCastTest, CanUseConstCastOperatorOnConstValues) {
 
  bool converted = false;
 
  const ConstCastable const_castable(&converted);
 
  Base base = ::testing::internal::ImplicitCast_<Base>(const_castable);
 
  EXPECT_TRUE(converted);
 
}
 
 
 
class ConstAndNonConstCastable {
 
 public:
 
  ConstAndNonConstCastable(bool* converted, bool* const_converted)
 
      : converted_(converted), const_converted_(const_converted) {}
 
  operator Base() {
 
    *converted_ = true;
 
    return Base();
 
  }
 
  operator Base() const {
 
    *const_converted_ = true;
 
    return Base();
 
  }
 
 
 
 private:
 
  bool* converted_;
 
  bool* const_converted_;
 
};
 
 
 
TEST(ImplicitCastTest, CanSelectBetweenConstAndNonConstCasrAppropriately) {
 
  bool converted = false;
 
  bool const_converted = false;
 
  ConstAndNonConstCastable castable(&converted, &const_converted);
 
  Base base = ::testing::internal::ImplicitCast_<Base>(castable);
 
  EXPECT_TRUE(converted);
 
  EXPECT_FALSE(const_converted);
 
 
 
  converted = false;
 
  const_converted = false;
 
  const ConstAndNonConstCastable const_castable(&converted, &const_converted);
 
  base = ::testing::internal::ImplicitCast_<Base>(const_castable);
 
  EXPECT_FALSE(converted);
 
  EXPECT_TRUE(const_converted);
 
}
 
 
 
class To {
 
 public:
 
  To(bool* converted) { *converted = true; }  // NOLINT
 
};
 
 
 
TEST(ImplicitCastTest, CanUseImplicitConstructor) {
 
  bool converted = false;
 
  To to = ::testing::internal::ImplicitCast_<To>(&converted);
 
  (void)to;
 
  EXPECT_TRUE(converted);
 
}
 
 
 
TEST(IteratorTraitsTest, WorksForSTLContainerIterators) {
 
  StaticAssertTypeEq<int,
 
      IteratorTraits< ::std::vector<int>::const_iterator>::value_type>();
 
  StaticAssertTypeEq<bool,
 
      IteratorTraits< ::std::list<bool>::iterator>::value_type>();
 
}
 
 
 
TEST(IteratorTraitsTest, WorksForPointerToNonConst) {
 
  StaticAssertTypeEq<char, IteratorTraits<char*>::value_type>();
 
  StaticAssertTypeEq<const void*, IteratorTraits<const void**>::value_type>();
 
}
 
 
 
TEST(IteratorTraitsTest, WorksForPointerToConst) {
 
  StaticAssertTypeEq<char, IteratorTraits<const char*>::value_type>();
 
  StaticAssertTypeEq<const void*,
 
      IteratorTraits<const void* const*>::value_type>();
 
}
 
 
 
// Tests that the element_type typedef is available in scoped_ptr and refers
 
// to the parameter type.
 
TEST(ScopedPtrTest, DefinesElementType) {
 
  StaticAssertTypeEq<int, ::testing::internal::scoped_ptr<int>::element_type>();
 
}
 
 
 
// FIXME: Implement THE REST of scoped_ptr tests.
 
 
 
TEST(GtestCheckSyntaxTest, BehavesLikeASingleStatement) {
 
  if (AlwaysFalse())
 
    GTEST_CHECK_(false) << "This should never be executed; "
 
                           "It's a compilation test only.";
 
 
 
  if (AlwaysTrue())
 
    GTEST_CHECK_(true);
 
  else
 
    ;  // NOLINT
 
 
 
  if (AlwaysFalse())
 
    ;  // NOLINT
 
  else
 
    GTEST_CHECK_(true) << "";
 
}
 
 
 
TEST(GtestCheckSyntaxTest, WorksWithSwitch) {
 
  switch (0) {
 
    case 1:
 
      break;
 
    default:
 
      GTEST_CHECK_(true);
 
  }
 
 
 
  switch (0)
 
    case 0:
 
      GTEST_CHECK_(true) << "Check failed in switch case";
 
}
 
 
 
// Verifies behavior of FormatFileLocation.
 
TEST(FormatFileLocationTest, FormatsFileLocation) {
 
  EXPECT_PRED_FORMAT2(IsSubstring, "foo.cc", FormatFileLocation("foo.cc", 42));
 
  EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation("foo.cc", 42));
 
}
 
 
 
TEST(FormatFileLocationTest, FormatsUnknownFile) {
 
  EXPECT_PRED_FORMAT2(
 
      IsSubstring, "unknown file", FormatFileLocation(NULL, 42));
 
  EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation(NULL, 42));
 
}
 
 
 
TEST(FormatFileLocationTest, FormatsUknownLine) {
 
  EXPECT_EQ("foo.cc:", FormatFileLocation("foo.cc", -1));
 
}
 
 
 
TEST(FormatFileLocationTest, FormatsUknownFileAndLine) {
 
  EXPECT_EQ("unknown file:", FormatFileLocation(NULL, -1));
 
}
 
 
 
// Verifies behavior of FormatCompilerIndependentFileLocation.
 
TEST(FormatCompilerIndependentFileLocationTest, FormatsFileLocation) {
 
  EXPECT_EQ("foo.cc:42", FormatCompilerIndependentFileLocation("foo.cc", 42));
 
}
 
 
 
TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFile) {
 
  EXPECT_EQ("unknown file:42",
 
            FormatCompilerIndependentFileLocation(NULL, 42));
 
}
 
 
 
TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownLine) {
 
  EXPECT_EQ("foo.cc", FormatCompilerIndependentFileLocation("foo.cc", -1));
 
}
 
 
 
TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFileAndLine) {
 
  EXPECT_EQ("unknown file", FormatCompilerIndependentFileLocation(NULL, -1));
 
}
 
 
 
#if GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX || GTEST_OS_FUCHSIA
 
void* ThreadFunc(void* data) {
 
  internal::Mutex* mutex = static_cast<internal::Mutex*>(data);
 
  mutex->Lock();
 
  mutex->Unlock();
 
  return NULL;
 
}
 
 
 
