?login_element?

Subversion Repositories NedoOS

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. // Copyright 2005, Google Inc.
  2. // All rights reserved.
  3. //
  4. // Redistribution and use in source and binary forms, with or without
  5. // modification, are permitted provided that the following conditions are
  6. // met:
  7. //
  8. //     * Redistributions of source code must retain the above copyright
  9. // notice, this list of conditions and the following disclaimer.
  10. //     * Redistributions in binary form must reproduce the above
  11. // copyright notice, this list of conditions and the following disclaimer
  12. // in the documentation and/or other materials provided with the
  13. // distribution.
  14. //     * Neither the name of Google Inc. nor the names of its
  15. // contributors may be used to endorse or promote products derived from
  16. // this software without specific prior written permission.
  17. //
  18. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  22. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  24. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  25. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  26. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  28. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29.  
  30. //
  31. // Tests for Google Test itself.  This verifies that the basic constructs of
  32. // Google Test work.
  33.  
  34. #include "gtest/gtest.h"
  35.  
  36. // Verifies that the command line flag variables can be accessed in
  37. // code once "gtest.h" has been #included.
  38. // Do not move it after other gtest #includes.
  39. TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
  40.   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
  41.       || testing::GTEST_FLAG(break_on_failure)
  42.       || testing::GTEST_FLAG(catch_exceptions)
  43.       || testing::GTEST_FLAG(color) != "unknown"
  44.       || testing::GTEST_FLAG(filter) != "unknown"
  45.       || testing::GTEST_FLAG(list_tests)
  46.       || testing::GTEST_FLAG(output) != "unknown"
  47.       || testing::GTEST_FLAG(print_time)
  48.       || testing::GTEST_FLAG(random_seed)
  49.       || testing::GTEST_FLAG(repeat) > 0
  50.       || testing::GTEST_FLAG(show_internal_stack_frames)
  51.       || testing::GTEST_FLAG(shuffle)
  52.       || testing::GTEST_FLAG(stack_trace_depth) > 0
  53.       || testing::GTEST_FLAG(stream_result_to) != "unknown"
  54.       || testing::GTEST_FLAG(throw_on_failure);
  55.   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
  56. }
  57.  
  58. #include <limits.h>  // For INT_MAX.
  59. #include <stdlib.h>
  60. #include <string.h>
  61. #include <time.h>
  62.  
  63. #include <map>
  64. #include <vector>
  65. #include <ostream>
  66. #if GTEST_LANG_CXX11
  67. #include <unordered_set>
  68. #endif  // GTEST_LANG_CXX11
  69.  
  70. #include "gtest/gtest-spi.h"
  71. #include "src/gtest-internal-inl.h"
  72.  
  73. namespace testing {
  74. namespace internal {
  75.  
  76. #if GTEST_CAN_STREAM_RESULTS_
  77.  
  78. class StreamingListenerTest : public Test {
  79.  public:
  80.   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
  81.    public:
  82.     // Sends a string to the socket.
  83.     virtual void Send(const std::string& message) { output_ += message; }
  84.  
  85.     std::string output_;
  86.   };
  87.  
  88.   StreamingListenerTest()
  89.       : fake_sock_writer_(new FakeSocketWriter),
  90.         streamer_(fake_sock_writer_),
  91.         test_info_obj_("FooTest", "Bar", NULL, NULL,
  92.                        CodeLocation(__FILE__, __LINE__), 0, NULL) {}
  93.  
  94.  protected:
  95.   std::string* output() { return &(fake_sock_writer_->output_); }
  96.  
  97.   FakeSocketWriter* const fake_sock_writer_;
  98.   StreamingListener streamer_;
  99.   UnitTest unit_test_;
  100.   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
  101. };
  102.  
  103. TEST_F(StreamingListenerTest, OnTestProgramEnd) {
  104.   *output() = "";
  105.   streamer_.OnTestProgramEnd(unit_test_);
  106.   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
  107. }
  108.  
  109. TEST_F(StreamingListenerTest, OnTestIterationEnd) {
  110.   *output() = "";
  111.   streamer_.OnTestIterationEnd(unit_test_, 42);
  112.   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
  113. }
  114.  
  115. TEST_F(StreamingListenerTest, OnTestCaseStart) {
  116.   *output() = "";
  117.   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
  118.   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
  119. }
  120.  
  121. TEST_F(StreamingListenerTest, OnTestCaseEnd) {
  122.   *output() = "";
  123.   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
  124.   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
  125. }
  126.  
  127. TEST_F(StreamingListenerTest, OnTestStart) {
  128.   *output() = "";
  129.   streamer_.OnTestStart(test_info_obj_);
  130.   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
  131. }
  132.  
  133. TEST_F(StreamingListenerTest, OnTestEnd) {
  134.   *output() = "";
  135.   streamer_.OnTestEnd(test_info_obj_);
  136.   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
  137. }
  138.  
  139. TEST_F(StreamingListenerTest, OnTestPartResult) {
  140.   *output() = "";
  141.   streamer_.OnTestPartResult(TestPartResult(
  142.       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
  143.  
  144.   // Meta characters in the failure message should be properly escaped.
  145.   EXPECT_EQ(
  146.       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
  147.       *output());
  148. }
  149.  
  150. #endif  // GTEST_CAN_STREAM_RESULTS_
  151.  
  152. // Provides access to otherwise private parts of the TestEventListeners class
  153. // that are needed to test it.
  154. class TestEventListenersAccessor {
  155.  public:
  156.   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
  157.     return listeners->repeater();
  158.   }
  159.  
  160.   static void SetDefaultResultPrinter(TestEventListeners* listeners,
  161.                                       TestEventListener* listener) {
  162.     listeners->SetDefaultResultPrinter(listener);
  163.   }
  164.   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
  165.                                      TestEventListener* listener) {
  166.     listeners->SetDefaultXmlGenerator(listener);
  167.   }
  168.  
  169.   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
  170.     return listeners.EventForwardingEnabled();
  171.   }
  172.  
  173.   static void SuppressEventForwarding(TestEventListeners* listeners) {
  174.     listeners->SuppressEventForwarding();
  175.   }
  176. };
  177.  
  178. class UnitTestRecordPropertyTestHelper : public Test {
  179.  protected:
  180.   UnitTestRecordPropertyTestHelper() {}
  181.  
  182.   // Forwards to UnitTest::RecordProperty() to bypass access controls.
  183.   void UnitTestRecordProperty(const char* key, const std::string& value) {
  184.     unit_test_.RecordProperty(key, value);
  185.   }
  186.  
  187.   UnitTest unit_test_;
  188. };
  189.  
  190. }  // namespace internal
  191. }  // namespace testing
  192.  
  193. using testing::AssertionFailure;
  194. using testing::AssertionResult;
  195. using testing::AssertionSuccess;
  196. using testing::DoubleLE;
  197. using testing::EmptyTestEventListener;
  198. using testing::Environment;
  199. using testing::FloatLE;
  200. using testing::GTEST_FLAG(also_run_disabled_tests);
  201. using testing::GTEST_FLAG(break_on_failure);
  202. using testing::GTEST_FLAG(catch_exceptions);
  203. using testing::GTEST_FLAG(color);
  204. using testing::GTEST_FLAG(death_test_use_fork);
  205. using testing::GTEST_FLAG(filter);
  206. using testing::GTEST_FLAG(list_tests);
  207. using testing::GTEST_FLAG(output);
  208. using testing::GTEST_FLAG(print_time);
  209. using testing::GTEST_FLAG(random_seed);
  210. using testing::GTEST_FLAG(repeat);
  211. using testing::GTEST_FLAG(show_internal_stack_frames);
  212. using testing::GTEST_FLAG(shuffle);
  213. using testing::GTEST_FLAG(stack_trace_depth);
  214. using testing::GTEST_FLAG(stream_result_to);
  215. using testing::GTEST_FLAG(throw_on_failure);
  216. using testing::IsNotSubstring;
  217. using testing::IsSubstring;
  218. using testing::Message;
  219. using testing::ScopedFakeTestPartResultReporter;
  220. using testing::StaticAssertTypeEq;
  221. using testing::Test;
  222. using testing::TestCase;
  223. using testing::TestEventListeners;
  224. using testing::TestInfo;
  225. using testing::TestPartResult;
  226. using testing::TestPartResultArray;
  227. using testing::TestProperty;
  228. using testing::TestResult;
  229. using testing::TimeInMillis;
  230. using testing::UnitTest;
  231. using testing::internal::AddReference;
  232. using testing::internal::AlwaysFalse;
  233. using testing::internal::AlwaysTrue;
  234. using testing::internal::AppendUserMessage;
  235. using testing::internal::ArrayAwareFind;
  236. using testing::internal::ArrayEq;
  237. using testing::internal::CodePointToUtf8;
  238. using testing::internal::CompileAssertTypesEqual;
  239. using testing::internal::CopyArray;
  240. using testing::internal::CountIf;
  241. using testing::internal::EqFailure;
  242. using testing::internal::FloatingPoint;
  243. using testing::internal::ForEach;
  244. using testing::internal::FormatEpochTimeInMillisAsIso8601;
  245. using testing::internal::FormatTimeInMillisAsSeconds;
  246. using testing::internal::GTestFlagSaver;
  247. using testing::internal::GetCurrentOsStackTraceExceptTop;
  248. using testing::internal::GetElementOr;
  249. using testing::internal::GetNextRandomSeed;
  250. using testing::internal::GetRandomSeedFromFlag;
  251. using testing::internal::GetTestTypeId;
  252. using testing::internal::GetTimeInMillis;
  253. using testing::internal::GetTypeId;
  254. using testing::internal::GetUnitTestImpl;
  255. using testing::internal::ImplicitlyConvertible;
  256. using testing::internal::Int32;
  257. using testing::internal::Int32FromEnvOrDie;
  258. using testing::internal::IsAProtocolMessage;
  259. using testing::internal::IsContainer;
  260. using testing::internal::IsContainerTest;
  261. using testing::internal::IsNotContainer;
  262. using testing::internal::NativeArray;
  263. using testing::internal::OsStackTraceGetter;
  264. using testing::internal::OsStackTraceGetterInterface;
  265. using testing::internal::ParseInt32Flag;
  266. using testing::internal::RelationToSourceCopy;
  267. using testing::internal::RelationToSourceReference;
  268. using testing::internal::RemoveConst;
  269. using testing::internal::RemoveReference;
  270. using testing::internal::ShouldRunTestOnShard;
  271. using testing::internal::ShouldShard;
  272. using testing::internal::ShouldUseColor;
  273. using testing::internal::Shuffle;
  274. using testing::internal::ShuffleRange;
  275. using testing::internal::SkipPrefix;
  276. using testing::internal::StreamableToString;
  277. using testing::internal::String;
  278. using testing::internal::TestEventListenersAccessor;
  279. using testing::internal::TestResultAccessor;
  280. using testing::internal::UInt32;
  281. using testing::internal::UnitTestImpl;
  282. using testing::internal::WideStringToUtf8;
  283. using testing::internal::edit_distance::CalculateOptimalEdits;
  284. using testing::internal::edit_distance::CreateUnifiedDiff;
  285. using testing::internal::edit_distance::EditType;
  286. using testing::internal::kMaxRandomSeed;
  287. using testing::internal::kTestTypeIdInGoogleTest;
  288. using testing::kMaxStackTraceDepth;
  289.  
  290. #if GTEST_HAS_STREAM_REDIRECTION
  291. using testing::internal::CaptureStdout;
  292. using testing::internal::GetCapturedStdout;
  293. #endif
  294.  
  295. #if GTEST_IS_THREADSAFE
  296. using testing::internal::ThreadWithParam;
  297. #endif
  298.  
  299. class TestingVector : public std::vector<int> {
  300. };
  301.  
  302. ::std::ostream& operator<<(::std::ostream& os,
  303.                            const TestingVector& vector) {
  304.   os << "{ ";
  305.   for (size_t i = 0; i < vector.size(); i++) {
  306.     os << vector[i] << " ";
  307.   }
  308.   os << "}";
  309.   return os;
  310. }
  311.  
  312. // This line tests that we can define tests in an unnamed namespace.
  313. namespace {
  314.  
  315. TEST(GetRandomSeedFromFlagTest, HandlesZero) {
  316.   const int seed = GetRandomSeedFromFlag(0);
  317.   EXPECT_LE(1, seed);
  318.   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
  319. }
  320.  
  321. TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
  322.   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
  323.   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
  324.   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
  325.   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
  326.             GetRandomSeedFromFlag(kMaxRandomSeed));
  327. }
  328.  
  329. TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
  330.   const int seed1 = GetRandomSeedFromFlag(-1);
  331.   EXPECT_LE(1, seed1);
  332.   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
  333.  
  334.   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
  335.   EXPECT_LE(1, seed2);
  336.   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
  337. }
  338.  
  339. TEST(GetNextRandomSeedTest, WorksForValidInput) {
  340.   EXPECT_EQ(2, GetNextRandomSeed(1));
  341.   EXPECT_EQ(3, GetNextRandomSeed(2));
  342.   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
  343.             GetNextRandomSeed(kMaxRandomSeed - 1));
  344.   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
  345.  
  346.   // We deliberately don't test GetNextRandomSeed() with invalid
  347.   // inputs, as that requires death tests, which are expensive.  This
  348.   // is fine as GetNextRandomSeed() is internal and has a
  349.   // straightforward definition.
  350. }
  351.  
  352. static void ClearCurrentTestPartResults() {
  353.   TestResultAccessor::ClearTestPartResults(
  354.       GetUnitTestImpl()->current_test_result());
  355. }
  356.  
  357. // Tests GetTypeId.
  358.  
  359. TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
  360.   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
  361.   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
  362. }
  363.  
  364. class SubClassOfTest : public Test {};
  365. class AnotherSubClassOfTest : public Test {};
  366.  
  367. TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
  368.   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
  369.   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
  370.   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
  371.   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
  372.   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
  373.   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
  374. }
  375.  
  376. // Verifies that GetTestTypeId() returns the same value, no matter it
  377. // is called from inside Google Test or outside of it.
  378. TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
  379.   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
  380. }
  381.  
  382. // Tests CanonicalizeForStdLibVersioning.
  383.  
  384. using ::testing::internal::CanonicalizeForStdLibVersioning;
  385.  
  386. TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
  387.   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
  388.   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
  389.   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
  390.   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
  391.   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
  392.   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
  393. }
  394.  
  395. TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
  396.   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
  397.   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
  398.  
  399.   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
  400.   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
  401.  
  402.   EXPECT_EQ("std::bind",
  403.             CanonicalizeForStdLibVersioning("std::__google::bind"));
  404.   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
  405. }
  406.  
  407. // Tests FormatTimeInMillisAsSeconds().
  408.  
  409. TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
  410.   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
  411. }
  412.  
  413. TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
  414.   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
  415.   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
  416.   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
  417.   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
  418.   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
  419. }
  420.  
  421. TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
  422.   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
  423.   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
  424.   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
  425.   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
  426.   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
  427. }
  428.  
  429. // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
  430. // for particular dates below was verified in Python using
  431. // datetime.datetime.fromutctimestamp(<timetamp>/1000).
  432.  
  433. // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
  434. // have to set up a particular timezone to obtain predictable results.
  435. class FormatEpochTimeInMillisAsIso8601Test : public Test {
  436.  public:
  437.   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
  438.   // 32 bits, even when 64-bit integer types are available.  We have to
  439.   // force the constants to have a 64-bit type here.
  440.   static const TimeInMillis kMillisPerSec = 1000;
  441.  
  442.  private:
  443.   virtual void SetUp() {
  444.     saved_tz_ = NULL;
  445.  
  446.     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv, strdup: deprecated */)
  447.     if (getenv("TZ"))
  448.       saved_tz_ = strdup(getenv("TZ"));
  449.     GTEST_DISABLE_MSC_DEPRECATED_POP_()
  450.  
  451.     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
  452.     // cannot use the local time zone because the function's output depends
  453.     // on the time zone.
  454.     SetTimeZone("UTC+00");
  455.   }
  456.  
  457.   virtual void TearDown() {
  458.     SetTimeZone(saved_tz_);
  459.     free(const_cast<char*>(saved_tz_));
  460.     saved_tz_ = NULL;
  461.   }
  462.  
  463.   static void SetTimeZone(const char* time_zone) {
  464.     // tzset() distinguishes between the TZ variable being present and empty
  465.     // and not being present, so we have to consider the case of time_zone
  466.     // being NULL.
  467. #if _MSC_VER || GTEST_OS_WINDOWS_MINGW
  468.     // ...Unless it's MSVC, whose standard library's _putenv doesn't
  469.     // distinguish between an empty and a missing variable.
  470.     const std::string env_var =
  471.         std::string("TZ=") + (time_zone ? time_zone : "");
  472.     _putenv(env_var.c_str());
  473.     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
  474.     tzset();
  475.     GTEST_DISABLE_MSC_WARNINGS_POP_()
  476. #else
  477.     if (time_zone) {
  478.       setenv(("TZ"), time_zone, 1);
  479.     } else {
  480.       unsetenv("TZ");
  481.     }
  482.     tzset();
  483. #endif
  484.   }
  485.  
  486.   const char* saved_tz_;
  487. };
  488.  
  489. const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
  490.  
  491. TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
  492.   EXPECT_EQ("2011-10-31T18:52:42",
  493.             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
  494. }
  495.  
  496. TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
  497.   EXPECT_EQ(
  498.       "2011-10-31T18:52:42",
  499.       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
  500. }
  501.  
  502. TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
  503.   EXPECT_EQ("2011-09-03T05:07:02",
  504.             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
  505. }
  506.  
  507. TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
  508.   EXPECT_EQ("2011-09-28T17:08:22",
  509.             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
  510. }
  511.  
  512. TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
  513.   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
  514. }
  515.  
  516. #if GTEST_CAN_COMPARE_NULL
  517.  
  518. # ifdef __BORLANDC__
  519. // Silences warnings: "Condition is always true", "Unreachable code"
  520. #  pragma option push -w-ccc -w-rch
  521. # endif
  522.  
  523. // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
  524. // pointer literal.
  525. TEST(NullLiteralTest, IsTrueForNullLiterals) {
  526.   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
  527.   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
  528.   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
  529.   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
  530. }
  531.  
  532. // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
  533. // pointer literal.
  534. TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
  535.   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
  536.   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
  537.   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
  538.   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
  539. }
  540.  
  541. # ifdef __BORLANDC__
  542. // Restores warnings after previous "#pragma option push" suppressed them.
  543. #  pragma option pop
  544. # endif
  545.  
  546. #endif  // GTEST_CAN_COMPARE_NULL
  547. //
  548. // Tests CodePointToUtf8().
  549.  
  550. // Tests that the NUL character L'\0' is encoded correctly.
  551. TEST(CodePointToUtf8Test, CanEncodeNul) {
  552.   EXPECT_EQ("", CodePointToUtf8(L'\0'));
  553. }
  554.  
  555. // Tests that ASCII characters are encoded correctly.
  556. TEST(CodePointToUtf8Test, CanEncodeAscii) {
  557.   EXPECT_EQ("a", CodePointToUtf8(L'a'));
  558.   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
  559.   EXPECT_EQ("&", CodePointToUtf8(L'&'));
  560.   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
  561. }
  562.  
  563. // Tests that Unicode code-points that have 8 to 11 bits are encoded
  564. // as 110xxxxx 10xxxxxx.
  565. TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
  566.   // 000 1101 0011 => 110-00011 10-010011
  567.   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
  568.  
  569.   // 101 0111 0110 => 110-10101 10-110110
  570.   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
  571.   // in wide strings and wide chars. In order to accommodate them, we have to
  572.   // introduce such character constants as integers.
  573.   EXPECT_EQ("\xD5\xB6",
  574.             CodePointToUtf8(static_cast<wchar_t>(0x576)));
  575. }
  576.  
  577. // Tests that Unicode code-points that have 12 to 16 bits are encoded
  578. // as 1110xxxx 10xxxxxx 10xxxxxx.
  579. TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
  580.   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
  581.   EXPECT_EQ("\xE0\xA3\x93",
  582.             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
  583.  
  584.   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
  585.   EXPECT_EQ("\xEC\x9D\x8D",
  586.             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
  587. }
  588.  
  589. #if !GTEST_WIDE_STRING_USES_UTF16_
  590. // Tests in this group require a wchar_t to hold > 16 bits, and thus
  591. // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
  592. // 16-bit wide. This code may not compile on those systems.
  593.  
  594. // Tests that Unicode code-points that have 17 to 21 bits are encoded
  595. // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
  596. TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
  597.   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
  598.   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
  599.  
  600.   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
  601.   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
  602.  
  603.   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
  604.   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
  605. }
  606.  
  607. // Tests that encoding an invalid code-point generates the expected result.
  608. TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
  609.   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
  610. }
  611.  
  612. #endif  // !GTEST_WIDE_STRING_USES_UTF16_
  613.  
  614. // Tests WideStringToUtf8().
  615.  
  616. // Tests that the NUL character L'\0' is encoded correctly.
  617. TEST(WideStringToUtf8Test, CanEncodeNul) {
  618.   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
  619.   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
  620. }
  621.  
  622. // Tests that ASCII strings are encoded correctly.
  623. TEST(WideStringToUtf8Test, CanEncodeAscii) {
  624.   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
  625.   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
  626.   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
  627.   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
  628. }
  629.  
  630. // Tests that Unicode code-points that have 8 to 11 bits are encoded
  631. // as 110xxxxx 10xxxxxx.
  632. TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
  633.   // 000 1101 0011 => 110-00011 10-010011
  634.   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
  635.   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
  636.  
  637.   // 101 0111 0110 => 110-10101 10-110110
  638.   const wchar_t s[] = { 0x576, '\0' };
  639.   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
  640.   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
  641. }
  642.  
  643. // Tests that Unicode code-points that have 12 to 16 bits are encoded
  644. // as 1110xxxx 10xxxxxx 10xxxxxx.
  645. TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
  646.   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
  647.   const wchar_t s1[] = { 0x8D3, '\0' };
  648.   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
  649.   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
  650.  
  651.   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
  652.   const wchar_t s2[] = { 0xC74D, '\0' };
  653.   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
  654.   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
  655. }
  656.  
  657. // Tests that the conversion stops when the function encounters \0 character.
  658. TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
  659.   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
  660. }
  661.  
  662. // Tests that the conversion stops when the function reaches the limit
  663. // specified by the 'length' parameter.
  664. TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
  665.   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
  666. }
  667.  
  668. #if !GTEST_WIDE_STRING_USES_UTF16_
  669. // Tests that Unicode code-points that have 17 to 21 bits are encoded
  670. // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
  671. // on the systems using UTF-16 encoding.
  672. TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
  673.   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
  674.   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
  675.   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
  676.  
  677.   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
  678.   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
  679.   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
  680. }
  681.  
  682. // Tests that encoding an invalid code-point generates the expected result.
  683. TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
  684.   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
  685.                WideStringToUtf8(L"\xABCDFF", -1).c_str());
  686. }
  687. #else  // !GTEST_WIDE_STRING_USES_UTF16_
  688. // Tests that surrogate pairs are encoded correctly on the systems using
  689. // UTF-16 encoding in the wide strings.
  690. TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
  691.   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
  692.   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
  693. }
  694.  
  695. // Tests that encoding an invalid UTF-16 surrogate pair
  696. // generates the expected result.
  697. TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
  698.   // Leading surrogate is at the end of the string.
  699.   const wchar_t s1[] = { 0xD800, '\0' };
  700.   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
  701.   // Leading surrogate is not followed by the trailing surrogate.
  702.   const wchar_t s2[] = { 0xD800, 'M', '\0' };
  703.   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
  704.   // Trailing surrogate appearas without a leading surrogate.
  705.   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
  706.   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
  707. }
  708. #endif  // !GTEST_WIDE_STRING_USES_UTF16_
  709.  
  710. // Tests that codepoint concatenation works correctly.
  711. #if !GTEST_WIDE_STRING_USES_UTF16_
  712. TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
  713.   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
  714.   EXPECT_STREQ(
  715.       "\xF4\x88\x98\xB4"
  716.           "\xEC\x9D\x8D"
  717.           "\n"
  718.           "\xD5\xB6"
  719.           "\xE0\xA3\x93"
  720.           "\xF4\x88\x98\xB4",
  721.       WideStringToUtf8(s, -1).c_str());
  722. }
  723. #else
  724. TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
  725.   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
  726.   EXPECT_STREQ(
  727.       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
  728.       WideStringToUtf8(s, -1).c_str());
  729. }
  730. #endif  // !GTEST_WIDE_STRING_USES_UTF16_
  731.  
  732. // Tests the Random class.
  733.  
  734. TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
  735.   testing::internal::Random random(42);
  736.   EXPECT_DEATH_IF_SUPPORTED(
  737.       random.Generate(0),
  738.       "Cannot generate a number in the range \\[0, 0\\)");
  739.   EXPECT_DEATH_IF_SUPPORTED(
  740.       random.Generate(testing::internal::Random::kMaxRange + 1),
  741.       "Generation of a number in \\[0, 2147483649\\) was requested, "
  742.       "but this can only generate numbers in \\[0, 2147483648\\)");
  743. }
  744.  
  745. TEST(RandomTest, GeneratesNumbersWithinRange) {
  746.   const UInt32 kRange = 10000;
  747.   testing::internal::Random random(12345);
  748.   for (int i = 0; i < 10; i++) {
  749.     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
  750.   }
  751.  
  752.   testing::internal::Random random2(testing::internal::Random::kMaxRange);
  753.   for (int i = 0; i < 10; i++) {
  754.     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
  755.   }
  756. }
  757.  
  758. TEST(RandomTest, RepeatsWhenReseeded) {
  759.   const int kSeed = 123;
  760.   const int kArraySize = 10;
  761.   const UInt32 kRange = 10000;
  762.   UInt32 values[kArraySize];
  763.  
  764.   testing::internal::Random random(kSeed);
  765.   for (int i = 0; i < kArraySize; i++) {
  766.     values[i] = random.Generate(kRange);
  767.   }
  768.  
  769.   random.Reseed(kSeed);
  770.   for (int i = 0; i < kArraySize; i++) {
  771.     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
  772.   }
  773. }
  774.  
  775. // Tests STL container utilities.
  776.  
  777. // Tests CountIf().
  778.  
  779. static bool IsPositive(int n) { return n > 0; }
  780.  
  781. TEST(ContainerUtilityTest, CountIf) {
  782.   std::vector<int> v;
  783.   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
  784.  
  785.   v.push_back(-1);
  786.   v.push_back(0);
  787.   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
  788.  
  789.   v.push_back(2);
  790.   v.push_back(-10);
  791.   v.push_back(10);
  792.   EXPECT_EQ(2, CountIf(v, IsPositive));
  793. }
  794.  
  795. // Tests ForEach().
  796.  
  797. static int g_sum = 0;
  798. static void Accumulate(int n) { g_sum += n; }
  799.  
  800. TEST(ContainerUtilityTest, ForEach) {
  801.   std::vector<int> v;
  802.   g_sum = 0;
  803.   ForEach(v, Accumulate);
  804.   EXPECT_EQ(0, g_sum);  // Works for an empty container;
  805.  
  806.   g_sum = 0;
  807.   v.push_back(1);
  808.   ForEach(v, Accumulate);
  809.   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
  810.  
  811.   g_sum = 0;
  812.   v.push_back(20);
  813.   v.push_back(300);
  814.   ForEach(v, Accumulate);
  815.   EXPECT_EQ(321, g_sum);
  816. }
  817.  
  818. // Tests GetElementOr().
  819. TEST(ContainerUtilityTest, GetElementOr) {
  820.   std::vector<char> a;
  821.   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
  822.  
  823.   a.push_back('a');
  824.   a.push_back('b');
  825.   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
  826.   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
  827.   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
  828.   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
  829. }
  830.  
  831. TEST(ContainerUtilityDeathTest, ShuffleRange) {
  832.   std::vector<int> a;
  833.   a.push_back(0);
  834.   a.push_back(1);
  835.   a.push_back(2);
  836.   testing::internal::Random random(1);
  837.  
  838.   EXPECT_DEATH_IF_SUPPORTED(
  839.       ShuffleRange(&random, -1, 1, &a),
  840.       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
  841.   EXPECT_DEATH_IF_SUPPORTED(
  842.       ShuffleRange(&random, 4, 4, &a),
  843.       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
  844.   EXPECT_DEATH_IF_SUPPORTED(
  845.       ShuffleRange(&random, 3, 2, &a),
  846.       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
  847.   EXPECT_DEATH_IF_SUPPORTED(
  848.       ShuffleRange(&random, 3, 4, &a),
  849.       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
  850. }
  851.  
  852. class VectorShuffleTest : public Test {
  853.  protected:
  854.   static const int kVectorSize = 20;
  855.  
  856.   VectorShuffleTest() : random_(1) {
  857.     for (int i = 0; i < kVectorSize; i++) {
  858.       vector_.push_back(i);
  859.     }
  860.   }
  861.  
  862.   static bool VectorIsCorrupt(const TestingVector& vector) {
  863.     if (kVectorSize != static_cast<int>(vector.size())) {
  864.       return true;
  865.     }
  866.  
  867.     bool found_in_vector[kVectorSize] = { false };
  868.     for (size_t i = 0; i < vector.size(); i++) {
  869.       const int e = vector[i];
  870.       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
  871.         return true;
  872.       }
  873.       found_in_vector[e] = true;
  874.     }
  875.  
  876.     // Vector size is correct, elements' range is correct, no
  877.     // duplicate elements.  Therefore no corruption has occurred.
  878.     return false;
  879.   }
  880.  
  881.   static bool VectorIsNotCorrupt(const TestingVector& vector) {
  882.     return !VectorIsCorrupt(vector);
  883.   }
  884.  
  885.   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
  886.     for (int i = begin; i < end; i++) {
  887.       if (i != vector[i]) {
  888.         return true;
  889.       }
  890.     }
  891.     return false;
  892.   }
  893.  
  894.   static bool RangeIsUnshuffled(
  895.       const TestingVector& vector, int begin, int end) {
  896.     return !RangeIsShuffled(vector, begin, end);
  897.   }
  898.  
  899.   static bool VectorIsShuffled(const TestingVector& vector) {
  900.     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
  901.   }
  902.  
  903.   static bool VectorIsUnshuffled(const TestingVector& vector) {
  904.     return !VectorIsShuffled(vector);
  905.   }
  906.  
  907.   testing::internal::Random random_;
  908.   TestingVector vector_;
  909. };  // class VectorShuffleTest
  910.  
  911. const int VectorShuffleTest::kVectorSize;
  912.  
  913. TEST_F(VectorShuffleTest, HandlesEmptyRange) {
  914.   // Tests an empty range at the beginning...
  915.   ShuffleRange(&random_, 0, 0, &vector_);
  916.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  917.   ASSERT_PRED1(VectorIsUnshuffled, vector_);
  918.  
  919.   // ...in the middle...
  920.   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
  921.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  922.   ASSERT_PRED1(VectorIsUnshuffled, vector_);
  923.  
  924.   // ...at the end...
  925.   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
  926.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  927.   ASSERT_PRED1(VectorIsUnshuffled, vector_);
  928.  
  929.   // ...and past the end.
  930.   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
  931.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  932.   ASSERT_PRED1(VectorIsUnshuffled, vector_);
  933. }
  934.  
  935. TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
  936.   // Tests a size one range at the beginning...
  937.   ShuffleRange(&random_, 0, 1, &vector_);
  938.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  939.   ASSERT_PRED1(VectorIsUnshuffled, vector_);
  940.  
  941.   // ...in the middle...
  942.   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
  943.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  944.   ASSERT_PRED1(VectorIsUnshuffled, vector_);
  945.  
  946.   // ...and at the end.
  947.   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
  948.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  949.   ASSERT_PRED1(VectorIsUnshuffled, vector_);
  950. }
  951.  
  952. // Because we use our own random number generator and a fixed seed,
  953. // we can guarantee that the following "random" tests will succeed.
  954.  
  955. TEST_F(VectorShuffleTest, ShufflesEntireVector) {
  956.   Shuffle(&random_, &vector_);
  957.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  958.   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
  959.  
  960.   // Tests the first and last elements in particular to ensure that
  961.   // there are no off-by-one problems in our shuffle algorithm.
  962.   EXPECT_NE(0, vector_[0]);
  963.   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
  964. }
  965.  
  966. TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
  967.   const int kRangeSize = kVectorSize/2;
  968.  
  969.   ShuffleRange(&random_, 0, kRangeSize, &vector_);
  970.  
  971.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  972.   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
  973.   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
  974. }
  975.  
  976. TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
  977.   const int kRangeSize = kVectorSize / 2;
  978.   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
  979.  
  980.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  981.   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
  982.   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
  983. }
  984.  
  985. TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
  986.   int kRangeSize = kVectorSize/3;
  987.   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
  988.  
  989.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  990.   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
  991.   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
  992.   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
  993. }
  994.  
  995. TEST_F(VectorShuffleTest, ShufflesRepeatably) {
  996.   TestingVector vector2;
  997.   for (int i = 0; i < kVectorSize; i++) {
  998.     vector2.push_back(i);
  999.   }
  1000.  
  1001.   random_.Reseed(1234);
  1002.   Shuffle(&random_, &vector_);
  1003.   random_.Reseed(1234);
  1004.   Shuffle(&random_, &vector2);
  1005.  
  1006.   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
  1007.   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
  1008.  
  1009.   for (int i = 0; i < kVectorSize; i++) {
  1010.     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
  1011.   }
  1012. }
  1013.  
  1014. // Tests the size of the AssertHelper class.
  1015.  
  1016. TEST(AssertHelperTest, AssertHelperIsSmall) {
  1017.   // To avoid breaking clients that use lots of assertions in one
  1018.   // function, we cannot grow the size of AssertHelper.
  1019.   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
  1020. }
  1021.  
  1022. // Tests String::EndsWithCaseInsensitive().
  1023. TEST(StringTest, EndsWithCaseInsensitive) {
  1024.   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
  1025.   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
  1026.   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
  1027.   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
  1028.  
  1029.   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
  1030.   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
  1031.   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
  1032. }
  1033.  
  1034. // C++Builder's preprocessor is buggy; it fails to expand macros that
  1035. // appear in macro parameters after wide char literals.  Provide an alias
  1036. // for NULL as a workaround.
  1037. static const wchar_t* const kNull = NULL;
  1038.  
  1039. // Tests String::CaseInsensitiveWideCStringEquals
  1040. TEST(StringTest, CaseInsensitiveWideCStringEquals) {
  1041.   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
  1042.   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
  1043.   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
  1044.   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
  1045.   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
  1046.   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
  1047.   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
  1048.   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
  1049. }
  1050.  
  1051. #if GTEST_OS_WINDOWS
  1052.  
  1053. // Tests String::ShowWideCString().
  1054. TEST(StringTest, ShowWideCString) {
  1055.   EXPECT_STREQ("(null)",
  1056.                String::ShowWideCString(NULL).c_str());
  1057.   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
  1058.   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
  1059. }
  1060.  
  1061. # if GTEST_OS_WINDOWS_MOBILE
  1062. TEST(StringTest, AnsiAndUtf16Null) {
  1063.   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
  1064.   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
  1065. }
  1066.  
  1067. TEST(StringTest, AnsiAndUtf16ConvertBasic) {
  1068.   const char* ansi = String::Utf16ToAnsi(L"str");
  1069.   EXPECT_STREQ("str", ansi);
  1070.   delete [] ansi;
  1071.   const WCHAR* utf16 = String::AnsiToUtf16("str");
  1072.   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
  1073.   delete [] utf16;
  1074. }
  1075.  
  1076. TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
  1077.   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
  1078.   EXPECT_STREQ(".:\\ \"*?", ansi);
  1079.   delete [] ansi;
  1080.   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
  1081.   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
  1082.   delete [] utf16;
  1083. }
  1084. # endif  // GTEST_OS_WINDOWS_MOBILE
  1085.  
  1086. #endif  // GTEST_OS_WINDOWS
  1087.  
  1088. // Tests TestProperty construction.
  1089. TEST(TestPropertyTest, StringValue) {
  1090.   TestProperty property("key", "1");
  1091.   EXPECT_STREQ("key", property.key());
  1092.   EXPECT_STREQ("1", property.value());
  1093. }
  1094.  
  1095. // Tests TestProperty replacing a value.
  1096. TEST(TestPropertyTest, ReplaceStringValue) {
  1097.   TestProperty property("key", "1");
  1098.   EXPECT_STREQ("1", property.value());
  1099.   property.SetValue("2");
  1100.   EXPECT_STREQ("2", property.value());
  1101. }
  1102.  
  1103. // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
  1104. // functions (i.e. their definitions cannot be inlined at the call
  1105. // sites), or C++Builder won't compile the code.
  1106. static void AddFatalFailure() {
  1107.   FAIL() << "Expected fatal failure.";
  1108. }
  1109.  
  1110. static void AddNonfatalFailure() {
  1111.   ADD_FAILURE() << "Expected non-fatal failure.";
  1112. }
  1113.  
  1114. class ScopedFakeTestPartResultReporterTest : public Test {
  1115.  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
  1116.   enum FailureMode {
  1117.     FATAL_FAILURE,
  1118.     NONFATAL_FAILURE
  1119.   };
  1120.   static void AddFailure(FailureMode failure) {
  1121.     if (failure == FATAL_FAILURE) {
  1122.       AddFatalFailure();
  1123.     } else {
  1124.       AddNonfatalFailure();
  1125.     }
  1126.   }
  1127. };
  1128.  
  1129. // Tests that ScopedFakeTestPartResultReporter intercepts test
  1130. // failures.