TEST(GetThreadCountTest, ReturnsCorrectValue) {
 
  const size_t starting_count = GetThreadCount();
 
  pthread_t       thread_id;
 
 
 
  internal::Mutex mutex;
 
  {
 
    internal::MutexLock lock(&mutex);
 
    pthread_attr_t  attr;
 
    ASSERT_EQ(0, pthread_attr_init(&attr));
 
    ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
 
 
 
    const int status = pthread_create(&thread_id, &attr, &ThreadFunc, &mutex);
 
    ASSERT_EQ(0, pthread_attr_destroy(&attr));
 
    ASSERT_EQ(0, status);
 
    EXPECT_EQ(starting_count + 1, GetThreadCount());
 
  }
 
 
 
  void* dummy;
 
  ASSERT_EQ(0, pthread_join(thread_id, &dummy));
 
 
 
  // The OS may not immediately report the updated thread count after
 
  // joining a thread, causing flakiness in this test. To counter that, we
 
  // wait for up to .5 seconds for the OS to report the correct value.
 
  for (int i = 0; i < 5; ++i) {
 
    if (GetThreadCount() == starting_count)
 
      break;
 
 
 
    SleepMilliseconds(100);
 
  }
 
 
 
  EXPECT_EQ(starting_count, GetThreadCount());
 
}
 
#else
 
TEST(GetThreadCountTest, ReturnsZeroWhenUnableToCountThreads) {
 
  EXPECT_EQ(0U, GetThreadCount());
 
}
 
#endif  // GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX || GTEST_OS_FUCHSIA
 
 
 
TEST(GtestCheckDeathTest, DiesWithCorrectOutputOnFailure) {
 
  const bool a_false_condition = false;
 
  const char regex[] =
 
#ifdef _MSC_VER
 
     "googletest-port-test\\.cc\\(\\d+\\):"
 
#elif GTEST_USES_POSIX_RE
 
     "googletest-port-test\\.cc:[0-9]+"
 
#else
 
     "googletest-port-test\\.cc:\\d+"
 
#endif  // _MSC_VER
 
     ".*a_false_condition.*Extra info.*";
 
 
 
  EXPECT_DEATH_IF_SUPPORTED(GTEST_CHECK_(a_false_condition) << "Extra info",
 
                            regex);
 
}
 
 
 
#if GTEST_HAS_DEATH_TEST
 
 
 
TEST(GtestCheckDeathTest, LivesSilentlyOnSuccess) {
 
  EXPECT_EXIT({
 
      GTEST_CHECK_(true) << "Extra info";
 
      ::std::cerr << "Success\n";
 
      exit(0); },
 
      ::testing::ExitedWithCode(0), "Success");
 
}
 
 
 
#endif  // GTEST_HAS_DEATH_TEST
 
 
 
// Verifies that Google Test choose regular expression engine appropriate to
 
// the platform. The test will produce compiler errors in case of failure.
 
// For simplicity, we only cover the most important platforms here.
 
TEST(RegexEngineSelectionTest, SelectsCorrectRegexEngine) {
 
#if !GTEST_USES_PCRE
 
# if GTEST_HAS_POSIX_RE
 
 
 
  EXPECT_TRUE(GTEST_USES_POSIX_RE);
 
 
 
# else
 
 
 
  EXPECT_TRUE(GTEST_USES_SIMPLE_RE);
 
 
 
# endif
 
#endif  // !GTEST_USES_PCRE
 
}
 
 
 
#if GTEST_USES_POSIX_RE
 
 
 
# if GTEST_HAS_TYPED_TEST
 
 
 
template <typename Str>
 
class RETest : public ::testing::Test {};
 
 
 
// Defines StringTypes as the list of all string types that class RE
 
// supports.
 
typedef testing::Types<
 
    ::std::string,
 
#  if GTEST_HAS_GLOBAL_STRING
 
    ::string,
 
#  endif  // GTEST_HAS_GLOBAL_STRING
 
    const char*> StringTypes;
 
 
 
TYPED_TEST_CASE(RETest, StringTypes);
 
 
 
// Tests RE's implicit constructors.
 
TYPED_TEST(RETest, ImplicitConstructorWorks) {
 
  const RE empty(TypeParam(""));
 
  EXPECT_STREQ("", empty.pattern());
 
 
 
  const RE simple(TypeParam("hello"));
 
  EXPECT_STREQ("hello", simple.pattern());
 
 
 
  const RE normal(TypeParam(".*(\\w+)"));
 
  EXPECT_STREQ(".*(\\w+)", normal.pattern());
 
}
 
 
 
// Tests that RE's constructors reject invalid regular expressions.
 
TYPED_TEST(RETest, RejectsInvalidRegex) {
 
  EXPECT_NONFATAL_FAILURE({
 
    const RE invalid(TypeParam("?"));
 
  }, "\"?\" is not a valid POSIX Extended regular expression.");
 
}
 
 
 
// Tests RE::FullMatch().
 
TYPED_TEST(RETest, FullMatchWorks) {
 
  const RE empty(TypeParam(""));
 
  EXPECT_TRUE(RE::FullMatch(TypeParam(""), empty));
 
  EXPECT_FALSE(RE::FullMatch(TypeParam("a"), empty));
 
 
 
  const RE re(TypeParam("a.*z"));
 
  EXPECT_TRUE(RE::FullMatch(TypeParam("az"), re));
 
  EXPECT_TRUE(RE::FullMatch(TypeParam("axyz"), re));
 
  EXPECT_FALSE(RE::FullMatch(TypeParam("baz"), re));
 
  EXPECT_FALSE(RE::FullMatch(TypeParam("azy"), re));
 
}
 
 
 
// Tests RE::PartialMatch().
 