  1131. TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
  1132.   TestPartResultArray results;
  1133.   {
  1134.     ScopedFakeTestPartResultReporter reporter(
  1135.         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
  1136.         &results);
  1137.     AddFailure(NONFATAL_FAILURE);
  1138.     AddFailure(FATAL_FAILURE);
  1139.   }
  1140.  
  1141.   EXPECT_EQ(2, results.size());
  1142.   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
  1143.   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
  1144. }
  1145.  
  1146. TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
  1147.   TestPartResultArray results;
  1148.   {
  1149.     // Tests, that the deprecated constructor still works.
  1150.     ScopedFakeTestPartResultReporter reporter(&results);
  1151.     AddFailure(NONFATAL_FAILURE);
  1152.   }
  1153.   EXPECT_EQ(1, results.size());
  1154. }
  1155.  
  1156. #if GTEST_IS_THREADSAFE
  1157.  
  1158. class ScopedFakeTestPartResultReporterWithThreadsTest
  1159.   : public ScopedFakeTestPartResultReporterTest {
  1160.  protected:
  1161.   static void AddFailureInOtherThread(FailureMode failure) {
  1162.     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
  1163.     thread.Join();
  1164.   }
  1165. };
  1166.  
  1167. TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
  1168.        InterceptsTestFailuresInAllThreads) {
  1169.   TestPartResultArray results;
  1170.   {
  1171.     ScopedFakeTestPartResultReporter reporter(
  1172.         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
  1173.     AddFailure(NONFATAL_FAILURE);
  1174.     AddFailure(FATAL_FAILURE);
  1175.     AddFailureInOtherThread(NONFATAL_FAILURE);
  1176.     AddFailureInOtherThread(FATAL_FAILURE);
  1177.   }
  1178.  
  1179.   EXPECT_EQ(4, results.size());
  1180.   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
  1181.   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
  1182.   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
  1183.   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
  1184. }
  1185.  
  1186. #endif  // GTEST_IS_THREADSAFE
  1187.  
  1188. // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
  1189. // work even if the failure is generated in a called function rather than
  1190. // the current context.
  1191.  
  1192. typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
  1193.  
  1194. TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
  1195.   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
  1196. }
  1197.  
  1198. #if GTEST_HAS_GLOBAL_STRING
  1199. TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
  1200.   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
  1201. }
  1202. #endif
  1203.  
  1204. TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
  1205.   EXPECT_FATAL_FAILURE(AddFatalFailure(),
  1206.                        ::std::string("Expected fatal failure."));
  1207. }
  1208.  
  1209. TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
  1210.   // We have another test below to verify that the macro catches fatal
  1211.   // failures generated on another thread.
  1212.   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
  1213.                                       "Expected fatal failure.");
  1214. }
  1215.  
  1216. #ifdef __BORLANDC__
  1217. // Silences warnings: "Condition is always true"
  1218. # pragma option push -w-ccc
  1219. #endif
  1220.  
  1221. // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
  1222. // function even when the statement in it contains ASSERT_*.
  1223.  
  1224. int NonVoidFunction() {
  1225.   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
  1226.   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
  1227.   return 0;
  1228. }
  1229.  
  1230. TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
  1231.   NonVoidFunction();
  1232. }
  1233.  
  1234. // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
  1235. // current function even though 'statement' generates a fatal failure.
  1236.  
  1237. void DoesNotAbortHelper(bool* aborted) {
  1238.   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
  1239.   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
  1240.  
  1241.   *aborted = false;
  1242. }
  1243.  
  1244. #ifdef __BORLANDC__
  1245. // Restores warnings after previous "#pragma option push" suppressed them.
  1246. # pragma option pop
  1247. #endif
  1248.  
  1249. TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
  1250.   bool aborted = true;
  1251.   DoesNotAbortHelper(&aborted);
  1252.   EXPECT_FALSE(aborted);
  1253. }
  1254.  
  1255. // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
  1256. // statement that contains a macro which expands to code containing an
  1257. // unprotected comma.
  1258.  
  1259. static int global_var = 0;
  1260. #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
  1261.  
  1262. TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
  1263. #ifndef __BORLANDC__
  1264.   // ICE's in C++Builder.
  1265.   EXPECT_FATAL_FAILURE({
  1266.     GTEST_USE_UNPROTECTED_COMMA_;
  1267.     AddFatalFailure();
  1268.   }, "");
  1269. #endif
  1270.  
  1271.   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
  1272.     GTEST_USE_UNPROTECTED_COMMA_;
  1273.     AddFatalFailure();
  1274.   }, "");
  1275. }
  1276.  
  1277. // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
  1278.  
  1279. typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
  1280.  
  1281. TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
  1282.   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
  1283.                           "Expected non-fatal failure.");
  1284. }
  1285.  
  1286. #if GTEST_HAS_GLOBAL_STRING
  1287. TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
  1288.   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
  1289.                           ::string("Expected non-fatal failure."));
  1290. }
  1291. #endif
  1292.  
  1293. TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
  1294.   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
  1295.                           ::std::string("Expected non-fatal failure."));
  1296. }
  1297.  
  1298. TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
  1299.   // We have another test below to verify that the macro catches
  1300.   // non-fatal failures generated on another thread.
  1301.   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
  1302.                                          "Expected non-fatal failure.");
  1303. }
  1304.  
  1305. // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
  1306. // statement that contains a macro which expands to code containing an
  1307. // unprotected comma.
  1308. TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
  1309.   EXPECT_NONFATAL_FAILURE({
  1310.     GTEST_USE_UNPROTECTED_COMMA_;
  1311.     AddNonfatalFailure();
  1312.   }, "");
  1313.  
  1314.   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
  1315.     GTEST_USE_UNPROTECTED_COMMA_;
  1316.     AddNonfatalFailure();
  1317.   }, "");
  1318. }
  1319.  
  1320. #if GTEST_IS_THREADSAFE
  1321.  
  1322. typedef ScopedFakeTestPartResultReporterWithThreadsTest
  1323.     ExpectFailureWithThreadsTest;
  1324.  
  1325. TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
  1326.   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
  1327.                                       "Expected fatal failure.");
  1328. }
  1329.  
  1330. TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
  1331.   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
  1332.       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
  1333. }
  1334.  
  1335. #endif  // GTEST_IS_THREADSAFE
  1336.  
  1337. // Tests the TestProperty class.
  1338.  
  1339. TEST(TestPropertyTest, ConstructorWorks) {
  1340.   const TestProperty property("key", "value");
  1341.   EXPECT_STREQ("key", property.key());
  1342.   EXPECT_STREQ("value", property.value());
  1343. }
  1344.  
  1345. TEST(TestPropertyTest, SetValue) {
  1346.   TestProperty property("key", "value_1");
  1347.   EXPECT_STREQ("key", property.key());
  1348.   property.SetValue("value_2");
  1349.   EXPECT_STREQ("key", property.key());
  1350.   EXPECT_STREQ("value_2", property.value());
  1351. }
  1352.  
  1353. // Tests the TestResult class
  1354.  
  1355. // The test fixture for testing TestResult.
  1356. class TestResultTest : public Test {
  1357.  protected:
  1358.   typedef std::vector<TestPartResult> TPRVector;
  1359.  
  1360.   // We make use of 2 TestPartResult objects,
  1361.   TestPartResult * pr1, * pr2;
  1362.  
  1363.   // ... and 3 TestResult objects.
  1364.   TestResult * r0, * r1, * r2;
  1365.  
  1366.   virtual void SetUp() {
  1367.     // pr1 is for success.
  1368.     pr1 = new TestPartResult(TestPartResult::kSuccess,
  1369.                              "foo/bar.cc",
  1370.                              10,
  1371.                              "Success!");
  1372.  
  1373.     // pr2 is for fatal failure.
  1374.     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
  1375.                              "foo/bar.cc",
  1376.                              -1,  // This line number means "unknown"
  1377.                              "Failure!");
  1378.  
  1379.     // Creates the TestResult objects.
  1380.     r0 = new TestResult();
  1381.     r1 = new TestResult();
  1382.     r2 = new TestResult();
  1383.  
  1384.     // In order to test TestResult, we need to modify its internal
  1385.     // state, in particular the TestPartResult vector it holds.
  1386.     // test_part_results() returns a const reference to this vector.
  1387.     // We cast it to a non-const object s.t. it can be modified
  1388.     TPRVector* results1 = const_cast<TPRVector*>(
  1389.         &TestResultAccessor::test_part_results(*r1));
  1390.     TPRVector* results2 = const_cast<TPRVector*>(
  1391.         &TestResultAccessor::test_part_results(*r2));
  1392.  
  1393.     // r0 is an empty TestResult.
  1394.  
  1395.     // r1 contains a single SUCCESS TestPartResult.
  1396.     results1->push_back(*pr1);
  1397.  
  1398.     // r2 contains a SUCCESS, and a FAILURE.
  1399.     results2->push_back(*pr1);
  1400.     results2->push_back(*pr2);
  1401.   }
  1402.  
  1403.   virtual void TearDown() {
  1404.     delete pr1;
  1405.     delete pr2;
  1406.  
  1407.     delete r0;
  1408.     delete r1;
  1409.     delete r2;
  1410.   }
  1411.  
  1412.   // Helper that compares two TestPartResults.
  1413.   static void CompareTestPartResult(const TestPartResult& expected,
  1414.                                     const TestPartResult& actual) {
  1415.     EXPECT_EQ(expected.type(), actual.type());
  1416.     EXPECT_STREQ(expected.file_name(), actual.file_name());
  1417.     EXPECT_EQ(expected.line_number(), actual.line_number());
  1418.     EXPECT_STREQ(expected.summary(), actual.summary());
  1419.     EXPECT_STREQ(expected.message(), actual.message());
  1420.     EXPECT_EQ(expected.passed(), actual.passed());
  1421.     EXPECT_EQ(expected.failed(), actual.failed());
  1422.     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
  1423.     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
  1424.   }
  1425. };
  1426.  
  1427. // Tests TestResult::total_part_count().
  1428. TEST_F(TestResultTest, total_part_count) {
  1429.   ASSERT_EQ(0, r0->total_part_count());
  1430.   ASSERT_EQ(1, r1->total_part_count());
  1431.   ASSERT_EQ(2, r2->total_part_count());
  1432. }
  1433.  
  1434. // Tests TestResult::Passed().
  1435. TEST_F(TestResultTest, Passed) {
  1436.   ASSERT_TRUE(r0->Passed());
  1437.   ASSERT_TRUE(r1->Passed());
  1438.   ASSERT_FALSE(r2->Passed());
  1439. }
  1440.  
  1441. // Tests TestResult::Failed().
  1442. TEST_F(TestResultTest, Failed) {
  1443.   ASSERT_FALSE(r0->Failed());
  1444.   ASSERT_FALSE(r1->Failed());
  1445.   ASSERT_TRUE(r2->Failed());
  1446. }
  1447.  
  1448. // Tests TestResult::GetTestPartResult().
  1449.  
  1450. typedef TestResultTest TestResultDeathTest;
  1451.  
  1452. TEST_F(TestResultDeathTest, GetTestPartResult) {
  1453.   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
  1454.   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
  1455.   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
  1456.   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
  1457. }
  1458.  
  1459. // Tests TestResult has no properties when none are added.
  1460. TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
  1461.   TestResult test_result;
  1462.   ASSERT_EQ(0, test_result.test_property_count());
  1463. }
  1464.  
  1465. // Tests TestResult has the expected property when added.
  1466. TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
  1467.   TestResult test_result;
  1468.   TestProperty property("key_1", "1");
  1469.   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
  1470.   ASSERT_EQ(1, test_result.test_property_count());
  1471.   const TestProperty& actual_property = test_result.GetTestProperty(0);
  1472.   EXPECT_STREQ("key_1", actual_property.key());
  1473.   EXPECT_STREQ("1", actual_property.value());
  1474. }
  1475.  
  1476. // Tests TestResult has multiple properties when added.
  1477. TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
  1478.   TestResult test_result;
  1479.   TestProperty property_1("key_1", "1");
  1480.   TestProperty property_2("key_2", "2");
  1481.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
  1482.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
  1483.   ASSERT_EQ(2, test_result.test_property_count());
  1484.   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
  1485.   EXPECT_STREQ("key_1", actual_property_1.key());
  1486.   EXPECT_STREQ("1", actual_property_1.value());
  1487.  
  1488.   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
  1489.   EXPECT_STREQ("key_2", actual_property_2.key());
  1490.   EXPECT_STREQ("2", actual_property_2.value());
  1491. }
  1492.  
  1493. // Tests TestResult::RecordProperty() overrides values for duplicate keys.
  1494. TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
  1495.   TestResult test_result;
  1496.   TestProperty property_1_1("key_1", "1");
  1497.   TestProperty property_2_1("key_2", "2");
  1498.   TestProperty property_1_2("key_1", "12");
  1499.   TestProperty property_2_2("key_2", "22");
  1500.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
  1501.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
  1502.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
  1503.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
  1504.  
  1505.   ASSERT_EQ(2, test_result.test_property_count());
  1506.   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
  1507.   EXPECT_STREQ("key_1", actual_property_1.key());
  1508.   EXPECT_STREQ("12", actual_property_1.value());
  1509.  
  1510.   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
  1511.   EXPECT_STREQ("key_2", actual_property_2.key());
  1512.   EXPECT_STREQ("22", actual_property_2.value());
  1513. }
  1514.  
  1515. // Tests TestResult::GetTestProperty().
  1516. TEST(TestResultPropertyTest, GetTestProperty) {
  1517.   TestResult test_result;
  1518.   TestProperty property_1("key_1", "1");
  1519.   TestProperty property_2("key_2", "2");
  1520.   TestProperty property_3("key_3", "3");
  1521.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
  1522.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
  1523.   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
  1524.  
  1525.   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
  1526.   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
  1527.   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
  1528.  
  1529.   EXPECT_STREQ("key_1", fetched_property_1.key());
  1530.   EXPECT_STREQ("1", fetched_property_1.value());
  1531.  
  1532.   EXPECT_STREQ("key_2", fetched_property_2.key());
  1533.   EXPECT_STREQ("2", fetched_property_2.value());
  1534.  
  1535.   EXPECT_STREQ("key_3", fetched_property_3.key());
  1536.   EXPECT_STREQ("3", fetched_property_3.value());
  1537.  
  1538.   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
  1539.   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
  1540. }
  1541.  
  1542. // Tests the Test class.
  1543. //
  1544. // It's difficult to test every public method of this class (we are
  1545. // already stretching the limit of Google Test by using it to test itself!).
  1546. // Fortunately, we don't have to do that, as we are already testing
  1547. // the functionalities of the Test class extensively by using Google Test
  1548. // alone.
  1549. //
  1550. // Therefore, this section only contains one test.
  1551.  
  1552. // Tests that GTestFlagSaver works on Windows and Mac.
  1553.  
  1554. class GTestFlagSaverTest : public Test {
  1555.  protected:
  1556.   // Saves the Google Test flags such that we can restore them later, and
  1557.   // then sets them to their default values.  This will be called
  1558.   // before the first test in this test case is run.
  1559.   static void SetUpTestCase() {
  1560.     saver_ = new GTestFlagSaver;
  1561.  
  1562.     GTEST_FLAG(also_run_disabled_tests) = false;
  1563.     GTEST_FLAG(break_on_failure) = false;
  1564.     GTEST_FLAG(catch_exceptions) = false;
  1565.     GTEST_FLAG(death_test_use_fork) = false;
  1566.     GTEST_FLAG(color) = "auto";
  1567.     GTEST_FLAG(filter) = "";
  1568.     GTEST_FLAG(list_tests) = false;
  1569.     GTEST_FLAG(output) = "";
  1570.     GTEST_FLAG(print_time) = true;
  1571.     GTEST_FLAG(random_seed) = 0;
  1572.     GTEST_FLAG(repeat) = 1;
  1573.     GTEST_FLAG(shuffle) = false;
  1574.     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
  1575.     GTEST_FLAG(stream_result_to) = "";
  1576.     GTEST_FLAG(throw_on_failure) = false;
  1577.   }
  1578.  
  1579.   // Restores the Google Test flags that the tests have modified.  This will
  1580.   // be called after the last test in this test case is run.
  1581.   static void TearDownTestCase() {
  1582.     delete saver_;
  1583.     saver_ = NULL;
  1584.   }
  1585.  
  1586.   // Verifies that the Google Test flags have their default values, and then
  1587.   // modifies each of them.
  1588.   void VerifyAndModifyFlags() {
  1589.     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
  1590.     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
  1591.     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
  1592.     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
  1593.     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
  1594.     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
  1595.     EXPECT_FALSE(GTEST_FLAG(list_tests));
  1596.     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
  1597.     EXPECT_TRUE(GTEST_FLAG(print_time));
  1598.     EXPECT_EQ(0, GTEST_FLAG(random_seed));
  1599.     EXPECT_EQ(1, GTEST_FLAG(repeat));
  1600.     EXPECT_FALSE(GTEST_FLAG(shuffle));
  1601.     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
  1602.     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
  1603.     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
  1604.  
  1605.     GTEST_FLAG(also_run_disabled_tests) = true;
  1606.     GTEST_FLAG(break_on_failure) = true;
  1607.     GTEST_FLAG(catch_exceptions) = true;
  1608.     GTEST_FLAG(color) = "no";
  1609.     GTEST_FLAG(death_test_use_fork) = true;
  1610.     GTEST_FLAG(filter) = "abc";
  1611.     GTEST_FLAG(list_tests) = true;
  1612.     GTEST_FLAG(output) = "xml:foo.xml";
  1613.     GTEST_FLAG(print_time) = false;
  1614.     GTEST_FLAG(random_seed) = 1;
  1615.     GTEST_FLAG(repeat) = 100;
  1616.     GTEST_FLAG(shuffle) = true;
  1617.     GTEST_FLAG(stack_trace_depth) = 1;
  1618.     GTEST_FLAG(stream_result_to) = "localhost:1234";
  1619.     GTEST_FLAG(throw_on_failure) = true;
  1620.   }
  1621.  
  1622.  private:
  1623.   // For saving Google Test flags during this test case.
  1624.   static GTestFlagSaver* saver_;
  1625. };
  1626.  
  1627. GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
  1628.  
  1629. // Google Test doesn't guarantee the order of tests.  The following two
  1630. // tests are designed to work regardless of their order.
  1631.  
  1632. // Modifies the Google Test flags in the test body.
  1633. TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
  1634.   VerifyAndModifyFlags();
  1635. }
  1636.  
  1637. // Verifies that the Google Test flags in the body of the previous test were
  1638. // restored to their original values.
  1639. TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
  1640.   VerifyAndModifyFlags();
  1641. }
  1642.  
  1643. // Sets an environment variable with the given name to the given
  1644. // value.  If the value argument is "", unsets the environment
  1645. // variable.  The caller must ensure that both arguments are not NULL.
  1646. static void SetEnv(const char* name, const char* value) {
  1647. #if GTEST_OS_WINDOWS_MOBILE
  1648.   // Environment variables are not supported on Windows CE.
  1649.   return;
  1650. #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
  1651.   // C++Builder's putenv only stores a pointer to its parameter; we have to
  1652.   // ensure that the string remains valid as long as it might be needed.
  1653.   // We use an std::map to do so.
  1654.   static std::map<std::string, std::string*> added_env;
  1655.  
  1656.   // Because putenv stores a pointer to the string buffer, we can't delete the
  1657.   // previous string (if present) until after it's replaced.
  1658.   std::string *prev_env = NULL;
  1659.   if (added_env.find(name) != added_env.end()) {
  1660.     prev_env = added_env[name];
  1661.   }
  1662.   added_env[name] = new std::string(
  1663.       (Message() << name << "=" << value).GetString());
  1664.  
  1665.   // The standard signature of putenv accepts a 'char*' argument. Other
  1666.   // implementations, like C++Builder's, accept a 'const char*'.
  1667.   // We cast away the 'const' since that would work for both variants.
  1668.   putenv(const_cast<char*>(added_env[name]->c_str()));
  1669.   delete prev_env;
  1670. #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
  1671.   _putenv((Message() << name << "=" << value).GetString().c_str());
  1672. #else
  1673.   if (*value == '\0') {
  1674.     unsetenv(name);
  1675.   } else {
  1676.     setenv(name, value, 1);
  1677.   }
  1678. #endif  // GTEST_OS_WINDOWS_MOBILE
  1679. }
  1680.  
  1681. #if !GTEST_OS_WINDOWS_MOBILE
  1682. // Environment variables are not supported on Windows CE.
  1683.  
  1684. using testing::internal::Int32FromGTestEnv;
  1685.  
  1686. // Tests Int32FromGTestEnv().
  1687.  
  1688. // Tests that Int32FromGTestEnv() returns the default value when the
  1689. // environment variable is not set.
  1690. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
  1691.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
  1692.   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
  1693. }
  1694.  
  1695. # if !defined(GTEST_GET_INT32_FROM_ENV_)
  1696.  
  1697. // Tests that Int32FromGTestEnv() returns the default value when the
  1698. // environment variable overflows as an Int32.
  1699. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
  1700.   printf("(expecting 2 warnings)\n");
  1701.  
  1702.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
  1703.   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
  1704.  
  1705.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
  1706.   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
  1707. }
  1708.  
  1709. // Tests that Int32FromGTestEnv() returns the default value when the
  1710. // environment variable does not represent a valid decimal integer.
  1711. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
  1712.   printf("(expecting 2 warnings)\n");
  1713.  
  1714.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
  1715.   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
  1716.  
  1717.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
  1718.   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
  1719. }
  1720.  
  1721. # endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
  1722.  
  1723. // Tests that Int32FromGTestEnv() parses and returns the value of the
  1724. // environment variable when it represents a valid decimal integer in
  1725. // the range of an Int32.
  1726. TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
  1727.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
  1728.   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
  1729.  
  1730.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
  1731.   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
  1732. }
  1733. #endif  // !GTEST_OS_WINDOWS_MOBILE
  1734.  
  1735. // Tests ParseInt32Flag().
  1736.  
  1737. // Tests that ParseInt32Flag() returns false and doesn't change the
  1738. // output value when the flag has wrong format
  1739. TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
  1740.   Int32 value = 123;
  1741.   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
  1742.   EXPECT_EQ(123, value);
  1743.  
  1744.   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
  1745.   EXPECT_EQ(123, value);
  1746. }
  1747.  
  1748. // Tests that ParseInt32Flag() returns false and doesn't change the
  1749. // output value when the flag overflows as an Int32.
  1750. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
  1751.   printf("(expecting 2 warnings)\n");
  1752.  
  1753.   Int32 value = 123;
  1754.   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
  1755.   EXPECT_EQ(123, value);
  1756.  
  1757.   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
  1758.   EXPECT_EQ(123, value);
  1759. }
  1760.  
  1761. // Tests that ParseInt32Flag() returns false and doesn't change the
  1762. // output value when the flag does not represent a valid decimal
  1763. // integer.
  1764. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
  1765.   printf("(expecting 2 warnings)\n");
  1766.  
  1767.   Int32 value = 123;
  1768.   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
  1769.   EXPECT_EQ(123, value);
  1770.  
  1771.   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
  1772.   EXPECT_EQ(123, value);
  1773. }
  1774.  
  1775. // Tests that ParseInt32Flag() parses the value of the flag and
  1776. // returns true when the flag represents a valid decimal integer in
  1777. // the range of an Int32.
  1778. TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
  1779.   Int32 value = 123;
  1780.   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
  1781.   EXPECT_EQ(456, value);
  1782.  
  1783.   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
  1784.                              "abc", &value));
  1785.   EXPECT_EQ(-789, value);
  1786. }
  1787.  
  1788. // Tests that Int32FromEnvOrDie() parses the value of the var or
  1789. // returns the correct default.
  1790. // Environment variables are not supported on Windows CE.
  1791. #if !GTEST_OS_WINDOWS_MOBILE
  1792. TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
  1793.   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
  1794.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
  1795.   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
  1796.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
  1797.   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
  1798. }
  1799. #endif  // !GTEST_OS_WINDOWS_MOBILE
  1800.  
  1801. // Tests that Int32FromEnvOrDie() aborts with an error message
  1802. // if the variable is not an Int32.
  1803. TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
  1804.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
  1805.   EXPECT_DEATH_IF_SUPPORTED(
  1806.       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
  1807.       ".*");
  1808. }
  1809.  
  1810. // Tests that Int32FromEnvOrDie() aborts with an error message
  1811. // if the variable cannot be represented by an Int32.
  1812. TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
  1813.   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
  1814.   EXPECT_DEATH_IF_SUPPORTED(
  1815.       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
  1816.       ".*");
  1817. }
  1818.  
  1819. // Tests that ShouldRunTestOnShard() selects all tests
  1820. // where there is 1 shard.
  1821. TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
  1822.   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
  1823.   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
  1824.   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
  1825.   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
  1826.   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
  1827. }
  1828.  
  1829. class ShouldShardTest : public testing::Test {
  1830.  protected:
  1831.   virtual void SetUp() {
  1832.     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
  1833.     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
  1834.   }
  1835.  
  1836.   virtual void TearDown() {
  1837.     SetEnv(index_var_, "");
  1838.     SetEnv(total_var_, "");
  1839.   }
  1840.  
  1841.   const char* index_var_;
  1842.   const char* total_var_;
  1843. };
  1844.  
  1845. // Tests that sharding is disabled if neither of the environment variables
  1846. // are set.
  1847. TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
  1848.   SetEnv(index_var_, "");
  1849.   SetEnv(total_var_, "");
  1850.  
  1851.   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
  1852.   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
  1853. }
  1854.  
  1855. // Tests that sharding is not enabled if total_shards  == 1.
  1856. TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
  1857.   SetEnv(index_var_, "0");
  1858.   SetEnv(total_var_, "1");
  1859.   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
  1860.   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
  1861. }
  1862.  
  1863. // Tests that sharding is enabled if total_shards > 1 and
  1864. // we are not in a death test subprocess.
  1865. // Environment variables are not supported on Windows CE.
  1866. #if !GTEST_OS_WINDOWS_MOBILE
  1867. TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
  1868.   SetEnv(index_var_, "4");
  1869.   SetEnv(total_var_, "22");
  1870.   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
  1871.   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
  1872.  
  1873.   SetEnv(index_var_, "8");
  1874.   SetEnv(total_var_, "9");
  1875.   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
  1876.   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
  1877.  
  1878.   SetEnv(index_var_, "0");
  1879.   SetEnv(total_var_, "9");
  1880.   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
  1881.   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
  1882. }
  1883. #endif  // !GTEST_OS_WINDOWS_MOBILE
  1884.  
  1885. // Tests that we exit in error if the sharding values are not valid.
  1886.  
  1887. typedef ShouldShardTest ShouldShardDeathTest;
  1888.  
  1889. TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
  1890.   SetEnv(index_var_, "4");
  1891.   SetEnv(total_var_, "4");
  1892.   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
  1893.  
  1894.   SetEnv(index_var_, "4");
  1895.   SetEnv(total_var_, "-2");
  1896.   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
  1897.  
  1898.   SetEnv(index_var_, "5");
  1899.   SetEnv(total_var_, "");
  1900.   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
  1901.  
  1902.   SetEnv(index_var_, "");
  1903.   SetEnv(total_var_, "5");
  1904.   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
  1905. }
  1906.  
  1907. // Tests that ShouldRunTestOnShard is a partition when 5
  1908. // shards are used.
  1909. TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
  1910.   // Choose an arbitrary number of tests and shards.
  1911.   const int num_tests = 17;
  1912.   const int num_shards = 5;
  1913.  
  1914.   // Check partitioning: each test should be on exactly 1 shard.
  1915.   for (int test_id = 0; test_id < num_tests; test_id++) {
  1916.     int prev_selected_shard_index = -1;
  1917.     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
  1918.       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
  1919.         if (prev_selected_shard_index < 0) {
  1920.           prev_selected_shard_index = shard_index;
  1921.         } else {
  1922.           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
  1923.             << shard_index << " are both selected to run test " << test_id;
  1924.         }
  1925.       }
  1926.     }
  1927.   }
  1928.  
  1929.   // Check balance: This is not required by the sharding protocol, but is a
  1930.   // desirable property for performance.
  1931.   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
  1932.     int num_tests_on_shard = 0;
  1933.     for (int test_id = 0; test_id < num_tests; test_id++) {
  1934.       num_tests_on_shard +=
  1935.         ShouldRunTestOnShard(num_shards, shard_index, test_id);
  1936.     }
  1937.     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
  1938.   }
  1939. }
  1940.  
  1941. // For the same reason we are not explicitly testing everything in the
  1942. // Test class, there are no separate tests for the following classes
  1943. // (except for some trivial cases):
  1944. //
  1945. //   TestCase, UnitTest, UnitTestResultPrinter.
  1946. //
  1947. // Similarly, there are no separate tests for the following macros:
  1948. //
  1949. //   TEST, TEST_F, RUN_ALL_TESTS
  1950.  
  1951. TEST(UnitTestTest, CanGetOriginalWorkingDir) {
  1952.   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
  1953.   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
  1954. }
  1955.  
  1956. TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
  1957.   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
  1958.   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
  1959. }
  1960.  
  1961. // When a property using a reserved key is supplied to this function, it
  1962. // tests that a non-fatal failure is added, a fatal failure is not added,
  1963. // and that the property is not recorded.
  1964. void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
  1965.     const TestResult& test_result, const char* key) {
  1966.   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
  1967.   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
  1968.                                                   << "' recorded unexpectedly.";
  1969. }
  1970.  
  1971. void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
  1972.     const char* key) {
  1973.   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
  1974.   ASSERT_TRUE(test_info != NULL);
  1975.   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
  1976.                                                         key);
  1977. }
  1978.  
  1979. void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
  1980.     const char* key) {
  1981.   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
  1982.   ASSERT_TRUE(test_case != NULL);
  1983.   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
  1984.       test_case->ad_hoc_test_result(), key);
  1985. }
  1986.  
  1987. void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  1988.     const char* key) {
  1989.   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
  1990.       UnitTest::GetInstance()->ad_hoc_test_result(), key);
  1991. }
  1992.  
  1993. // Tests that property recording functions in UnitTest outside of tests
  1994. // functions correcly.  Creating a separate instance of UnitTest ensures it
  1995. // is in a state similar to the UnitTest's singleton's between tests.
  1996. class UnitTestRecordPropertyTest :
  1997.     public testing::internal::UnitTestRecordPropertyTestHelper {
  1998.  public:
  1999.   static void SetUpTestCase() {
  2000.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
  2001.         "disabled");
  2002.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
  2003.         "errors");
  2004.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
  2005.         "failures");
  2006.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
  2007.         "name");
  2008.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
  2009.         "tests");
  2010.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
  2011.         "time");
  2012.  
  2013.     Test::RecordProperty("test_case_key_1", "1");
  2014.     const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
  2015.     ASSERT_TRUE(test_case != NULL);
  2016.  
  2017.     ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
  2018.     EXPECT_STREQ("test_case_key_1",
  2019.                  test_case->ad_hoc_test_result().GetTestProperty(0).key());
  2020.     EXPECT_STREQ("1",
  2021.                  test_case->ad_hoc_test_result().GetTestProperty(0).value());
  2022.   }
  2023. };
  2024.  
  2025. // Tests TestResult has the expected property when added.
  2026. TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
  2027.   UnitTestRecordProperty("key_1", "1");
  2028.  
  2029.   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
  2030.  
  2031.   EXPECT_STREQ("key_1",
  2032.                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
  2033.   EXPECT_STREQ("1",
  2034.                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
  2035. }
  2036.  
  2037. // Tests TestResult has multiple properties when added.
  2038. TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
  2039.   UnitTestRecordProperty("key_1", "1");
  2040.   UnitTestRecordProperty("key_2", "2");
  2041.  
  2042.   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
  2043.  
  2044.   EXPECT_STREQ("key_1",
  2045.                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
  2046.   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
  2047.  
  2048.   EXPECT_STREQ("key_2",
  2049.                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
  2050.   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
  2051. }
  2052.  
  2053. // Tests TestResult::RecordProperty() overrides values for duplicate keys.
  2054. TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
  2055.   UnitTestRecordProperty("key_1", "1");
  2056.   UnitTestRecordProperty("key_2", "2");
  2057.   UnitTestRecordProperty("key_1", "12");
  2058.   UnitTestRecordProperty("key_2", "22");
  2059.  
  2060.   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
  2061.  
  2062.   EXPECT_STREQ("key_1",
  2063.                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
  2064.   EXPECT_STREQ("12",
  2065.                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
  2066.  
  2067.   EXPECT_STREQ("key_2",
  2068.                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
  2069.   EXPECT_STREQ("22",
  2070.                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
  2071. }
  2072.  
  2073. TEST_F(UnitTestRecordPropertyTest,
  2074.        AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
  2075.   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
  2076.       "name");
  2077.   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
  2078.       "value_param");
  2079.   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
  2080.       "type_param");
  2081.   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
  2082.       "status");
  2083.   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
  2084.       "time");
  2085.   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
  2086.       "classname");
  2087. }
  2088.  
  2089. TEST_F(UnitTestRecordPropertyTest,
  2090.        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
  2091.   EXPECT_NONFATAL_FAILURE(
  2092.       Test::RecordProperty("name", "1"),
  2093.       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
  2094.       " 'file', and 'line' are reserved");
  2095. }
  2096.  
  2097. class UnitTestRecordPropertyTestEnvironment : public Environment {
  2098.  public:
  2099.   virtual void TearDown() {
  2100.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2101.         "tests");
  2102.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2103.         "failures");
  2104.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2105.         "disabled");
  2106.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2107.         "errors");
  2108.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2109.         "name");
  2110.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2111.         "timestamp");
  2112.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2113.         "time");
  2114.     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
  2115.         "random_seed");
  2116.   }
  2117. };
  2118.  
  2119. // This will test property recording outside of any test or test case.
  2120. static Environment* record_property_env =
  2121.     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
  2122.  
  2123. // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
  2124. // of various arities.  They do not attempt to be exhaustive.  Rather,
  2125. // view them as smoke tests that can be easily reviewed and verified.
  2126. // A more complete set of tests for predicate assertions can be found
  2127. // in gtest_pred_impl_unittest.cc.
  2128.  
  2129. // First, some predicates and predicate-formatters needed by the tests.
  2130.  
  2131. // Returns true iff the argument is an even number.
  2132. bool IsEven(int n) {
  2133.   return (n % 2) == 0;
  2134. }
  2135.  
  2136. // A functor that returns true iff the argument is an even number.
  2137. struct IsEvenFunctor {
  2138.   bool operator()(int n) { return IsEven(n); }
  2139. };
  2140.  
  2141. // A predicate-formatter function that asserts the argument is an even
  2142. // number.
  2143. AssertionResult AssertIsEven(const char* expr, int n) {
  2144.   if (IsEven(n)) {
  2145.     return AssertionSuccess();
  2146.   }
  2147.  
  2148.   Message msg;
  2149.   msg << expr << " evaluates to " << n << ", which is not even.";
  2150.   return AssertionFailure(msg);
  2151. }
  2152.  
  2153. // A predicate function that returns AssertionResult for use in
  2154. // EXPECT/ASSERT_TRUE/FALSE.
  2155. AssertionResult ResultIsEven(int n) {
  2156.   if (IsEven(n))
  2157.     return AssertionSuccess() << n << " is even";
  2158.   else
  2159.     return AssertionFailure() << n << " is odd";
  2160. }
  2161.  
  2162. // A predicate function that returns AssertionResult but gives no
  2163. // explanation why it succeeds. Needed for testing that
  2164. // EXPECT/ASSERT_FALSE handles such functions correctly.
  2165. AssertionResult ResultIsEvenNoExplanation(int n) {
  2166.   if (IsEven(n))
  2167.     return AssertionSuccess();
  2168.   else
  2169.     return AssertionFailure() << n << " is odd";
  2170. }
  2171.  
  2172. // A predicate-formatter functor that asserts the argument is an even
  2173. // number.
  2174. struct AssertIsEvenFunctor {
  2175.   AssertionResult operator()(const char* expr, int n) {
  2176.     return AssertIsEven(expr, n);
  2177.   }
  2178. };
  2179.  
  2180. // Returns true iff the sum of the arguments is an even number.
  2181. bool SumIsEven2(int n1, int n2) {
  2182.   return IsEven(n1 + n2);
  2183. }
  2184.  
  2185. // A functor that returns true iff the sum of the arguments is an even
  2186. // number.
  2187. struct SumIsEven3Functor {
  2188.   bool operator()(int n1, int n2, int n3) {
  2189.     return IsEven(n1 + n2 + n3);
  2190.   }
  2191. };
  2192.  
  2193. // A predicate-formatter function that asserts the sum of the
  2194. // arguments is an even number.
  2195. AssertionResult AssertSumIsEven4(
  2196.     const char* e1, const char* e2, const char* e3, const char* e4,
  2197.     int n1, int n2, int n3, int n4) {
  2198.   const int sum = n1 + n2 + n3 + n4;
  2199.   if (IsEven(sum)) {
  2200.     return AssertionSuccess();
  2201.   }
  2202.  
  2203.   Message msg;
  2204.   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
  2205.       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
  2206.       << ") evaluates to " << sum << ", which is not even.";
  2207.   return AssertionFailure(msg);
  2208. }
  2209.  
  2210. // A predicate-formatter functor that asserts the sum of the arguments
  2211. // is an even number.
  2212. struct AssertSumIsEven5Functor {
  2213.   AssertionResult operator()(
  2214.       const char* e1, const char* e2, const char* e3, const char* e4,
  2215.       const char* e5, int n1, int n2, int n3, int n4, int n5) {
  2216.     const int sum = n1 + n2 + n3 + n4 + n5;
  2217.     if (IsEven(sum)) {
  2218.       return AssertionSuccess();
  2219.     }
  2220.  