TYPED_TEST(RETest, PartialMatchWorks) {
 
  const RE empty(TypeParam(""));
 
  EXPECT_TRUE(RE::PartialMatch(TypeParam(""), empty));
 
  EXPECT_TRUE(RE::PartialMatch(TypeParam("a"), empty));
 
 
 
  const RE re(TypeParam("a.*z"));
 
  EXPECT_TRUE(RE::PartialMatch(TypeParam("az"), re));
 
  EXPECT_TRUE(RE::PartialMatch(TypeParam("axyz"), re));
 
  EXPECT_TRUE(RE::PartialMatch(TypeParam("baz"), re));
 
  EXPECT_TRUE(RE::PartialMatch(TypeParam("azy"), re));
 
  EXPECT_FALSE(RE::PartialMatch(TypeParam("zza"), re));
 
}
 
 
 
# endif  // GTEST_HAS_TYPED_TEST
 
 
 
#elif GTEST_USES_SIMPLE_RE
 
 
 
TEST(IsInSetTest, NulCharIsNotInAnySet) {
 
  EXPECT_FALSE(IsInSet('\0', ""));
 
  EXPECT_FALSE(IsInSet('\0', "\0"));
 
  EXPECT_FALSE(IsInSet('\0', "a"));
 
}
 
 
 
TEST(IsInSetTest, WorksForNonNulChars) {
 
  EXPECT_FALSE(IsInSet('a', "Ab"));
 
  EXPECT_FALSE(IsInSet('c', ""));
 
 
 
  EXPECT_TRUE(IsInSet('b', "bcd"));
 
  EXPECT_TRUE(IsInSet('b', "ab"));
 
}
 
 
 
TEST(IsAsciiDigitTest, IsFalseForNonDigit) {
 
  EXPECT_FALSE(IsAsciiDigit('\0'));
 
  EXPECT_FALSE(IsAsciiDigit(' '));
 
  EXPECT_FALSE(IsAsciiDigit('+'));
 
  EXPECT_FALSE(IsAsciiDigit('-'));
 
  EXPECT_FALSE(IsAsciiDigit('.'));
 
  EXPECT_FALSE(IsAsciiDigit('a'));
 
}
 
 
 
TEST(IsAsciiDigitTest, IsTrueForDigit) {
 
  EXPECT_TRUE(IsAsciiDigit('0'));
 
  EXPECT_TRUE(IsAsciiDigit('1'));
 
  EXPECT_TRUE(IsAsciiDigit('5'));
 
  EXPECT_TRUE(IsAsciiDigit('9'));
 
}
 
 
 
TEST(IsAsciiPunctTest, IsFalseForNonPunct) {
 
  EXPECT_FALSE(IsAsciiPunct('\0'));
 
  EXPECT_FALSE(IsAsciiPunct(' '));
 
  EXPECT_FALSE(IsAsciiPunct('\n'));
 
  EXPECT_FALSE(IsAsciiPunct('a'));
 
  EXPECT_FALSE(IsAsciiPunct('0'));
 
}
 
 
 
TEST(IsAsciiPunctTest, IsTrueForPunct) {
 
  for (const char* p = "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"; *p; p++) {
 
    EXPECT_PRED1(IsAsciiPunct, *p);
 
  }
 
}
 
 
 
TEST(IsRepeatTest, IsFalseForNonRepeatChar) {
 
  EXPECT_FALSE(IsRepeat('\0'));
 
  EXPECT_FALSE(IsRepeat(' '));
 
  EXPECT_FALSE(IsRepeat('a'));
 
  EXPECT_FALSE(IsRepeat('1'));
 
  EXPECT_FALSE(IsRepeat('-'));
 
}
 
 
 
TEST(IsRepeatTest, IsTrueForRepeatChar) {
 
  EXPECT_TRUE(IsRepeat('?'));
 
  EXPECT_TRUE(IsRepeat('*'));
 
  EXPECT_TRUE(IsRepeat('+'));
 
}
 
 
 
TEST(IsAsciiWhiteSpaceTest, IsFalseForNonWhiteSpace) {
 
  EXPECT_FALSE(IsAsciiWhiteSpace('\0'));
 
  EXPECT_FALSE(IsAsciiWhiteSpace('a'));
 
  EXPECT_FALSE(IsAsciiWhiteSpace('1'));
 
  EXPECT_FALSE(IsAsciiWhiteSpace('+'));
 
  EXPECT_FALSE(IsAsciiWhiteSpace('_'));
 
}
 
 
 
TEST(IsAsciiWhiteSpaceTest, IsTrueForWhiteSpace) {
 
  EXPECT_TRUE(IsAsciiWhiteSpace(' '));
 
  EXPECT_TRUE(IsAsciiWhiteSpace('\n'));
 
  EXPECT_TRUE(IsAsciiWhiteSpace('\r'));
 
  EXPECT_TRUE(IsAsciiWhiteSpace('\t'));
 
  EXPECT_TRUE(IsAsciiWhiteSpace('\v'));
 
  EXPECT_TRUE(IsAsciiWhiteSpace('\f'));
 
}
 
 
 
TEST(IsAsciiWordCharTest, IsFalseForNonWordChar) {
 
  EXPECT_FALSE(IsAsciiWordChar('\0'));
 
  EXPECT_FALSE(IsAsciiWordChar('+'));
 
  EXPECT_FALSE(IsAsciiWordChar('.'));
 
  EXPECT_FALSE(IsAsciiWordChar(' '));
 
  EXPECT_FALSE(IsAsciiWordChar('\n'));
 
}
 
 
 
TEST(IsAsciiWordCharTest, IsTrueForLetter) {
 
  EXPECT_TRUE(IsAsciiWordChar('a'));
 
  EXPECT_TRUE(IsAsciiWordChar('b'));
 
  EXPECT_TRUE(IsAsciiWordChar('A'));
 
  EXPECT_TRUE(IsAsciiWordChar('Z'));
 
}
 
 
 
TEST(IsAsciiWordCharTest, IsTrueForDigit) {
 
  EXPECT_TRUE(IsAsciiWordChar('0'));
 
  EXPECT_TRUE(IsAsciiWordChar('1'));
 
  EXPECT_TRUE(IsAsciiWordChar('7'));
 
  EXPECT_TRUE(IsAsciiWordChar('9'));
 
}
 
 
 
TEST(IsAsciiWordCharTest, IsTrueForUnderscore) {
 
  EXPECT_TRUE(IsAsciiWordChar('_'));
 
}
 
 
 
TEST(IsValidEscapeTest, IsFalseForNonPrintable) {
 
  EXPECT_FALSE(IsValidEscape('\0'));
 
  EXPECT_FALSE(IsValidEscape('\007'));
 
}
 
 
 
TEST(IsValidEscapeTest, IsFalseForDigit) {
 
  EXPECT_FALSE(IsValidEscape('0'));
 
  EXPECT_FALSE(IsValidEscape('9'));
 
}
 
 
 
TEST(IsValidEscapeTest, IsFalseForWhiteSpace) {
 
  EXPECT_FALSE(IsValidEscape(' '));
 
  EXPECT_FALSE(IsValidEscape('\n'));
 
}
 
 
 
TEST(IsValidEscapeTest, IsFalseForSomeLetter) {
 
  EXPECT_FALSE(IsValidEscape('a'));
 
  EXPECT_FALSE(IsValidEscape('Z'));
 
}
 
 
 
TEST(IsValidEscapeTest, IsTrueForPunct) {
 
  EXPECT_TRUE(IsValidEscape('.'));
 
  EXPECT_TRUE(IsValidEscape('-'));
 
  EXPECT_TRUE(IsValidEscape('^'));
 
  EXPECT_TRUE(IsValidEscape('$'));
 
  EXPECT_TRUE(IsValidEscape('('));
 
  EXPECT_TRUE(IsValidEscape(']'));
 
  EXPECT_TRUE(IsValidEscape('{'));
 
  EXPECT_TRUE(IsValidEscape('|'));
 
}
 
 
 
TEST(IsValidEscapeTest, IsTrueForSomeLetter) {
 
  EXPECT_TRUE(IsValidEscape('d'));
 
  EXPECT_TRUE(IsValidEscape('D'));
 
  EXPECT_TRUE(IsValidEscape('s'));
 
  EXPECT_TRUE(IsValidEscape('S'));
 
  EXPECT_TRUE(IsValidEscape('w'));
 
  EXPECT_TRUE(IsValidEscape('W'));
 
}
 
 
 
TEST(AtomMatchesCharTest, EscapedPunct) {
 
  EXPECT_FALSE(AtomMatchesChar(true, '\\', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, '\\', ' '));
 
  EXPECT_FALSE(AtomMatchesChar(true, '_', '.'));
 
  EXPECT_FALSE(AtomMatchesChar(true, '.', 'a'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, '\\', '\\'));
 
  EXPECT_TRUE(AtomMatchesChar(true, '_', '_'));
 
  EXPECT_TRUE(AtomMatchesChar(true, '+', '+'));
 
  EXPECT_TRUE(AtomMatchesChar(true, '.', '.'));
 
}
 
 
 
TEST(AtomMatchesCharTest, Escaped_d) {
 
  EXPECT_FALSE(AtomMatchesChar(true, 'd', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'd', 'a'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'd', '.'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, 'd', '0'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'd', '9'));
 
}
 
 
 
TEST(AtomMatchesCharTest, Escaped_D) {
 
  EXPECT_FALSE(AtomMatchesChar(true, 'D', '0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'D', '9'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, 'D', '\0'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'D', 'a'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'D', '-'));
 
}
 
 
 
TEST(AtomMatchesCharTest, Escaped_s) {
 
  EXPECT_FALSE(AtomMatchesChar(true, 's', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 's', 'a'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 's', '.'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 's', '9'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, 's', ' '));
 
  EXPECT_TRUE(AtomMatchesChar(true, 's', '\n'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 's', '\t'));
 
}
 
 
 
TEST(AtomMatchesCharTest, Escaped_S) {
 
  EXPECT_FALSE(AtomMatchesChar(true, 'S', ' '));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'S', '\r'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, 'S', '\0'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'S', 'a'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'S', '9'));
 
}
 
 
 
TEST(AtomMatchesCharTest, Escaped_w) {
 
  EXPECT_FALSE(AtomMatchesChar(true, 'w', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'w', '+'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'w', ' '));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'w', '\n'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, 'w', '0'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'w', 'b'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'w', 'C'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'w', '_'));
 
}
 
 
 
TEST(AtomMatchesCharTest, Escaped_W) {
 
  EXPECT_FALSE(AtomMatchesChar(true, 'W', 'A'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'W', 'b'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'W', '9'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'W', '_'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, 'W', '\0'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'W', '*'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'W', '\n'));
 
}
 
 
 
TEST(AtomMatchesCharTest, EscapedWhiteSpace) {
 
  EXPECT_FALSE(AtomMatchesChar(true, 'f', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'f', '\n'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'n', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'n', '\r'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'r', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'r', 'a'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 't', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 't', 't'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'v', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(true, 'v', '\f'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(true, 'f', '\f'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'n', '\n'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'r', '\r'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 't', '\t'));
 
  EXPECT_TRUE(AtomMatchesChar(true, 'v', '\v'));
 
}
 
 
 
TEST(AtomMatchesCharTest, UnescapedDot) {
 
  EXPECT_FALSE(AtomMatchesChar(false, '.', '\n'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(false, '.', '\0'));
 
  EXPECT_TRUE(AtomMatchesChar(false, '.', '.'));
 
  EXPECT_TRUE(AtomMatchesChar(false, '.', 'a'));
 
  EXPECT_TRUE(AtomMatchesChar(false, '.', ' '));
 
}
 
 
 
TEST(AtomMatchesCharTest, UnescapedChar) {
 
  EXPECT_FALSE(AtomMatchesChar(false, 'a', '\0'));
 
  EXPECT_FALSE(AtomMatchesChar(false, 'a', 'b'));
 
  EXPECT_FALSE(AtomMatchesChar(false, '$', 'a'));
 
 
 
  EXPECT_TRUE(AtomMatchesChar(false, '$', '$'));
 
  EXPECT_TRUE(AtomMatchesChar(false, '5', '5'));
 
  EXPECT_TRUE(AtomMatchesChar(false, 'Z', 'Z'));
 
}
 
 
 
TEST(ValidateRegexTest, GeneratesFailureAndReturnsFalseForInvalid) {
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(NULL)),
 
                          "NULL is not a valid simple regular expression");
 
  EXPECT_NONFATAL_FAILURE(
 
      ASSERT_FALSE(ValidateRegex("a\\")),
 
      "Syntax error at index 1 in simple regular expression \"a\\\": ");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a\\")),
 