  2221.     Message msg;
  2222.     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
  2223.         << " ("
  2224.         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
  2225.         << ") evaluates to " << sum << ", which is not even.";
  2226.     return AssertionFailure(msg);
  2227.   }
  2228. };
  2229.  
  2230.  
  2231. // Tests unary predicate assertions.
  2232.  
  2233. // Tests unary predicate assertions that don't use a custom formatter.
  2234. TEST(Pred1Test, WithoutFormat) {
  2235.   // Success cases.
  2236.   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
  2237.   ASSERT_PRED1(IsEven, 4);
  2238.  
  2239.   // Failure cases.
  2240.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2241.     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
  2242.   }, "This failure is expected.");
  2243.   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
  2244.                        "evaluates to false");
  2245. }
  2246.  
  2247. // Tests unary predicate assertions that use a custom formatter.
  2248. TEST(Pred1Test, WithFormat) {
  2249.   // Success cases.
  2250.   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
  2251.   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
  2252.     << "This failure is UNEXPECTED!";
  2253.  
  2254.   // Failure cases.
  2255.   const int n = 5;
  2256.   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
  2257.                           "n evaluates to 5, which is not even.");
  2258.   EXPECT_FATAL_FAILURE({  // NOLINT
  2259.     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
  2260.   }, "This failure is expected.");
  2261. }
  2262.  
  2263. // Tests that unary predicate assertions evaluates their arguments
  2264. // exactly once.
  2265. TEST(Pred1Test, SingleEvaluationOnFailure) {
  2266.   // A success case.
  2267.   static int n = 0;
  2268.   EXPECT_PRED1(IsEven, n++);
  2269.   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
  2270.  
  2271.   // A failure case.
  2272.   EXPECT_FATAL_FAILURE({  // NOLINT
  2273.     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
  2274.         << "This failure is expected.";
  2275.   }, "This failure is expected.");
  2276.   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
  2277. }
  2278.  
  2279.  
  2280. // Tests predicate assertions whose arity is >= 2.
  2281.  
  2282. // Tests predicate assertions that don't use a custom formatter.
  2283. TEST(PredTest, WithoutFormat) {
  2284.   // Success cases.
  2285.   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
  2286.   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
  2287.  
  2288.   // Failure cases.
  2289.   const int n1 = 1;
  2290.   const int n2 = 2;
  2291.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2292.     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
  2293.   }, "This failure is expected.");
  2294.   EXPECT_FATAL_FAILURE({  // NOLINT
  2295.     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
  2296.   }, "evaluates to false");
  2297. }
  2298.  
  2299. // Tests predicate assertions that use a custom formatter.
  2300. TEST(PredTest, WithFormat) {
  2301.   // Success cases.
  2302.   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
  2303.     "This failure is UNEXPECTED!";
  2304.   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
  2305.  
  2306.   // Failure cases.
  2307.   const int n1 = 1;
  2308.   const int n2 = 2;
  2309.   const int n3 = 4;
  2310.   const int n4 = 6;
  2311.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2312.     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
  2313.   }, "evaluates to 13, which is not even.");
  2314.   EXPECT_FATAL_FAILURE({  // NOLINT
  2315.     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
  2316.         << "This failure is expected.";
  2317.   }, "This failure is expected.");
  2318. }
  2319.  
  2320. // Tests that predicate assertions evaluates their arguments
  2321. // exactly once.
  2322. TEST(PredTest, SingleEvaluationOnFailure) {
  2323.   // A success case.
  2324.   int n1 = 0;
  2325.   int n2 = 0;
  2326.   EXPECT_PRED2(SumIsEven2, n1++, n2++);
  2327.   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
  2328.   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
  2329.  
  2330.   // Another success case.
  2331.   n1 = n2 = 0;
  2332.   int n3 = 0;
  2333.   int n4 = 0;
  2334.   int n5 = 0;
  2335.   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
  2336.                       n1++, n2++, n3++, n4++, n5++)
  2337.                         << "This failure is UNEXPECTED!";
  2338.   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
  2339.   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
  2340.   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
  2341.   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
  2342.   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
  2343.  
  2344.   // A failure case.
  2345.   n1 = n2 = n3 = 0;
  2346.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2347.     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
  2348.         << "This failure is expected.";
  2349.   }, "This failure is expected.");
  2350.   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
  2351.   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
  2352.   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
  2353.  
  2354.   // Another failure case.
  2355.   n1 = n2 = n3 = n4 = 0;
  2356.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2357.     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
  2358.   }, "evaluates to 1, which is not even.");
  2359.   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
  2360.   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
  2361.   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
  2362.   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
  2363. }
  2364.  
  2365.  
  2366. // Some helper functions for testing using overloaded/template
  2367. // functions with ASSERT_PREDn and EXPECT_PREDn.
  2368.  
  2369. bool IsPositive(double x) {
  2370.   return x > 0;
  2371. }
  2372.  
  2373. template <typename T>
  2374. bool IsNegative(T x) {
  2375.   return x < 0;
  2376. }
  2377.  
  2378. template <typename T1, typename T2>
  2379. bool GreaterThan(T1 x1, T2 x2) {
  2380.   return x1 > x2;
  2381. }
  2382.  
  2383. // Tests that overloaded functions can be used in *_PRED* as long as
  2384. // their types are explicitly specified.
  2385. TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
  2386.   // C++Builder requires C-style casts rather than static_cast.
  2387.   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
  2388.   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
  2389. }
  2390.  
  2391. // Tests that template functions can be used in *_PRED* as long as
  2392. // their types are explicitly specified.
  2393. TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
  2394.   EXPECT_PRED1(IsNegative<int>, -5);
  2395.   // Makes sure that we can handle templates with more than one
  2396.   // parameter.
  2397.   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
  2398. }
  2399.  
  2400.  
  2401. // Some helper functions for testing using overloaded/template
  2402. // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
  2403.  
  2404. AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
  2405.   return n > 0 ? AssertionSuccess() :
  2406.       AssertionFailure(Message() << "Failure");
  2407. }
  2408.  
  2409. AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
  2410.   return x > 0 ? AssertionSuccess() :
  2411.       AssertionFailure(Message() << "Failure");
  2412. }
  2413.  
  2414. template <typename T>
  2415. AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
  2416.   return x < 0 ? AssertionSuccess() :
  2417.       AssertionFailure(Message() << "Failure");
  2418. }
  2419.  
  2420. template <typename T1, typename T2>
  2421. AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
  2422.                              const T1& x1, const T2& x2) {
  2423.   return x1 == x2 ? AssertionSuccess() :
  2424.       AssertionFailure(Message() << "Failure");
  2425. }
  2426.  
  2427. // Tests that overloaded functions can be used in *_PRED_FORMAT*
  2428. // without explicitly specifying their types.
  2429. TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
  2430.   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
  2431.   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
  2432. }
  2433.  
  2434. // Tests that template functions can be used in *_PRED_FORMAT* without
  2435. // explicitly specifying their types.
  2436. TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
  2437.   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
  2438.   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
  2439. }
  2440.  
  2441.  
  2442. // Tests string assertions.
  2443.  
  2444. // Tests ASSERT_STREQ with non-NULL arguments.
  2445. TEST(StringAssertionTest, ASSERT_STREQ) {
  2446.   const char * const p1 = "good";
  2447.   ASSERT_STREQ(p1, p1);
  2448.  
  2449.   // Let p2 have the same content as p1, but be at a different address.
  2450.   const char p2[] = "good";
  2451.   ASSERT_STREQ(p1, p2);
  2452.  
  2453.   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
  2454.                        "  \"bad\"\n  \"good\"");
  2455. }
  2456.  
  2457. // Tests ASSERT_STREQ with NULL arguments.
  2458. TEST(StringAssertionTest, ASSERT_STREQ_Null) {
  2459.   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
  2460.   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
  2461.                        "non-null");
  2462. }
  2463.  
  2464. // Tests ASSERT_STREQ with NULL arguments.
  2465. TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
  2466.   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
  2467.                        "non-null");
  2468. }
  2469.  
  2470. // Tests ASSERT_STRNE.
  2471. TEST(StringAssertionTest, ASSERT_STRNE) {
  2472.   ASSERT_STRNE("hi", "Hi");
  2473.   ASSERT_STRNE("Hi", NULL);
  2474.   ASSERT_STRNE(NULL, "Hi");
  2475.   ASSERT_STRNE("", NULL);
  2476.   ASSERT_STRNE(NULL, "");
  2477.   ASSERT_STRNE("", "Hi");
  2478.   ASSERT_STRNE("Hi", "");
  2479.   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
  2480.                        "\"Hi\" vs \"Hi\"");
  2481. }
  2482.  
  2483. // Tests ASSERT_STRCASEEQ.
  2484. TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
  2485.   ASSERT_STRCASEEQ("hi", "Hi");
  2486.   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
  2487.  
  2488.   ASSERT_STRCASEEQ("", "");
  2489.   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
  2490.                        "Ignoring case");
  2491. }
  2492.  
  2493. // Tests ASSERT_STRCASENE.
  2494. TEST(StringAssertionTest, ASSERT_STRCASENE) {
  2495.   ASSERT_STRCASENE("hi1", "Hi2");
  2496.   ASSERT_STRCASENE("Hi", NULL);
  2497.   ASSERT_STRCASENE(NULL, "Hi");
  2498.   ASSERT_STRCASENE("", NULL);
  2499.   ASSERT_STRCASENE(NULL, "");
  2500.   ASSERT_STRCASENE("", "Hi");
  2501.   ASSERT_STRCASENE("Hi", "");
  2502.   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
  2503.                        "(ignoring case)");
  2504. }
  2505.  
  2506. // Tests *_STREQ on wide strings.
  2507. TEST(StringAssertionTest, STREQ_Wide) {
  2508.   // NULL strings.
  2509.   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
  2510.  
  2511.   // Empty strings.
  2512.   ASSERT_STREQ(L"", L"");
  2513.  
  2514.   // Non-null vs NULL.
  2515.   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
  2516.                           "non-null");
  2517.  
  2518.   // Equal strings.
  2519.   EXPECT_STREQ(L"Hi", L"Hi");
  2520.  
  2521.   // Unequal strings.
  2522.   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
  2523.                           "Abc");
  2524.  
  2525.   // Strings containing wide characters.
  2526.   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
  2527.                           "abc");
  2528.  
  2529.   // The streaming variation.
  2530.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2531.     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
  2532.   }, "Expected failure");
  2533. }
  2534.  
  2535. // Tests *_STRNE on wide strings.
  2536. TEST(StringAssertionTest, STRNE_Wide) {
  2537.   // NULL strings.
  2538.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2539.     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
  2540.   }, "");
  2541.  
  2542.   // Empty strings.
  2543.   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
  2544.                           "L\"\"");
  2545.  
  2546.   // Non-null vs NULL.
  2547.   ASSERT_STRNE(L"non-null", NULL);
  2548.  
  2549.   // Equal strings.
  2550.   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
  2551.                           "L\"Hi\"");
  2552.  
  2553.   // Unequal strings.
  2554.   EXPECT_STRNE(L"abc", L"Abc");
  2555.  
  2556.   // Strings containing wide characters.
  2557.   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
  2558.                           "abc");
  2559.  
  2560.   // The streaming variation.
  2561.   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
  2562. }
  2563.  
  2564. // Tests for ::testing::IsSubstring().
  2565.  
  2566. // Tests that IsSubstring() returns the correct result when the input
  2567. // argument type is const char*.
  2568. TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
  2569.   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
  2570.   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
  2571.   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
  2572.  
  2573.   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
  2574.   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
  2575. }
  2576.  
  2577. // Tests that IsSubstring() returns the correct result when the input
  2578. // argument type is const wchar_t*.
  2579. TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
  2580.   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
  2581.   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
  2582.   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
  2583.  
  2584.   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
  2585.   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
  2586. }
  2587.  
  2588. // Tests that IsSubstring() generates the correct message when the input
  2589. // argument type is const char*.
  2590. TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
  2591.   EXPECT_STREQ("Value of: needle_expr\n"
  2592.                "  Actual: \"needle\"\n"
  2593.                "Expected: a substring of haystack_expr\n"
  2594.                "Which is: \"haystack\"",
  2595.                IsSubstring("needle_expr", "haystack_expr",
  2596.                            "needle", "haystack").failure_message());
  2597. }
  2598.  
  2599. // Tests that IsSubstring returns the correct result when the input
  2600. // argument type is ::std::string.
  2601. TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
  2602.   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
  2603.   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
  2604. }
  2605.  
  2606. #if GTEST_HAS_STD_WSTRING
  2607. // Tests that IsSubstring returns the correct result when the input
  2608. // argument type is ::std::wstring.
  2609. TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
  2610.   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
  2611.   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
  2612. }
  2613.  
  2614. // Tests that IsSubstring() generates the correct message when the input
  2615. // argument type is ::std::wstring.
  2616. TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
  2617.   EXPECT_STREQ("Value of: needle_expr\n"
  2618.                "  Actual: L\"needle\"\n"
  2619.                "Expected: a substring of haystack_expr\n"
  2620.                "Which is: L\"haystack\"",
  2621.                IsSubstring(
  2622.                    "needle_expr", "haystack_expr",
  2623.                    ::std::wstring(L"needle"), L"haystack").failure_message());
  2624. }
  2625.  
  2626. #endif  // GTEST_HAS_STD_WSTRING
  2627.  
  2628. // Tests for ::testing::IsNotSubstring().
  2629.  
  2630. // Tests that IsNotSubstring() returns the correct result when the input
  2631. // argument type is const char*.
  2632. TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
  2633.   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
  2634.   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
  2635. }
  2636.  
  2637. // Tests that IsNotSubstring() returns the correct result when the input
  2638. // argument type is const wchar_t*.
  2639. TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
  2640.   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
  2641.   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
  2642. }
  2643.  
  2644. // Tests that IsNotSubstring() generates the correct message when the input
  2645. // argument type is const wchar_t*.
  2646. TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
  2647.   EXPECT_STREQ("Value of: needle_expr\n"
  2648.                "  Actual: L\"needle\"\n"
  2649.                "Expected: not a substring of haystack_expr\n"
  2650.                "Which is: L\"two needles\"",
  2651.                IsNotSubstring(
  2652.                    "needle_expr", "haystack_expr",
  2653.                    L"needle", L"two needles").failure_message());
  2654. }
  2655.  
  2656. // Tests that IsNotSubstring returns the correct result when the input
  2657. // argument type is ::std::string.
  2658. TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
  2659.   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
  2660.   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
  2661. }
  2662.  
  2663. // Tests that IsNotSubstring() generates the correct message when the input
  2664. // argument type is ::std::string.
  2665. TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
  2666.   EXPECT_STREQ("Value of: needle_expr\n"
  2667.                "  Actual: \"needle\"\n"
  2668.                "Expected: not a substring of haystack_expr\n"
  2669.                "Which is: \"two needles\"",
  2670.                IsNotSubstring(
  2671.                    "needle_expr", "haystack_expr",
  2672.                    ::std::string("needle"), "two needles").failure_message());
  2673. }
  2674.  
  2675. #if GTEST_HAS_STD_WSTRING
  2676.  
  2677. // Tests that IsNotSubstring returns the correct result when the input
  2678. // argument type is ::std::wstring.
  2679. TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
  2680.   EXPECT_FALSE(
  2681.       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
  2682.   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
  2683. }
  2684.  
  2685. #endif  // GTEST_HAS_STD_WSTRING
  2686.  
  2687. // Tests floating-point assertions.
  2688.  
  2689. template <typename RawType>
  2690. class FloatingPointTest : public Test {
  2691.  protected:
  2692.   // Pre-calculated numbers to be used by the tests.
  2693.   struct TestValues {
  2694.     RawType close_to_positive_zero;
  2695.     RawType close_to_negative_zero;
  2696.     RawType further_from_negative_zero;
  2697.  
  2698.     RawType close_to_one;
  2699.     RawType further_from_one;
  2700.  
  2701.     RawType infinity;
  2702.     RawType close_to_infinity;
  2703.     RawType further_from_infinity;
  2704.  
  2705.     RawType nan1;
  2706.     RawType nan2;
  2707.   };
  2708.  
  2709.   typedef typename testing::internal::FloatingPoint<RawType> Floating;
  2710.   typedef typename Floating::Bits Bits;
  2711.  
  2712.   virtual void SetUp() {
  2713.     const size_t max_ulps = Floating::kMaxUlps;
  2714.  
  2715.     // The bits that represent 0.0.
  2716.     const Bits zero_bits = Floating(0).bits();
  2717.  
  2718.     // Makes some numbers close to 0.0.
  2719.     values_.close_to_positive_zero = Floating::ReinterpretBits(
  2720.         zero_bits + max_ulps/2);
  2721.     values_.close_to_negative_zero = -Floating::ReinterpretBits(
  2722.         zero_bits + max_ulps - max_ulps/2);
  2723.     values_.further_from_negative_zero = -Floating::ReinterpretBits(
  2724.         zero_bits + max_ulps + 1 - max_ulps/2);
  2725.  
  2726.     // The bits that represent 1.0.
  2727.     const Bits one_bits = Floating(1).bits();
  2728.  
  2729.     // Makes some numbers close to 1.0.
  2730.     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
  2731.     values_.further_from_one = Floating::ReinterpretBits(
  2732.         one_bits + max_ulps + 1);
  2733.  
  2734.     // +infinity.
  2735.     values_.infinity = Floating::Infinity();
  2736.  
  2737.     // The bits that represent +infinity.
  2738.     const Bits infinity_bits = Floating(values_.infinity).bits();
  2739.  
  2740.     // Makes some numbers close to infinity.
  2741.     values_.close_to_infinity = Floating::ReinterpretBits(
  2742.         infinity_bits - max_ulps);
  2743.     values_.further_from_infinity = Floating::ReinterpretBits(
  2744.         infinity_bits - max_ulps - 1);
  2745.  
  2746.     // Makes some NAN's.  Sets the most significant bit of the fraction so that
  2747.     // our NaN's are quiet; trying to process a signaling NaN would raise an
  2748.     // exception if our environment enables floating point exceptions.
  2749.     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
  2750.         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
  2751.     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
  2752.         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
  2753.   }
  2754.  
  2755.   void TestSize() {
  2756.     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
  2757.   }
  2758.  
  2759.   static TestValues values_;
  2760. };
  2761.  
  2762. template <typename RawType>
  2763. typename FloatingPointTest<RawType>::TestValues
  2764.     FloatingPointTest<RawType>::values_;
  2765.  
  2766. // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
  2767. typedef FloatingPointTest<float> FloatTest;
  2768.  
  2769. // Tests that the size of Float::Bits matches the size of float.
  2770. TEST_F(FloatTest, Size) {
  2771.   TestSize();
  2772. }
  2773.  
  2774. // Tests comparing with +0 and -0.
  2775. TEST_F(FloatTest, Zeros) {
  2776.   EXPECT_FLOAT_EQ(0.0, -0.0);
  2777.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
  2778.                           "1.0");
  2779.   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
  2780.                        "1.5");
  2781. }
  2782.  
  2783. // Tests comparing numbers close to 0.
  2784. //
  2785. // This ensures that *_FLOAT_EQ handles the sign correctly and no
  2786. // overflow occurs when comparing numbers whose absolute value is very
  2787. // small.
  2788. TEST_F(FloatTest, AlmostZeros) {
  2789.   // In C++Builder, names within local classes (such as used by
  2790.   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
  2791.   // scoping class.  Use a static local alias as a workaround.
  2792.   // We use the assignment syntax since some compilers, like Sun Studio,
  2793.   // don't allow initializing references using construction syntax
  2794.   // (parentheses).
  2795.   static const FloatTest::TestValues& v = this->values_;
  2796.  
  2797.   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
  2798.   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
  2799.   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
  2800.  
  2801.   EXPECT_FATAL_FAILURE({  // NOLINT
  2802.     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
  2803.                     v.further_from_negative_zero);
  2804.   }, "v.further_from_negative_zero");
  2805. }
  2806.  
  2807. // Tests comparing numbers close to each other.
  2808. TEST_F(FloatTest, SmallDiff) {
  2809.   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
  2810.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
  2811.                           "values_.further_from_one");
  2812. }
  2813.  
  2814. // Tests comparing numbers far apart.
  2815. TEST_F(FloatTest, LargeDiff) {
  2816.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
  2817.                           "3.0");
  2818. }
  2819.  
  2820. // Tests comparing with infinity.
  2821. //
  2822. // This ensures that no overflow occurs when comparing numbers whose
  2823. // absolute value is very large.
  2824. TEST_F(FloatTest, Infinity) {
  2825.   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
  2826.   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
  2827. #if !GTEST_OS_SYMBIAN
  2828.   // Nokia's STLport crashes if we try to output infinity or NaN.
  2829.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
  2830.                           "-values_.infinity");
  2831.  
  2832.   // This is interesting as the representations of infinity and nan1
  2833.   // are only 1 DLP apart.
  2834.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
  2835.                           "values_.nan1");
  2836. #endif  // !GTEST_OS_SYMBIAN
  2837. }
  2838.  
  2839. // Tests that comparing with NAN always returns false.
  2840. TEST_F(FloatTest, NaN) {
  2841. #if !GTEST_OS_SYMBIAN
  2842. // Nokia's STLport crashes if we try to output infinity or NaN.
  2843.  
  2844.   // In C++Builder, names within local classes (such as used by
  2845.   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
  2846.   // scoping class.  Use a static local alias as a workaround.
  2847.   // We use the assignment syntax since some compilers, like Sun Studio,
  2848.   // don't allow initializing references using construction syntax
  2849.   // (parentheses).
  2850.   static const FloatTest::TestValues& v = this->values_;
  2851.  
  2852.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
  2853.                           "v.nan1");
  2854.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
  2855.                           "v.nan2");
  2856.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
  2857.                           "v.nan1");
  2858.  
  2859.   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
  2860.                        "v.infinity");
  2861. #endif  // !GTEST_OS_SYMBIAN
  2862. }
  2863.  
  2864. // Tests that *_FLOAT_EQ are reflexive.
  2865. TEST_F(FloatTest, Reflexive) {
  2866.   EXPECT_FLOAT_EQ(0.0, 0.0);
  2867.   EXPECT_FLOAT_EQ(1.0, 1.0);
  2868.   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
  2869. }
  2870.  
  2871. // Tests that *_FLOAT_EQ are commutative.
  2872. TEST_F(FloatTest, Commutative) {
  2873.   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
  2874.   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
  2875.  
  2876.   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
  2877.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
  2878.                           "1.0");
  2879. }
  2880.  
  2881. // Tests EXPECT_NEAR.
  2882. TEST_F(FloatTest, EXPECT_NEAR) {
  2883.   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
  2884.   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
  2885.   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
  2886.                           "The difference between 1.0f and 1.5f is 0.5, "
  2887.                           "which exceeds 0.25f");
  2888.   // To work around a bug in gcc 2.95.0, there is intentionally no
  2889.   // space after the first comma in the previous line.
  2890. }
  2891.  
  2892. // Tests ASSERT_NEAR.
  2893. TEST_F(FloatTest, ASSERT_NEAR) {
  2894.   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
  2895.   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
  2896.   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
  2897.                        "The difference between 1.0f and 1.5f is 0.5, "
  2898.                        "which exceeds 0.25f");
  2899.   // To work around a bug in gcc 2.95.0, there is intentionally no
  2900.   // space after the first comma in the previous line.
  2901. }
  2902.  
  2903. // Tests the cases where FloatLE() should succeed.
  2904. TEST_F(FloatTest, FloatLESucceeds) {
  2905.   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
  2906.   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
  2907.  
  2908.   // or when val1 is greater than, but almost equals to, val2.
  2909.   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
  2910. }
  2911.  
  2912. // Tests the cases where FloatLE() should fail.
  2913. TEST_F(FloatTest, FloatLEFails) {
  2914.   // When val1 is greater than val2 by a large margin,
  2915.   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
  2916.                           "(2.0f) <= (1.0f)");
  2917.  
  2918.   // or by a small yet non-negligible margin,
  2919.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2920.     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
  2921.   }, "(values_.further_from_one) <= (1.0f)");
  2922.  
  2923. #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
  2924.   // Nokia's STLport crashes if we try to output infinity or NaN.
  2925.   // C++Builder gives bad results for ordered comparisons involving NaNs
  2926.   // due to compiler bugs.
  2927.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2928.     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
  2929.   }, "(values_.nan1) <= (values_.infinity)");
  2930.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  2931.     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
  2932.   }, "(-values_.infinity) <= (values_.nan1)");
  2933.   EXPECT_FATAL_FAILURE({  // NOLINT
  2934.     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
  2935.   }, "(values_.nan1) <= (values_.nan1)");
  2936. #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
  2937. }
  2938.  
  2939. // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
  2940. typedef FloatingPointTest<double> DoubleTest;
  2941.  
  2942. // Tests that the size of Double::Bits matches the size of double.
  2943. TEST_F(DoubleTest, Size) {
  2944.   TestSize();
  2945. }
  2946.  
  2947. // Tests comparing with +0 and -0.
  2948. TEST_F(DoubleTest, Zeros) {
  2949.   EXPECT_DOUBLE_EQ(0.0, -0.0);
  2950.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
  2951.                           "1.0");
  2952.   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
  2953.                        "1.0");
  2954. }
  2955.  
  2956. // Tests comparing numbers close to 0.
  2957. //
  2958. // This ensures that *_DOUBLE_EQ handles the sign correctly and no
  2959. // overflow occurs when comparing numbers whose absolute value is very
  2960. // small.
  2961. TEST_F(DoubleTest, AlmostZeros) {
  2962.   // In C++Builder, names within local classes (such as used by
  2963.   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
  2964.   // scoping class.  Use a static local alias as a workaround.
  2965.   // We use the assignment syntax since some compilers, like Sun Studio,
  2966.   // don't allow initializing references using construction syntax
  2967.   // (parentheses).
  2968.   static const DoubleTest::TestValues& v = this->values_;
  2969.  
  2970.   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
  2971.   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
  2972.   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
  2973.  
  2974.   EXPECT_FATAL_FAILURE({  // NOLINT
  2975.     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
  2976.                      v.further_from_negative_zero);
  2977.   }, "v.further_from_negative_zero");
  2978. }
  2979.  
  2980. // Tests comparing numbers close to each other.
  2981. TEST_F(DoubleTest, SmallDiff) {
  2982.   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
  2983.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
  2984.                           "values_.further_from_one");
  2985. }
  2986.  
  2987. // Tests comparing numbers far apart.
  2988. TEST_F(DoubleTest, LargeDiff) {
  2989.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
  2990.                           "3.0");
  2991. }
  2992.  
  2993. // Tests comparing with infinity.
  2994. //
  2995. // This ensures that no overflow occurs when comparing numbers whose
  2996. // absolute value is very large.
  2997. TEST_F(DoubleTest, Infinity) {
  2998.   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
  2999.   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
  3000. #if !GTEST_OS_SYMBIAN
  3001.   // Nokia's STLport crashes if we try to output infinity or NaN.
  3002.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
  3003.                           "-values_.infinity");
  3004.  
  3005.   // This is interesting as the representations of infinity_ and nan1_
  3006.   // are only 1 DLP apart.
  3007.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
  3008.                           "values_.nan1");
  3009. #endif  // !GTEST_OS_SYMBIAN
  3010. }
  3011.  
  3012. // Tests that comparing with NAN always returns false.
  3013. TEST_F(DoubleTest, NaN) {
  3014. #if !GTEST_OS_SYMBIAN
  3015.   // In C++Builder, names within local classes (such as used by
  3016.   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
  3017.   // scoping class.  Use a static local alias as a workaround.
  3018.   // We use the assignment syntax since some compilers, like Sun Studio,
  3019.   // don't allow initializing references using construction syntax
  3020.   // (parentheses).
  3021.   static const DoubleTest::TestValues& v = this->values_;
  3022.  
  3023.   // Nokia's STLport crashes if we try to output infinity or NaN.
  3024.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
  3025.                           "v.nan1");
  3026.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
  3027.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
  3028.   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
  3029.                        "v.infinity");
  3030. #endif  // !GTEST_OS_SYMBIAN
  3031. }
  3032.  
  3033. // Tests that *_DOUBLE_EQ are reflexive.
  3034. TEST_F(DoubleTest, Reflexive) {
  3035.   EXPECT_DOUBLE_EQ(0.0, 0.0);
  3036.   EXPECT_DOUBLE_EQ(1.0, 1.0);
  3037. #if !GTEST_OS_SYMBIAN
  3038.   // Nokia's STLport crashes if we try to output infinity or NaN.
  3039.   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
  3040. #endif  // !GTEST_OS_SYMBIAN
  3041. }
  3042.  
  3043. // Tests that *_DOUBLE_EQ are commutative.
  3044. TEST_F(DoubleTest, Commutative) {
  3045.   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
  3046.   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
  3047.  
  3048.   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
  3049.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
  3050.                           "1.0");
  3051. }
  3052.  
  3053. // Tests EXPECT_NEAR.
  3054. TEST_F(DoubleTest, EXPECT_NEAR) {
  3055.   EXPECT_NEAR(-1.0, -1.1, 0.2);
  3056.   EXPECT_NEAR(2.0, 3.0, 1.0);
  3057.   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
  3058.                           "The difference between 1.0 and 1.5 is 0.5, "
  3059.                           "which exceeds 0.25");
  3060.   // To work around a bug in gcc 2.95.0, there is intentionally no
  3061.   // space after the first comma in the previous statement.
  3062. }
  3063.  
  3064. // Tests ASSERT_NEAR.
  3065. TEST_F(DoubleTest, ASSERT_NEAR) {
  3066.   ASSERT_NEAR(-1.0, -1.1, 0.2);
  3067.   ASSERT_NEAR(2.0, 3.0, 1.0);
  3068.   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
  3069.                        "The difference between 1.0 and 1.5 is 0.5, "
  3070.                        "which exceeds 0.25");
  3071.   // To work around a bug in gcc 2.95.0, there is intentionally no
  3072.   // space after the first comma in the previous statement.
  3073. }
  3074.  
  3075. // Tests the cases where DoubleLE() should succeed.
  3076. TEST_F(DoubleTest, DoubleLESucceeds) {
  3077.   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
  3078.   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
  3079.  
  3080.   // or when val1 is greater than, but almost equals to, val2.
  3081.   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
  3082. }
  3083.  
  3084. // Tests the cases where DoubleLE() should fail.
  3085. TEST_F(DoubleTest, DoubleLEFails) {
  3086.   // When val1 is greater than val2 by a large margin,
  3087.   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
  3088.                           "(2.0) <= (1.0)");
  3089.  
  3090.   // or by a small yet non-negligible margin,
  3091.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  3092.     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
  3093.   }, "(values_.further_from_one) <= (1.0)");
  3094.  
  3095. #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
  3096.   // Nokia's STLport crashes if we try to output infinity or NaN.
  3097.   // C++Builder gives bad results for ordered comparisons involving NaNs
  3098.   // due to compiler bugs.
  3099.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  3100.     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
  3101.   }, "(values_.nan1) <= (values_.infinity)");
  3102.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  3103.     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
  3104.   }, " (-values_.infinity) <= (values_.nan1)");
  3105.   EXPECT_FATAL_FAILURE({  // NOLINT
  3106.     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
  3107.   }, "(values_.nan1) <= (values_.nan1)");
  3108. #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
  3109. }
  3110.  
  3111.  
  3112. // Verifies that a test or test case whose name starts with DISABLED_ is
  3113. // not run.
  3114.  
  3115. // A test whose name starts with DISABLED_.
  3116. // Should not run.
  3117. TEST(DisabledTest, DISABLED_TestShouldNotRun) {
  3118.   FAIL() << "Unexpected failure: Disabled test should not be run.";
  3119. }
  3120.  
  3121. // A test whose name does not start with DISABLED_.
  3122. // Should run.
  3123. TEST(DisabledTest, NotDISABLED_TestShouldRun) {
  3124.   EXPECT_EQ(1, 1);
  3125. }
  3126.  
  3127. // A test case whose name starts with DISABLED_.
  3128. // Should not run.
  3129. TEST(DISABLED_TestCase, TestShouldNotRun) {
  3130.   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
  3131. }
  3132.  
  3133. // A test case and test whose names start with DISABLED_.
  3134. // Should not run.
  3135. TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
  3136.   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
  3137. }
  3138.  
  3139. // Check that when all tests in a test case are disabled, SetUpTestCase() and
  3140. // TearDownTestCase() are not called.
  3141. class DisabledTestsTest : public Test {
  3142.  protected:
  3143.   static void SetUpTestCase() {
  3144.     FAIL() << "Unexpected failure: All tests disabled in test case. "
  3145.               "SetUpTestCase() should not be called.";
  3146.   }
  3147.  
  3148.   static void TearDownTestCase() {
  3149.     FAIL() << "Unexpected failure: All tests disabled in test case. "
  3150.               "TearDownTestCase() should not be called.";
  3151.   }
  3152. };
  3153.  
  3154. TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
  3155.   FAIL() << "Unexpected failure: Disabled test should not be run.";
  3156. }
  3157.  
  3158. TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
  3159.   FAIL() << "Unexpected failure: Disabled test should not be run.";
  3160. }
  3161.  
  3162. // Tests that disabled typed tests aren't run.
  3163.  
  3164. #if GTEST_HAS_TYPED_TEST
  3165.  
  3166. template <typename T>
  3167. class TypedTest : public Test {
  3168. };
  3169.  
  3170. typedef testing::Types<int, double> NumericTypes;
  3171. TYPED_TEST_CASE(TypedTest, NumericTypes);
  3172.  
  3173. TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
  3174.   FAIL() << "Unexpected failure: Disabled typed test should not run.";
  3175. }
  3176.  
  3177. template <typename T>
  3178. class DISABLED_TypedTest : public Test {
  3179. };
  3180.  
  3181. TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
  3182.  
  3183. TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
  3184.   FAIL() << "Unexpected failure: Disabled typed test should not run.";
  3185. }
  3186.  
  3187. #endif  // GTEST_HAS_TYPED_TEST
  3188.  
  3189. // Tests that disabled type-parameterized tests aren't run.
  3190.  
  3191. #if GTEST_HAS_TYPED_TEST_P
  3192.  
  3193. template <typename T>
  3194. class TypedTestP : public Test {
  3195. };
  3196.  
  3197. TYPED_TEST_CASE_P(TypedTestP);
  3198.  
  3199. TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
  3200.   FAIL() << "Unexpected failure: "
  3201.          << "Disabled type-parameterized test should not run.";
  3202. }
  3203.  
  3204. REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
  3205.  
  3206. INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
  3207.  
  3208. template <typename T>
  3209. class DISABLED_TypedTestP : public Test {
  3210. };
  3211.  
  3212. TYPED_TEST_CASE_P(DISABLED_TypedTestP);
  3213.  
  3214. TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
  3215.   FAIL() << "Unexpected failure: "
  3216.          << "Disabled type-parameterized test should not run.";
  3217. }
  3218.  
  3219. REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
  3220.  
  3221. INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
  3222.  
  3223. #endif  // GTEST_HAS_TYPED_TEST_P
  3224.  
  3225. // Tests that assertion macros evaluate their arguments exactly once.
  3226.  
  3227. class SingleEvaluationTest : public Test {
  3228.  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
  3229.   // This helper function is needed by the FailedASSERT_STREQ test
  3230.   // below.  It's public to work around C++Builder's bug with scoping local
  3231.   // classes.
  3232.   static void CompareAndIncrementCharPtrs() {
  3233.     ASSERT_STREQ(p1_++, p2_++);
  3234.   }
  3235.  
  3236.   // This helper function is needed by the FailedASSERT_NE test below.  It's
  3237.   // public to work around C++Builder's bug with scoping local classes.
  3238.   static void CompareAndIncrementInts() {
  3239.     ASSERT_NE(a_++, b_++);
  3240.   }
  3241.  
  3242.  protected:
  3243.   SingleEvaluationTest() {
  3244.     p1_ = s1_;
  3245.     p2_ = s2_;
  3246.     a_ = 0;
  3247.     b_ = 0;
  3248.   }
  3249.  
  3250.   static const char* const s1_;
  3251.   static const char* const s2_;
  3252.   static const char* p1_;
  3253.   static const char* p2_;
  3254.  
  3255.   static int a_;
  3256.   static int b_;
  3257. };
  3258.  
  3259. const char* const SingleEvaluationTest::s1_ = "01234";
  3260. const char* const SingleEvaluationTest::s2_ = "abcde";
  3261. const char* SingleEvaluationTest::p1_;
  3262. const char* SingleEvaluationTest::p2_;
  3263. int SingleEvaluationTest::a_;
  3264. int SingleEvaluationTest::b_;
  3265.  
  3266. // Tests that when ASSERT_STREQ fails, it evaluates its arguments
  3267. // exactly once.
  3268. TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
  3269.   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
  3270.                        "p2_++");
  3271.   EXPECT_EQ(s1_ + 1, p1_);
  3272.   EXPECT_EQ(s2_ + 1, p2_);
  3273. }
  3274.  
  3275. // Tests that string assertion arguments are evaluated exactly once.
  3276. TEST_F(SingleEvaluationTest, ASSERT_STR) {
  3277.   // successful EXPECT_STRNE
  3278.   EXPECT_STRNE(p1_++, p2_++);
  3279.   EXPECT_EQ(s1_ + 1, p1_);
  3280.   EXPECT_EQ(s2_ + 1, p2_);
  3281.  
  3282.   // failed EXPECT_STRCASEEQ
  3283.   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
  3284.                           "Ignoring case");
  3285.   EXPECT_EQ(s1_ + 2, p1_);
  3286.   EXPECT_EQ(s2_ + 2, p2_);
  3287. }
  3288.  