                          "'\\' cannot appear at the end");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\n\\")),
 
                          "'\\' cannot appear at the end");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\s\\hb")),
 
                          "invalid escape sequence \"\\h\"");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^^")),
 
                          "'^' can only appear at the beginning");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(".*^b")),
 
                          "'^' can only appear at the beginning");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("$$")),
 
                          "'$' can only appear at the end");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^$a")),
 
                          "'$' can only appear at the end");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a(b")),
 
                          "'(' is unsupported");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("ab)")),
 
                          "')' is unsupported");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("[ab")),
 
                          "'[' is unsupported");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a{2")),
 
                          "'{' is unsupported");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("?")),
 
                          "'?' can only follow a repeatable token");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^*")),
 
                          "'*' can only follow a repeatable token");
 
  EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("5*+")),
 
                          "'+' can only follow a repeatable token");
 
}
 
 
 
TEST(ValidateRegexTest, ReturnsTrueForValid) {
 
  EXPECT_TRUE(ValidateRegex(""));
 
  EXPECT_TRUE(ValidateRegex("a"));
 
  EXPECT_TRUE(ValidateRegex(".*"));
 
  EXPECT_TRUE(ValidateRegex("^a_+"));
 
  EXPECT_TRUE(ValidateRegex("^a\\t\\&?"));
 
  EXPECT_TRUE(ValidateRegex("09*$"));
 
  EXPECT_TRUE(ValidateRegex("^Z$"));
 
  EXPECT_TRUE(ValidateRegex("a\\^Z\\$\\(\\)\\|\\[\\]\\{\\}"));
 
}
 
 
 
TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrOne) {
 
  EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "a", "ba"));
 
  // Repeating more than once.
 
  EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "aab"));
 
 
 
  // Repeating zero times.
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ba"));
 
  // Repeating once.
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ab"));
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '#', '?', ".", "##"));
 
}
 
 
 
TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrMany) {
 
  EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '*', "a$", "baab"));
 
 
 
  // Repeating zero times.
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "bc"));
 
  // Repeating once.
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "abc"));
 
  // Repeating more than once.
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '*', "-", "ab_1-g"));
 
}
 
 
 
TEST(MatchRepetitionAndRegexAtHeadTest, WorksForOneOrMany) {
 
  EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "a$", "baab"));
 
  // Repeating zero times.
 
  EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "bc"));
 
 
 
  // Repeating once.
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "abc"));
 
  // Repeating more than once.
 
  EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '+', "-", "ab_1-g"));
 
}
 
 
 
TEST(MatchRegexAtHeadTest, ReturnsTrueForEmptyRegex) {
 
  EXPECT_TRUE(MatchRegexAtHead("", ""));
 
  EXPECT_TRUE(MatchRegexAtHead("", "ab"));
 
}
 
 
 
TEST(MatchRegexAtHeadTest, WorksWhenDollarIsInRegex) {
 
  EXPECT_FALSE(MatchRegexAtHead("$", "a"));
 
 
 
  EXPECT_TRUE(MatchRegexAtHead("$", ""));
 
  EXPECT_TRUE(MatchRegexAtHead("a$", "a"));
 
}
 
 
 
TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithEscapeSequence) {
 
  EXPECT_FALSE(MatchRegexAtHead("\\w", "+"));
 
  EXPECT_FALSE(MatchRegexAtHead("\\W", "ab"));
 
 
 
  EXPECT_TRUE(MatchRegexAtHead("\\sa", "\nab"));
 
  EXPECT_TRUE(MatchRegexAtHead("\\d", "1a"));
 
}
 
 
 
TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithRepetition) {
 
  EXPECT_FALSE(MatchRegexAtHead(".+a", "abc"));
 
  EXPECT_FALSE(MatchRegexAtHead("a?b", "aab"));
 
 
 
  EXPECT_TRUE(MatchRegexAtHead(".*a", "bc12-ab"));
 
  EXPECT_TRUE(MatchRegexAtHead("a?b", "b"));
 
  EXPECT_TRUE(MatchRegexAtHead("a?b", "ab"));
 
}
 
 
 
TEST(MatchRegexAtHeadTest,
 
     WorksWhenRegexStartsWithRepetionOfEscapeSequence) {
 
  EXPECT_FALSE(MatchRegexAtHead("\\.+a", "abc"));
 
  EXPECT_FALSE(MatchRegexAtHead("\\s?b", "  b"));
 
 
 
  EXPECT_TRUE(MatchRegexAtHead("\\(*a", "((((ab"));
 
  EXPECT_TRUE(MatchRegexAtHead("\\^?b", "^b"));
 
  EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "b"));
 
  EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "\\b"));
 
}
 
 
 
TEST(MatchRegexAtHeadTest, MatchesSequentially) {
 
  EXPECT_FALSE(MatchRegexAtHead("ab.*c", "acabc"));
 
 
 
  EXPECT_TRUE(MatchRegexAtHead("ab.*c", "ab-fsc"));
 
}
 
 
 
TEST(MatchRegexAnywhereTest, ReturnsFalseWhenStringIsNull) {
 
  EXPECT_FALSE(MatchRegexAnywhere("", NULL));
 
}
 
 
 
TEST(MatchRegexAnywhereTest, WorksWhenRegexStartsWithCaret) {
 
  EXPECT_FALSE(MatchRegexAnywhere("^a", "ba"));
 
  EXPECT_FALSE(MatchRegexAnywhere("^$", "a"));
 
 
 
  EXPECT_TRUE(MatchRegexAnywhere("^a", "ab"));
 
  EXPECT_TRUE(MatchRegexAnywhere("^", "ab"));
 
  EXPECT_TRUE(MatchRegexAnywhere("^$", ""));
 
}
 
 
 
TEST(MatchRegexAnywhereTest, ReturnsFalseWhenNoMatch) {
 
  EXPECT_FALSE(MatchRegexAnywhere("a", "bcde123"));
 
  EXPECT_FALSE(MatchRegexAnywhere("a.+a", "--aa88888888"));
 
}
 
 
 
TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingPrefix) {
 
  EXPECT_TRUE(MatchRegexAnywhere("\\w+", "ab1_ - 5"));
 
  EXPECT_TRUE(MatchRegexAnywhere(".*=", "="));
 
  EXPECT_TRUE(MatchRegexAnywhere("x.*ab?.*bc", "xaaabc"));
 
}
 
 
 
TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingNonPrefix) {
 
  EXPECT_TRUE(MatchRegexAnywhere("\\w+", "$$$ ab1_ - 5"));
 
  EXPECT_TRUE(MatchRegexAnywhere("\\.+=", "=  ...="));
 
}
 
 
 
// Tests RE's implicit constructors.
 
TEST(RETest, ImplicitConstructorWorks) {
 
  const RE empty("");
 
  EXPECT_STREQ("", empty.pattern());
 
 
 
  const RE simple("hello");
 
  EXPECT_STREQ("hello", simple.pattern());
 
}
 
 
 
// Tests that RE's constructors reject invalid regular expressions.
 
TEST(RETest, RejectsInvalidRegex) {
 
  EXPECT_NONFATAL_FAILURE({
 
    const RE normal(NULL);
 
  }, "NULL is not a valid simple regular expression");
 
 
 
  EXPECT_NONFATAL_FAILURE({
 
    const RE normal(".*(\\w+");
 
  }, "'(' is unsupported");
 
 
 
  EXPECT_NONFATAL_FAILURE({
 
    const RE invalid("^?");
 
  }, "'?' can only follow a repeatable token");
 
}
 
 
 
// Tests RE::FullMatch().
 
TEST(RETest, FullMatchWorks) {
 
  const RE empty("");
 
  EXPECT_TRUE(RE::FullMatch("", empty));
 
  EXPECT_FALSE(RE::FullMatch("a", empty));
 
 
 
  const RE re1("a");
 
  EXPECT_TRUE(RE::FullMatch("a", re1));
 
 
 
  const RE re("a.*z");
 
  EXPECT_TRUE(RE::FullMatch("az", re));
 
  EXPECT_TRUE(RE::FullMatch("axyz", re));
 
  EXPECT_FALSE(RE::FullMatch("baz", re));
 
  EXPECT_FALSE(RE::FullMatch("azy", re));
 
}
 
 
 
// Tests RE::PartialMatch().
 
TEST(RETest, PartialMatchWorks) {
 
  const RE empty("");
 
  EXPECT_TRUE(RE::PartialMatch("", empty));
 
  EXPECT_TRUE(RE::PartialMatch("a", empty));
 
 
 
  const RE re("a.*z");
 
  EXPECT_TRUE(RE::PartialMatch("az", re));
 
  EXPECT_TRUE(RE::PartialMatch("axyz", re));
 
  EXPECT_TRUE(RE::PartialMatch("baz", re));
 
  EXPECT_TRUE(RE::PartialMatch("azy", re));
 
  EXPECT_FALSE(RE::PartialMatch("zza", re));
 
}
 
 
 
#endif  // GTEST_USES_POSIX_RE
 
 
 
#if !GTEST_OS_WINDOWS_MOBILE
 
 
 
TEST(CaptureTest, CapturesStdout) {
 
  CaptureStdout();
 
  fprintf(stdout, "abc");
 
  EXPECT_STREQ("abc", GetCapturedStdout().c_str());
 
 
 
  CaptureStdout();
 
  fprintf(stdout, "def%cghi", '\0');
 
  EXPECT_EQ(::std::string("def\0ghi", 7), ::std::string(GetCapturedStdout()));
 
}
 
 
 
TEST(CaptureTest, CapturesStderr) {
 
  CaptureStderr();
 
  fprintf(stderr, "jkl");
 
  EXPECT_STREQ("jkl", GetCapturedStderr().c_str());
 
 
 
  CaptureStderr();
 
  fprintf(stderr, "jkl%cmno", '\0');
 
  EXPECT_EQ(::std::string("jkl\0mno", 7), ::std::string(GetCapturedStderr()));
 
}
 
 
 
// Tests that stdout and stderr capture don't interfere with each other.
 
TEST(CaptureTest, CapturesStdoutAndStderr) {
 
  CaptureStdout();
 
  CaptureStderr();
 
  fprintf(stdout, "pqr");
 
  fprintf(stderr, "stu");
 
  EXPECT_STREQ("pqr", GetCapturedStdout().c_str());
 
  EXPECT_STREQ("stu", GetCapturedStderr().c_str());
 
}
 
 
 
TEST(CaptureDeathTest, CannotReenterStdoutCapture) {
 
  CaptureStdout();
 
  EXPECT_DEATH_IF_SUPPORTED(CaptureStdout(),
 
                            "Only one stdout capturer can exist at a time");
 
  GetCapturedStdout();
 
 
 
  // We cannot test stderr capturing using death tests as they use it
 
  // themselves.
 
}
 
 
 
#endif  // !GTEST_OS_WINDOWS_MOBILE
 
 
 
TEST(ThreadLocalTest, DefaultConstructorInitializesToDefaultValues) {
 
  ThreadLocal<int> t1;
 
  EXPECT_EQ(0, t1.get());
 
 
 
  ThreadLocal<void*> t2;
 
  EXPECT_TRUE(t2.get() == NULL);
 
}
 
 
 
TEST(ThreadLocalTest, SingleParamConstructorInitializesToParam) {
 
  ThreadLocal<int> t1(123);
 
  EXPECT_EQ(123, t1.get());
 
 
 
  int i = 0;
 
  ThreadLocal<int*> t2(&i);
 
  EXPECT_EQ(&i, t2.get());
 
}
 
 
 
class NoDefaultContructor {
 
 public:
 
  explicit NoDefaultContructor(const char*) {}
 
  NoDefaultContructor(const NoDefaultContructor&) {}
 
};
 
 
 
TEST(ThreadLocalTest, ValueDefaultContructorIsNotRequiredForParamVersion) {
 
  ThreadLocal<NoDefaultContructor> bar(NoDefaultContructor("foo"));
 
  bar.pointer();
 
}
 
 
 