  3289. // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
  3290. // once.
  3291. TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
  3292.   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
  3293.                        "(a_++) != (b_++)");
  3294.   EXPECT_EQ(1, a_);
  3295.   EXPECT_EQ(1, b_);
  3296. }
  3297.  
  3298. // Tests that assertion arguments are evaluated exactly once.
  3299. TEST_F(SingleEvaluationTest, OtherCases) {
  3300.   // successful EXPECT_TRUE
  3301.   EXPECT_TRUE(0 == a_++);  // NOLINT
  3302.   EXPECT_EQ(1, a_);
  3303.  
  3304.   // failed EXPECT_TRUE
  3305.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
  3306.   EXPECT_EQ(2, a_);
  3307.  
  3308.   // successful EXPECT_GT
  3309.   EXPECT_GT(a_++, b_++);
  3310.   EXPECT_EQ(3, a_);
  3311.   EXPECT_EQ(1, b_);
  3312.  
  3313.   // failed EXPECT_LT
  3314.   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
  3315.   EXPECT_EQ(4, a_);
  3316.   EXPECT_EQ(2, b_);
  3317.  
  3318.   // successful ASSERT_TRUE
  3319.   ASSERT_TRUE(0 < a_++);  // NOLINT
  3320.   EXPECT_EQ(5, a_);
  3321.  
  3322.   // successful ASSERT_GT
  3323.   ASSERT_GT(a_++, b_++);
  3324.   EXPECT_EQ(6, a_);
  3325.   EXPECT_EQ(3, b_);
  3326. }
  3327.  
  3328. #if GTEST_HAS_EXCEPTIONS
  3329.  
  3330. void ThrowAnInteger() {
  3331.   throw 1;
  3332. }
  3333.  
  3334. // Tests that assertion arguments are evaluated exactly once.
  3335. TEST_F(SingleEvaluationTest, ExceptionTests) {
  3336.   // successful EXPECT_THROW
  3337.   EXPECT_THROW({  // NOLINT
  3338.     a_++;
  3339.     ThrowAnInteger();
  3340.   }, int);
  3341.   EXPECT_EQ(1, a_);
  3342.  
  3343.   // failed EXPECT_THROW, throws different
  3344.   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
  3345.     a_++;
  3346.     ThrowAnInteger();
  3347.   }, bool), "throws a different type");
  3348.   EXPECT_EQ(2, a_);
  3349.  
  3350.   // failed EXPECT_THROW, throws nothing
  3351.   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
  3352.   EXPECT_EQ(3, a_);
  3353.  
  3354.   // successful EXPECT_NO_THROW
  3355.   EXPECT_NO_THROW(a_++);
  3356.   EXPECT_EQ(4, a_);
  3357.  
  3358.   // failed EXPECT_NO_THROW
  3359.   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
  3360.     a_++;
  3361.     ThrowAnInteger();
  3362.   }), "it throws");
  3363.   EXPECT_EQ(5, a_);
  3364.  
  3365.   // successful EXPECT_ANY_THROW
  3366.   EXPECT_ANY_THROW({  // NOLINT
  3367.     a_++;
  3368.     ThrowAnInteger();
  3369.   });
  3370.   EXPECT_EQ(6, a_);
  3371.  
  3372.   // failed EXPECT_ANY_THROW
  3373.   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
  3374.   EXPECT_EQ(7, a_);
  3375. }
  3376.  
  3377. #endif  // GTEST_HAS_EXCEPTIONS
  3378.  
  3379. // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
  3380. class NoFatalFailureTest : public Test {
  3381.  protected:
  3382.   void Succeeds() {}
  3383.   void FailsNonFatal() {
  3384.     ADD_FAILURE() << "some non-fatal failure";
  3385.   }
  3386.   void Fails() {
  3387.     FAIL() << "some fatal failure";
  3388.   }
  3389.  
  3390.   void DoAssertNoFatalFailureOnFails() {
  3391.     ASSERT_NO_FATAL_FAILURE(Fails());
  3392.     ADD_FAILURE() << "should not reach here.";
  3393.   }
  3394.  
  3395.   void DoExpectNoFatalFailureOnFails() {
  3396.     EXPECT_NO_FATAL_FAILURE(Fails());
  3397.     ADD_FAILURE() << "other failure";
  3398.   }
  3399. };
  3400.  
  3401. TEST_F(NoFatalFailureTest, NoFailure) {
  3402.   EXPECT_NO_FATAL_FAILURE(Succeeds());
  3403.   ASSERT_NO_FATAL_FAILURE(Succeeds());
  3404. }
  3405.  
  3406. TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
  3407.   EXPECT_NONFATAL_FAILURE(
  3408.       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
  3409.       "some non-fatal failure");
  3410.   EXPECT_NONFATAL_FAILURE(
  3411.       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
  3412.       "some non-fatal failure");
  3413. }
  3414.  
  3415. TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
  3416.   TestPartResultArray gtest_failures;
  3417.   {
  3418.     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
  3419.     DoAssertNoFatalFailureOnFails();
  3420.   }
  3421.   ASSERT_EQ(2, gtest_failures.size());
  3422.   EXPECT_EQ(TestPartResult::kFatalFailure,
  3423.             gtest_failures.GetTestPartResult(0).type());
  3424.   EXPECT_EQ(TestPartResult::kFatalFailure,
  3425.             gtest_failures.GetTestPartResult(1).type());
  3426.   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
  3427.                       gtest_failures.GetTestPartResult(0).message());
  3428.   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
  3429.                       gtest_failures.GetTestPartResult(1).message());
  3430. }
  3431.  
  3432. TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
  3433.   TestPartResultArray gtest_failures;
  3434.   {
  3435.     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
  3436.     DoExpectNoFatalFailureOnFails();
  3437.   }
  3438.   ASSERT_EQ(3, gtest_failures.size());
  3439.   EXPECT_EQ(TestPartResult::kFatalFailure,
  3440.             gtest_failures.GetTestPartResult(0).type());
  3441.   EXPECT_EQ(TestPartResult::kNonFatalFailure,
  3442.             gtest_failures.GetTestPartResult(1).type());
  3443.   EXPECT_EQ(TestPartResult::kNonFatalFailure,
  3444.             gtest_failures.GetTestPartResult(2).type());
  3445.   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
  3446.                       gtest_failures.GetTestPartResult(0).message());
  3447.   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
  3448.                       gtest_failures.GetTestPartResult(1).message());
  3449.   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
  3450.                       gtest_failures.GetTestPartResult(2).message());
  3451. }
  3452.  
  3453. TEST_F(NoFatalFailureTest, MessageIsStreamable) {
  3454.   TestPartResultArray gtest_failures;
  3455.   {
  3456.     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
  3457.     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
  3458.   }
  3459.   ASSERT_EQ(2, gtest_failures.size());
  3460.   EXPECT_EQ(TestPartResult::kNonFatalFailure,
  3461.             gtest_failures.GetTestPartResult(0).type());
  3462.   EXPECT_EQ(TestPartResult::kNonFatalFailure,
  3463.             gtest_failures.GetTestPartResult(1).type());
  3464.   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
  3465.                       gtest_failures.GetTestPartResult(0).message());
  3466.   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
  3467.                       gtest_failures.GetTestPartResult(1).message());
  3468. }
  3469.  
  3470. // Tests non-string assertions.
  3471.  
  3472. std::string EditsToString(const std::vector<EditType>& edits) {
  3473.   std::string out;
  3474.   for (size_t i = 0; i < edits.size(); ++i) {
  3475.     static const char kEdits[] = " +-/";
  3476.     out.append(1, kEdits[edits[i]]);
  3477.   }
  3478.   return out;
  3479. }
  3480.  
  3481. std::vector<size_t> CharsToIndices(const std::string& str) {
  3482.   std::vector<size_t> out;
  3483.   for (size_t i = 0; i < str.size(); ++i) {
  3484.     out.push_back(str[i]);
  3485.   }
  3486.   return out;
  3487. }
  3488.  
  3489. std::vector<std::string> CharsToLines(const std::string& str) {
  3490.   std::vector<std::string> out;
  3491.   for (size_t i = 0; i < str.size(); ++i) {
  3492.     out.push_back(str.substr(i, 1));
  3493.   }
  3494.   return out;
  3495. }
  3496.  
  3497. TEST(EditDistance, TestCases) {
  3498.   struct Case {
  3499.     int line;
  3500.     const char* left;
  3501.     const char* right;
  3502.     const char* expected_edits;
  3503.     const char* expected_diff;
  3504.   };
  3505.   static const Case kCases[] = {
  3506.       // No change.
  3507.       {__LINE__, "A", "A", " ", ""},
  3508.       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
  3509.       // Simple adds.
  3510.       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
  3511.       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
  3512.       // Simple removes.
  3513.       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
  3514.       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
  3515.       // Simple replaces.
  3516.       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
  3517.       {__LINE__, "ABCD", "abcd", "////",
  3518.        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
  3519.       // Path finding.
  3520.       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
  3521.        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
  3522.       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
  3523.        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
  3524.       {__LINE__, "ABCDE", "BCDCD", "-   +/",
  3525.        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
  3526.       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
  3527.        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
  3528.        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
  3529.       {}};
  3530.   for (const Case* c = kCases; c->left; ++c) {
  3531.     EXPECT_TRUE(c->expected_edits ==
  3532.                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
  3533.                                                     CharsToIndices(c->right))))
  3534.         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
  3535.         << EditsToString(CalculateOptimalEdits(
  3536.                CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
  3537.     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
  3538.                                                       CharsToLines(c->right)))
  3539.         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
  3540.         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
  3541.         << ">";
  3542.   }
  3543. }
  3544.  
  3545. // Tests EqFailure(), used for implementing *EQ* assertions.
  3546. TEST(AssertionTest, EqFailure) {
  3547.   const std::string foo_val("5"), bar_val("6");
  3548.   const std::string msg1(
  3549.       EqFailure("foo", "bar", foo_val, bar_val, false)
  3550.       .failure_message());
  3551.   EXPECT_STREQ(
  3552.       "Expected equality of these values:\n"
  3553.       "  foo\n"
  3554.       "    Which is: 5\n"
  3555.       "  bar\n"
  3556.       "    Which is: 6",
  3557.       msg1.c_str());
  3558.  
  3559.   const std::string msg2(
  3560.       EqFailure("foo", "6", foo_val, bar_val, false)
  3561.       .failure_message());
  3562.   EXPECT_STREQ(
  3563.       "Expected equality of these values:\n"
  3564.       "  foo\n"
  3565.       "    Which is: 5\n"
  3566.       "  6",
  3567.       msg2.c_str());
  3568.  
  3569.   const std::string msg3(
  3570.       EqFailure("5", "bar", foo_val, bar_val, false)
  3571.       .failure_message());
  3572.   EXPECT_STREQ(
  3573.       "Expected equality of these values:\n"
  3574.       "  5\n"
  3575.       "  bar\n"
  3576.       "    Which is: 6",
  3577.       msg3.c_str());
  3578.  
  3579.   const std::string msg4(
  3580.       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
  3581.   EXPECT_STREQ(
  3582.       "Expected equality of these values:\n"
  3583.       "  5\n"
  3584.       "  6",
  3585.       msg4.c_str());
  3586.  
  3587.   const std::string msg5(
  3588.       EqFailure("foo", "bar",
  3589.                 std::string("\"x\""), std::string("\"y\""),
  3590.                 true).failure_message());
  3591.   EXPECT_STREQ(
  3592.       "Expected equality of these values:\n"
  3593.       "  foo\n"
  3594.       "    Which is: \"x\"\n"
  3595.       "  bar\n"
  3596.       "    Which is: \"y\"\n"
  3597.       "Ignoring case",
  3598.       msg5.c_str());
  3599. }
  3600.  
  3601. TEST(AssertionTest, EqFailureWithDiff) {
  3602.   const std::string left(
  3603.       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
  3604.   const std::string right(
  3605.       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
  3606.   const std::string msg1(
  3607.       EqFailure("left", "right", left, right, false).failure_message());
  3608.   EXPECT_STREQ(
  3609.       "Expected equality of these values:\n"
  3610.       "  left\n"
  3611.       "    Which is: "
  3612.       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
  3613.       "  right\n"
  3614.       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
  3615.       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
  3616.       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
  3617.       msg1.c_str());
  3618. }
  3619.  
  3620. // Tests AppendUserMessage(), used for implementing the *EQ* macros.
  3621. TEST(AssertionTest, AppendUserMessage) {
  3622.   const std::string foo("foo");
  3623.  
  3624.   Message msg;
  3625.   EXPECT_STREQ("foo",
  3626.                AppendUserMessage(foo, msg).c_str());
  3627.  
  3628.   msg << "bar";
  3629.   EXPECT_STREQ("foo\nbar",
  3630.                AppendUserMessage(foo, msg).c_str());
  3631. }
  3632.  
  3633. #ifdef __BORLANDC__
  3634. // Silences warnings: "Condition is always true", "Unreachable code"
  3635. # pragma option push -w-ccc -w-rch
  3636. #endif
  3637.  
  3638. // Tests ASSERT_TRUE.
  3639. TEST(AssertionTest, ASSERT_TRUE) {
  3640.   ASSERT_TRUE(2 > 1);  // NOLINT
  3641.   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
  3642.                        "2 < 1");
  3643. }
  3644.  
  3645. // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
  3646. TEST(AssertionTest, AssertTrueWithAssertionResult) {
  3647.   ASSERT_TRUE(ResultIsEven(2));
  3648. #ifndef __BORLANDC__
  3649.   // ICE's in C++Builder.
  3650.   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
  3651.                        "Value of: ResultIsEven(3)\n"
  3652.                        "  Actual: false (3 is odd)\n"
  3653.                        "Expected: true");
  3654. #endif
  3655.   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
  3656.   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
  3657.                        "Value of: ResultIsEvenNoExplanation(3)\n"
  3658.                        "  Actual: false (3 is odd)\n"
  3659.                        "Expected: true");
  3660. }
  3661.  
  3662. // Tests ASSERT_FALSE.
  3663. TEST(AssertionTest, ASSERT_FALSE) {
  3664.   ASSERT_FALSE(2 < 1);  // NOLINT
  3665.   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
  3666.                        "Value of: 2 > 1\n"
  3667.                        "  Actual: true\n"
  3668.                        "Expected: false");
  3669. }
  3670.  
  3671. // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
  3672. TEST(AssertionTest, AssertFalseWithAssertionResult) {
  3673.   ASSERT_FALSE(ResultIsEven(3));
  3674. #ifndef __BORLANDC__
  3675.   // ICE's in C++Builder.
  3676.   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
  3677.                        "Value of: ResultIsEven(2)\n"
  3678.                        "  Actual: true (2 is even)\n"
  3679.                        "Expected: false");
  3680. #endif
  3681.   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
  3682.   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
  3683.                        "Value of: ResultIsEvenNoExplanation(2)\n"
  3684.                        "  Actual: true\n"
  3685.                        "Expected: false");
  3686. }
  3687.  
  3688. #ifdef __BORLANDC__
  3689. // Restores warnings after previous "#pragma option push" suppressed them
  3690. # pragma option pop
  3691. #endif
  3692.  
  3693. // Tests using ASSERT_EQ on double values.  The purpose is to make
  3694. // sure that the specialization we did for integer and anonymous enums
  3695. // isn't used for double arguments.
  3696. TEST(ExpectTest, ASSERT_EQ_Double) {
  3697.   // A success.
  3698.   ASSERT_EQ(5.6, 5.6);
  3699.  
  3700.   // A failure.
  3701.   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
  3702.                        "5.1");
  3703. }
  3704.  
  3705. // Tests ASSERT_EQ.
  3706. TEST(AssertionTest, ASSERT_EQ) {
  3707.   ASSERT_EQ(5, 2 + 3);
  3708.   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
  3709.                        "Expected equality of these values:\n"
  3710.                        "  5\n"
  3711.                        "  2*3\n"
  3712.                        "    Which is: 6");
  3713. }
  3714.  
  3715. // Tests ASSERT_EQ(NULL, pointer).
  3716. #if GTEST_CAN_COMPARE_NULL
  3717. TEST(AssertionTest, ASSERT_EQ_NULL) {
  3718.   // A success.
  3719.   const char* p = NULL;
  3720.   // Some older GCC versions may issue a spurious warning in this or the next
  3721.   // assertion statement. This warning should not be suppressed with
  3722.   // static_cast since the test verifies the ability to use bare NULL as the
  3723.   // expected parameter to the macro.
  3724.   ASSERT_EQ(NULL, p);
  3725.  
  3726.   // A failure.
  3727.   static int n = 0;
  3728.   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
  3729.                        "  &n\n    Which is:");
  3730. }
  3731. #endif  // GTEST_CAN_COMPARE_NULL
  3732.  
  3733. // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
  3734. // treated as a null pointer by the compiler, we need to make sure
  3735. // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
  3736. // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
  3737. TEST(ExpectTest, ASSERT_EQ_0) {
  3738.   int n = 0;
  3739.  
  3740.   // A success.
  3741.   ASSERT_EQ(0, n);
  3742.  
  3743.   // A failure.
  3744.   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
  3745.                        "  0\n  5.6");
  3746. }
  3747.  
  3748. // Tests ASSERT_NE.
  3749. TEST(AssertionTest, ASSERT_NE) {
  3750.   ASSERT_NE(6, 7);
  3751.   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
  3752.                        "Expected: ('a') != ('a'), "
  3753.                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
  3754. }
  3755.  
  3756. // Tests ASSERT_LE.
  3757. TEST(AssertionTest, ASSERT_LE) {
  3758.   ASSERT_LE(2, 3);
  3759.   ASSERT_LE(2, 2);
  3760.   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
  3761.                        "Expected: (2) <= (0), actual: 2 vs 0");
  3762. }
  3763.  
  3764. // Tests ASSERT_LT.
  3765. TEST(AssertionTest, ASSERT_LT) {
  3766.   ASSERT_LT(2, 3);
  3767.   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
  3768.                        "Expected: (2) < (2), actual: 2 vs 2");
  3769. }
  3770.  
  3771. // Tests ASSERT_GE.
  3772. TEST(AssertionTest, ASSERT_GE) {
  3773.   ASSERT_GE(2, 1);
  3774.   ASSERT_GE(2, 2);
  3775.   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
  3776.                        "Expected: (2) >= (3), actual: 2 vs 3");
  3777. }
  3778.  
  3779. // Tests ASSERT_GT.
  3780. TEST(AssertionTest, ASSERT_GT) {
  3781.   ASSERT_GT(2, 1);
  3782.   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
  3783.                        "Expected: (2) > (2), actual: 2 vs 2");
  3784. }
  3785.  
  3786. #if GTEST_HAS_EXCEPTIONS
  3787.  
  3788. void ThrowNothing() {}
  3789.  
  3790. // Tests ASSERT_THROW.
  3791. TEST(AssertionTest, ASSERT_THROW) {
  3792.   ASSERT_THROW(ThrowAnInteger(), int);
  3793.  