TEST(ThreadLocalTest, GetAndPointerReturnSameValue) {
 
  ThreadLocal<std::string> thread_local_string;
 
 
 
  EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get()));
 
 
 
  // Verifies the condition still holds after calling set.
 
  thread_local_string.set("foo");
 
  EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get()));
 
}
 
 
 
TEST(ThreadLocalTest, PointerAndConstPointerReturnSameValue) {
 
  ThreadLocal<std::string> thread_local_string;
 
  const ThreadLocal<std::string>& const_thread_local_string =
 
      thread_local_string;
 
 
 
  EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer());
 
 
 
  thread_local_string.set("foo");
 
  EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer());
 
}
 
 
 
#if GTEST_IS_THREADSAFE
 
 
 
void AddTwo(int* param) { *param += 2; }
 
 
 
TEST(ThreadWithParamTest, ConstructorExecutesThreadFunc) {
 
  int i = 40;
 
  ThreadWithParam<int*> thread(&AddTwo, &i, NULL);
 
  thread.Join();
 
  EXPECT_EQ(42, i);
 
}
 
 
 
TEST(MutexDeathTest, AssertHeldShouldAssertWhenNotLocked) {
 
  // AssertHeld() is flaky only in the presence of multiple threads accessing
 
  // the lock. In this case, the test is robust.
 
  EXPECT_DEATH_IF_SUPPORTED({
 
    Mutex m;
 
    { MutexLock lock(&m); }
 
    m.AssertHeld();
 
  },
 
  "thread .*hold");
 
}
 
 
 
TEST(MutexTest, AssertHeldShouldNotAssertWhenLocked) {
 
  Mutex m;
 
  MutexLock lock(&m);
 
  m.AssertHeld();
 
}
 
 
 
class AtomicCounterWithMutex {
 
 public:
 
  explicit AtomicCounterWithMutex(Mutex* mutex) :
 
    value_(0), mutex_(mutex), random_(42) {}
 
 
 
  void Increment() {
 
    MutexLock lock(mutex_);
 
    int temp = value_;
 
    {
 
      // We need to put up a memory barrier to prevent reads and writes to
 
      // value_ rearranged with the call to SleepMilliseconds when observed
 
      // from other threads.
 
#if GTEST_HAS_PTHREAD
 
      // On POSIX, locking a mutex puts up a memory barrier.  We cannot use
 
      // Mutex and MutexLock here or rely on their memory barrier
 
      // functionality as we are testing them here.
 
      pthread_mutex_t memory_barrier_mutex;
 
      GTEST_CHECK_POSIX_SUCCESS_(
 
          pthread_mutex_init(&memory_barrier_mutex, NULL));
 
      GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_lock(&memory_barrier_mutex));
 
 
 
      SleepMilliseconds(random_.Generate(30));
 
 
 
      GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_unlock(&memory_barrier_mutex));
 
      GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_destroy(&memory_barrier_mutex));
 
#elif GTEST_OS_WINDOWS
 
      // On Windows, performing an interlocked access puts up a memory barrier.
 
      volatile LONG dummy = 0;
 
      ::InterlockedIncrement(&dummy);
 
      SleepMilliseconds(random_.Generate(30));
 
      ::InterlockedIncrement(&dummy);
 
#else
 
# error "Memory barrier not implemented on this platform."
 
#endif  // GTEST_HAS_PTHREAD
 
    }
 
    value_ = temp + 1;
 
  }
 
  int value() const { return value_; }
 
 
 
 private:
 
  volatile int value_;
 
  Mutex* const mutex_;  // Protects value_.
 
  Random       random_;
 
};
 
 
 
void CountingThreadFunc(pair<AtomicCounterWithMutex*, int> param) {
 
  for (int i = 0; i < param.second; ++i)
 
      param.first->Increment();
 
}
 
 
 
// Tests that the mutex only lets one thread at a time to lock it.
 
TEST(MutexTest, OnlyOneThreadCanLockAtATime) {
 
  Mutex mutex;
 
  AtomicCounterWithMutex locked_counter(&mutex);
 
 
 
  typedef ThreadWithParam<pair<AtomicCounterWithMutex*, int> > ThreadType;
 
  const int kCycleCount = 20;
 
  const int kThreadCount = 7;
 
  scoped_ptr<ThreadType> counting_threads[kThreadCount];
 
  Notification threads_can_start;
 
  // Creates and runs kThreadCount threads that increment locked_counter
 
  // kCycleCount times each.
 
  for (int i = 0; i < kThreadCount; ++i) {
 
    counting_threads[i].reset(new ThreadType(&CountingThreadFunc,
 
                                             make_pair(&locked_counter,
 
                                                       kCycleCount),
 
                                             &threads_can_start));
 
  }
 
  threads_can_start.Notify();
 
  for (int i = 0; i < kThreadCount; ++i)
 
    counting_threads[i]->Join();
 
 
 
  // If the mutex lets more than one thread to increment the counter at a
 
  // time, they are likely to encounter a race condition and have some
 
  // increments overwritten, resulting in the lower then expected counter
 
  // value.
 
  EXPECT_EQ(kCycleCount * kThreadCount, locked_counter.value());
 
}
 
 
 
template <typename T>
 
void RunFromThread(void (func)(T), T param) {
 
  ThreadWithParam<T> thread(func, param, NULL);
 
  thread.Join();
 
}
 
 
 
void RetrieveThreadLocalValue(
 
    pair<ThreadLocal<std::string>*, std::string*> param) {
 
  *param.second = param.first->get();
 
}
 
 
 
TEST(ThreadLocalTest, ParameterizedConstructorSetsDefault) {
 
  ThreadLocal<std::string> thread_local_string("foo");
 
  EXPECT_STREQ("foo", thread_local_string.get().c_str());
 
 
 
  thread_local_string.set("bar");
 
  EXPECT_STREQ("bar", thread_local_string.get().c_str());
 
 
 
  std::string result;
 
  RunFromThread(&RetrieveThreadLocalValue,
 
                make_pair(&thread_local_string, &result));
 
  EXPECT_STREQ("foo", result.c_str());
 
}
 
 
 
// Keeps track of whether of destructors being called on instances of
 
// DestructorTracker.  On Windows, waits for the destructor call reports.
 
class DestructorCall {
 
 public:
 
  DestructorCall() {
 
    invoked_ = false;
 
#if GTEST_OS_WINDOWS
 
    wait_event_.Reset(::CreateEvent(NULL, TRUE, FALSE, NULL));
 
    GTEST_CHECK_(wait_event_.Get() != NULL);
 
#endif
 
  }
 
 
 
  bool CheckDestroyed() const {
 
#if GTEST_OS_WINDOWS
 
    if (::WaitForSingleObject(wait_event_.Get(), 1000) != WAIT_OBJECT_0)
 
      return false;
 
#endif
 
    return invoked_;
 
  }
 
 
 
  void ReportDestroyed() {
 
    invoked_ = true;
 
#if GTEST_OS_WINDOWS
 
    ::SetEvent(wait_event_.Get());
 
#endif
 
  }
 
 
 
  static std::vector<DestructorCall*>& List() { return *list_; }
 
 
 
  static void ResetList() {
 
    for (size_t i = 0; i < list_->size(); ++i) {
 
      delete list_->at(i);
 
    }
 
    list_->clear();
 
  }
 
 
 
 private:
 
  bool invoked_;
 
#if GTEST_OS_WINDOWS
 
  AutoHandle wait_event_;
 
#endif
 
  static std::vector<DestructorCall*>* const list_;
 
 
 
  GTEST_DISALLOW_COPY_AND_ASSIGN_(DestructorCall);
 
};
 
 
 
std::vector<DestructorCall*>* const DestructorCall::list_ =
 
    new std::vector<DestructorCall*>;
 
 
 
// DestructorTracker keeps track of whether its instances have been
 
// destroyed.
 
class DestructorTracker {
 
 public:
 
  DestructorTracker() : index_(GetNewIndex()) {}
 
  DestructorTracker(const DestructorTracker& /* rhs */)
 
      : index_(GetNewIndex()) {}
 
  ~DestructorTracker() {
 
    // We never access DestructorCall::List() concurrently, so we don't need
 
    // to protect this access with a mutex.
 
    DestructorCall::List()[index_]->ReportDestroyed();
 
  }
 
 
 
 private:
 
  static size_t GetNewIndex() {
 
    DestructorCall::List().push_back(new DestructorCall);
 
    return DestructorCall::List().size() - 1;
 
  }
 
  const size_t index_;
 
 
 
  GTEST_DISALLOW_ASSIGN_(DestructorTracker);
 
};
 
 
 
typedef ThreadLocal<DestructorTracker>* ThreadParam;
 
 
 
void CallThreadLocalGet(ThreadParam thread_local_param) {
 
  thread_local_param->get();
 
}
 
 
 
// Tests that when a ThreadLocal object dies in a thread, it destroys
 
// the managed object for that thread.
 
TEST(ThreadLocalTest, DestroysManagedObjectForOwnThreadWhenDying) {
 
  DestructorCall::ResetList();
 
 
 
  {
 
    ThreadLocal<DestructorTracker> thread_local_tracker;
 
    ASSERT_EQ(0U, DestructorCall::List().size());
 
 
 
    // This creates another DestructorTracker object for the main thread.
 
    thread_local_tracker.get();
 
    ASSERT_EQ(1U, DestructorCall::List().size());
 
    ASSERT_FALSE(DestructorCall::List()[0]->CheckDestroyed());
 
  }
 
 
 
  // Now thread_local_tracker has died.
 
  ASSERT_EQ(1U, DestructorCall::List().size());
 
  EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed());
 
 
 
  DestructorCall::ResetList();
 
}
 
 
 
// Tests that when a thread exits, the thread-local object for that
 
// thread is destroyed.
 
TEST(ThreadLocalTest, DestroysManagedObjectAtThreadExit) {
 
  DestructorCall::ResetList();
 
 
 
  {
 
    ThreadLocal<DestructorTracker> thread_local_tracker;
 
    ASSERT_EQ(0U, DestructorCall::List().size());
 
 
 
    // This creates another DestructorTracker object in the new thread.
 
    ThreadWithParam<ThreadParam> thread(
 
        &CallThreadLocalGet, &thread_local_tracker, NULL);
 
    thread.Join();
 
 
 
    // The thread has exited, and we should have a DestroyedTracker
 
    // instance created for it. But it may not have been destroyed yet.
 
    ASSERT_EQ(1U, DestructorCall::List().size());
 
  }
 
 
 
  // The thread has exited and thread_local_tracker has died.
 
  ASSERT_EQ(1U, DestructorCall::List().size());
 
  EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed());
 
 
 
  DestructorCall::ResetList();
 
}
 
 
 
TEST(ThreadLocalTest, ThreadLocalMutationsAffectOnlyCurrentThread) {
 
  ThreadLocal<std::string> thread_local_string;
 
  thread_local_string.set("Foo");
 
  EXPECT_STREQ("Foo", thread_local_string.get().c_str());
 
 
 
  std::string result;
 
  RunFromThread(&RetrieveThreadLocalValue,
 
                make_pair(&thread_local_string, &result));
 
  EXPECT_TRUE(result.empty());
 
}
 
 
 
#endif  // GTEST_IS_THREADSAFE
 
 
 
#if GTEST_OS_WINDOWS
 
TEST(WindowsTypesTest, HANDLEIsVoidStar) {
 
  StaticAssertTypeEq<HANDLE, void*>();
 
}
 
 
 
#if GTEST_OS_WINDOWS_MINGW && !defined(__MINGW64_VERSION_MAJOR)
 
TEST(WindowsTypesTest, _CRITICAL_SECTIONIs_CRITICAL_SECTION) {
 
  StaticAssertTypeEq<CRITICAL_SECTION, _CRITICAL_SECTION>();
 
}
 
#else
 
TEST(WindowsTypesTest, CRITICAL_SECTIONIs_RTL_CRITICAL_SECTION) {
 
  StaticAssertTypeEq<CRITICAL_SECTION, _RTL_CRITICAL_SECTION>();
 
}
 
#endif
 
 
 
#endif  // GTEST_OS_WINDOWS
 
 
 
}  // namespace internal
 
}  // namespace testing