  3794. # ifndef __BORLANDC__
  3795.  
  3796.   // ICE's in C++Builder 2007 and 2009.
  3797.   EXPECT_FATAL_FAILURE(
  3798.       ASSERT_THROW(ThrowAnInteger(), bool),
  3799.       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
  3800.       "  Actual: it throws a different type.");
  3801. # endif
  3802.  
  3803.   EXPECT_FATAL_FAILURE(
  3804.       ASSERT_THROW(ThrowNothing(), bool),
  3805.       "Expected: ThrowNothing() throws an exception of type bool.\n"
  3806.       "  Actual: it throws nothing.");
  3807. }
  3808.  
  3809. // Tests ASSERT_NO_THROW.
  3810. TEST(AssertionTest, ASSERT_NO_THROW) {
  3811.   ASSERT_NO_THROW(ThrowNothing());
  3812.   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
  3813.                        "Expected: ThrowAnInteger() doesn't throw an exception."
  3814.                        "\n  Actual: it throws.");
  3815. }
  3816.  
  3817. // Tests ASSERT_ANY_THROW.
  3818. TEST(AssertionTest, ASSERT_ANY_THROW) {
  3819.   ASSERT_ANY_THROW(ThrowAnInteger());
  3820.   EXPECT_FATAL_FAILURE(
  3821.       ASSERT_ANY_THROW(ThrowNothing()),
  3822.       "Expected: ThrowNothing() throws an exception.\n"
  3823.       "  Actual: it doesn't.");
  3824. }
  3825.  
  3826. #endif  // GTEST_HAS_EXCEPTIONS
  3827.  
  3828. // Makes sure we deal with the precedence of <<.  This test should
  3829. // compile.
  3830. TEST(AssertionTest, AssertPrecedence) {
  3831.   ASSERT_EQ(1 < 2, true);
  3832.   bool false_value = false;
  3833.   ASSERT_EQ(true && false_value, false);
  3834. }
  3835.  
  3836. // A subroutine used by the following test.
  3837. void TestEq1(int x) {
  3838.   ASSERT_EQ(1, x);
  3839. }
  3840.  
  3841. // Tests calling a test subroutine that's not part of a fixture.
  3842. TEST(AssertionTest, NonFixtureSubroutine) {
  3843.   EXPECT_FATAL_FAILURE(TestEq1(2),
  3844.                        "  x\n    Which is: 2");
  3845. }
  3846.  
  3847. // An uncopyable class.
  3848. class Uncopyable {
  3849.  public:
  3850.   explicit Uncopyable(int a_value) : value_(a_value) {}
  3851.  
  3852.   int value() const { return value_; }
  3853.   bool operator==(const Uncopyable& rhs) const {
  3854.     return value() == rhs.value();
  3855.   }
  3856.  private:
  3857.   // This constructor deliberately has no implementation, as we don't
  3858.   // want this class to be copyable.
  3859.   Uncopyable(const Uncopyable&);  // NOLINT
  3860.  
  3861.   int value_;
  3862. };
  3863.  
  3864. ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
  3865.   return os << value.value();
  3866. }
  3867.  
  3868.  
  3869. bool IsPositiveUncopyable(const Uncopyable& x) {
  3870.   return x.value() > 0;
  3871. }
  3872.  
  3873. // A subroutine used by the following test.
  3874. void TestAssertNonPositive() {
  3875.   Uncopyable y(-1);
  3876.   ASSERT_PRED1(IsPositiveUncopyable, y);
  3877. }
  3878. // A subroutine used by the following test.
  3879. void TestAssertEqualsUncopyable() {
  3880.   Uncopyable x(5);
  3881.   Uncopyable y(-1);
  3882.   ASSERT_EQ(x, y);
  3883. }
  3884.  
  3885. // Tests that uncopyable objects can be used in assertions.
  3886. TEST(AssertionTest, AssertWorksWithUncopyableObject) {
  3887.   Uncopyable x(5);
  3888.   ASSERT_PRED1(IsPositiveUncopyable, x);
  3889.   ASSERT_EQ(x, x);
  3890.   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
  3891.     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
  3892.   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
  3893.                        "Expected equality of these values:\n"
  3894.                        "  x\n    Which is: 5\n  y\n    Which is: -1");
  3895. }
  3896.  
  3897. // Tests that uncopyable objects can be used in expects.
  3898. TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
  3899.   Uncopyable x(5);
  3900.   EXPECT_PRED1(IsPositiveUncopyable, x);
  3901.   Uncopyable y(-1);
  3902.   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
  3903.     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
  3904.   EXPECT_EQ(x, x);
  3905.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
  3906.                           "Expected equality of these values:\n"
  3907.                           "  x\n    Which is: 5\n  y\n    Which is: -1");
  3908. }
  3909.  
  3910. enum NamedEnum {
  3911.   kE1 = 0,
  3912.   kE2 = 1
  3913. };
  3914.  
  3915. TEST(AssertionTest, NamedEnum) {
  3916.   EXPECT_EQ(kE1, kE1);
  3917.   EXPECT_LT(kE1, kE2);
  3918.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
  3919.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
  3920. }
  3921.  
  3922. // The version of gcc used in XCode 2.2 has a bug and doesn't allow
  3923. // anonymous enums in assertions.  Therefore the following test is not
  3924. // done on Mac.
  3925. // Sun Studio and HP aCC also reject this code.
  3926. #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
  3927.  
  3928. // Tests using assertions with anonymous enums.
  3929. enum {
  3930.   kCaseA = -1,
  3931.  
  3932. # if GTEST_OS_LINUX
  3933.  
  3934.   // We want to test the case where the size of the anonymous enum is
  3935.   // larger than sizeof(int), to make sure our implementation of the
  3936.   // assertions doesn't truncate the enums.  However, MSVC
  3937.   // (incorrectly) doesn't allow an enum value to exceed the range of
  3938.   // an int, so this has to be conditionally compiled.
  3939.   //
  3940.   // On Linux, kCaseB and kCaseA have the same value when truncated to
  3941.   // int size.  We want to test whether this will confuse the
  3942.   // assertions.
  3943.   kCaseB = testing::internal::kMaxBiggestInt,
  3944.  
  3945. # else
  3946.  
  3947.   kCaseB = INT_MAX,
  3948.  
  3949. # endif  // GTEST_OS_LINUX
  3950.  
  3951.   kCaseC = 42
  3952. };
  3953.  
  3954. TEST(AssertionTest, AnonymousEnum) {
  3955. # if GTEST_OS_LINUX
  3956.  
  3957.   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
  3958.  
  3959. # endif  // GTEST_OS_LINUX
  3960.  
  3961.   EXPECT_EQ(kCaseA, kCaseA);
  3962.   EXPECT_NE(kCaseA, kCaseB);
  3963.   EXPECT_LT(kCaseA, kCaseB);
  3964.   EXPECT_LE(kCaseA, kCaseB);
  3965.   EXPECT_GT(kCaseB, kCaseA);
  3966.   EXPECT_GE(kCaseA, kCaseA);
  3967.   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
  3968.                           "(kCaseA) >= (kCaseB)");
  3969.   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
  3970.                           "-1 vs 42");
  3971.  
  3972.   ASSERT_EQ(kCaseA, kCaseA);
  3973.   ASSERT_NE(kCaseA, kCaseB);
  3974.   ASSERT_LT(kCaseA, kCaseB);
  3975.   ASSERT_LE(kCaseA, kCaseB);
  3976.   ASSERT_GT(kCaseB, kCaseA);
  3977.   ASSERT_GE(kCaseA, kCaseA);
  3978.  
  3979. # ifndef __BORLANDC__
  3980.  
  3981.   // ICE's in C++Builder.
  3982.   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
  3983.                        "  kCaseB\n    Which is: ");
  3984.   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
  3985.                        "\n    Which is: 42");
  3986. # endif
  3987.  
  3988.   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
  3989.                        "\n    Which is: -1");
  3990. }
  3991.  
  3992. #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
  3993.  
  3994. #if GTEST_OS_WINDOWS
  3995.  
  3996. static HRESULT UnexpectedHRESULTFailure() {
  3997.   return E_UNEXPECTED;
  3998. }
  3999.  
  4000. static HRESULT OkHRESULTSuccess() {
  4001.   return S_OK;
  4002. }
  4003.  
  4004. static HRESULT FalseHRESULTSuccess() {
  4005.   return S_FALSE;
  4006. }
  4007.  
  4008. // HRESULT assertion tests test both zero and non-zero
  4009. // success codes as well as failure message for each.
  4010. //
  4011. // Windows CE doesn't support message texts.
  4012. TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
  4013.   EXPECT_HRESULT_SUCCEEDED(S_OK);
  4014.   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
  4015.  
  4016.   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
  4017.     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
  4018.     "  Actual: 0x8000FFFF");
  4019. }
  4020.  
  4021. TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
  4022.   ASSERT_HRESULT_SUCCEEDED(S_OK);
  4023.   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
  4024.  
  4025.   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
  4026.     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
  4027.     "  Actual: 0x8000FFFF");
  4028. }
  4029.  
  4030. TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
  4031.   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
  4032.  
  4033.   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
  4034.     "Expected: (OkHRESULTSuccess()) fails.\n"
  4035.     "  Actual: 0x0");
  4036.   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
  4037.     "Expected: (FalseHRESULTSuccess()) fails.\n"
  4038.     "  Actual: 0x1");
  4039. }
  4040.  
  4041. TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
  4042.   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
  4043.  
  4044. # ifndef __BORLANDC__
  4045.  
  4046.   // ICE's in C++Builder 2007 and 2009.
  4047.   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
  4048.     "Expected: (OkHRESULTSuccess()) fails.\n"
  4049.     "  Actual: 0x0");
  4050. # endif
  4051.  
  4052.   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
  4053.     "Expected: (FalseHRESULTSuccess()) fails.\n"
  4054.     "  Actual: 0x1");
  4055. }
  4056.  
  4057. // Tests that streaming to the HRESULT macros works.
  4058. TEST(HRESULTAssertionTest, Streaming) {
  4059.   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
  4060.   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
  4061.   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
  4062.   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
  4063.  
  4064.   EXPECT_NONFATAL_FAILURE(
  4065.       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
  4066.       "expected failure");
  4067.  
  4068. # ifndef __BORLANDC__
  4069.  
  4070.   // ICE's in C++Builder 2007 and 2009.
  4071.   EXPECT_FATAL_FAILURE(
  4072.       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
  4073.       "expected failure");
  4074. # endif
  4075.  
  4076.   EXPECT_NONFATAL_FAILURE(
  4077.       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
  4078.       "expected failure");
  4079.  
  4080.   EXPECT_FATAL_FAILURE(
  4081.       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
  4082.       "expected failure");
  4083. }
  4084.  
  4085. #endif  // GTEST_OS_WINDOWS
  4086.  
  4087. #ifdef __BORLANDC__
  4088. // Silences warnings: "Condition is always true", "Unreachable code"
  4089. # pragma option push -w-ccc -w-rch
  4090. #endif
  4091.  
  4092. // Tests that the assertion macros behave like single statements.
  4093. TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
  4094.   if (AlwaysFalse())
  4095.     ASSERT_TRUE(false) << "This should never be executed; "
  4096.                           "It's a compilation test only.";
  4097.  
  4098.   if (AlwaysTrue())
  4099.     EXPECT_FALSE(false);
  4100.   else
  4101.     ;  // NOLINT
  4102.  
  4103.   if (AlwaysFalse())
  4104.     ASSERT_LT(1, 3);
  4105.  
  4106.   if (AlwaysFalse())
  4107.     ;  // NOLINT
  4108.   else
  4109.     EXPECT_GT(3, 2) << "";
  4110. }
  4111.  
  4112. #if GTEST_HAS_EXCEPTIONS
  4113. // Tests that the compiler will not complain about unreachable code in the
  4114. // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
  4115. TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
  4116.   int n = 0;
  4117.  
  4118.   EXPECT_THROW(throw 1, int);
  4119.   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
  4120.   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
  4121.   EXPECT_NO_THROW(n++);
  4122.   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
  4123.   EXPECT_ANY_THROW(throw 1);
  4124.   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
  4125. }
  4126.  
  4127. TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
  4128.   if (AlwaysFalse())
  4129.     EXPECT_THROW(ThrowNothing(), bool);
  4130.  
  4131.   if (AlwaysTrue())
  4132.     EXPECT_THROW(ThrowAnInteger(), int);
  4133.   else
  4134.     ;  // NOLINT
  4135.  
  4136.   if (AlwaysFalse())
  4137.     EXPECT_NO_THROW(ThrowAnInteger());
  4138.  
  4139.   if (AlwaysTrue())
  4140.     EXPECT_NO_THROW(ThrowNothing());
  4141.   else
  4142.     ;  // NOLINT
  4143.  
  4144.   if (AlwaysFalse())
  4145.     EXPECT_ANY_THROW(ThrowNothing());
  4146.  
  4147.   if (AlwaysTrue())
  4148.     EXPECT_ANY_THROW(ThrowAnInteger());
  4149.   else
  4150.     ;  // NOLINT
  4151. }
  4152. #endif  // GTEST_HAS_EXCEPTIONS
  4153.  
  4154. TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
  4155.   if (AlwaysFalse())
  4156.     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
  4157.                                     << "It's a compilation test only.";
  4158.   else
  4159.     ;  // NOLINT
  4160.  
  4161.   if (AlwaysFalse())
  4162.     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
  4163.   else
  4164.     ;  // NOLINT
  4165.  
  4166.   if (AlwaysTrue())
  4167.     EXPECT_NO_FATAL_FAILURE(SUCCEED());
  4168.   else
  4169.     ;  // NOLINT
  4170.  
  4171.   if (AlwaysFalse())
  4172.     ;  // NOLINT
  4173.   else
  4174.     ASSERT_NO_FATAL_FAILURE(SUCCEED());
  4175. }
  4176.  
  4177. // Tests that the assertion macros work well with switch statements.
  4178. TEST(AssertionSyntaxTest, WorksWithSwitch) {
  4179.   switch (0) {
  4180.     case 1:
  4181.       break;
  4182.     default:
  4183.       ASSERT_TRUE(true);
  4184.   }
  4185.  
  4186.   switch (0)
  4187.     case 0:
  4188.       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
  4189.  
  4190.   // Binary assertions are implemented using a different code path
  4191.   // than the Boolean assertions.  Hence we test them separately.
  4192.   switch (0) {
  4193.     case 1:
  4194.     default:
  4195.       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
  4196.   }
  4197.  
  4198.   switch (0)
  4199.     case 0:
  4200.       EXPECT_NE(1, 2);
  4201. }
  4202.  
  4203. #if GTEST_HAS_EXCEPTIONS
  4204.  
  4205. void ThrowAString() {
  4206.     throw "std::string";
  4207. }
  4208.  
  4209. // Test that the exception assertion macros compile and work with const
  4210. // type qualifier.
  4211. TEST(AssertionSyntaxTest, WorksWithConst) {
  4212.     ASSERT_THROW(ThrowAString(), const char*);
  4213.  
  4214.     EXPECT_THROW(ThrowAString(), const char*);
  4215. }
  4216.  
  4217. #endif  // GTEST_HAS_EXCEPTIONS
  4218.  
  4219. }  // namespace
  4220.  
  4221. namespace testing {
  4222.  
  4223. // Tests that Google Test tracks SUCCEED*.
  4224. TEST(SuccessfulAssertionTest, SUCCEED) {
  4225.   SUCCEED();
  4226.   SUCCEED() << "OK";
  4227.   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
  4228. }
  4229.  
  4230. // Tests that Google Test doesn't track successful EXPECT_*.
  4231. TEST(SuccessfulAssertionTest, EXPECT) {
  4232.   EXPECT_TRUE(true);
  4233.   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
  4234. }
  4235.  
  4236. // Tests that Google Test doesn't track successful EXPECT_STR*.
  4237. TEST(SuccessfulAssertionTest, EXPECT_STR) {
  4238.   EXPECT_STREQ("", "");
  4239.   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
  4240. }
  4241.  
  4242. // Tests that Google Test doesn't track successful ASSERT_*.
  4243. TEST(SuccessfulAssertionTest, ASSERT) {
  4244.   ASSERT_TRUE(true);
  4245.   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
  4246. }
  4247.  
  4248. // Tests that Google Test doesn't track successful ASSERT_STR*.
  4249. TEST(SuccessfulAssertionTest, ASSERT_STR) {
  4250.   ASSERT_STREQ("", "");
  4251.   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
  4252. }
  4253.  
  4254. }  // namespace testing
  4255.  
  4256. namespace {
  4257.  
  4258. // Tests the message streaming variation of assertions.
  4259.  
  4260. TEST(AssertionWithMessageTest, EXPECT) {
  4261.   EXPECT_EQ(1, 1) << "This should succeed.";
  4262.   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
  4263.                           "Expected failure #1");
  4264.   EXPECT_LE(1, 2) << "This should succeed.";
  4265.   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
  4266.                           "Expected failure #2.");
  4267.   EXPECT_GE(1, 0) << "This should succeed.";
  4268.   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
  4269.                           "Expected failure #3.");
  4270.  
  4271.   EXPECT_STREQ("1", "1") << "This should succeed.";
  4272.   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
  4273.                           "Expected failure #4.");
  4274.   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
  4275.   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
  4276.                           "Expected failure #5.");
  4277.  
  4278.   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
  4279.   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
  4280.                           "Expected failure #6.");
  4281.   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
  4282. }
  4283.  
  4284. TEST(AssertionWithMessageTest, ASSERT) {
  4285.   ASSERT_EQ(1, 1) << "This should succeed.";
  4286.   ASSERT_NE(1, 2) << "This should succeed.";
  4287.   ASSERT_LE(1, 2) << "This should succeed.";
  4288.   ASSERT_LT(1, 2) << "This should succeed.";
  4289.   ASSERT_GE(1, 0) << "This should succeed.";
  4290.   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
  4291.                        "Expected failure.");
  4292. }
  4293.  
  4294. TEST(AssertionWithMessageTest, ASSERT_STR) {
  4295.   ASSERT_STREQ("1", "1") << "This should succeed.";
  4296.   ASSERT_STRNE("1", "2") << "This should succeed.";
  4297.   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
  4298.   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
  4299.                        "Expected failure.");
  4300. }
  4301.  
  4302. TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
  4303.   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
  4304.   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
  4305.   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
  4306.                        "Expect failure.");
  4307.   // To work around a bug in gcc 2.95.0, there is intentionally no
  4308.   // space after the first comma in the previous statement.
  4309. }
  4310.  
  4311. // Tests using ASSERT_FALSE with a streamed message.
  4312. TEST(AssertionWithMessageTest, ASSERT_FALSE) {
  4313.   ASSERT_FALSE(false) << "This shouldn't fail.";
  4314.   EXPECT_FATAL_FAILURE({  // NOLINT
  4315.     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
  4316.                        << " evaluates to " << true;
  4317.   }, "Expected failure");
  4318. }
  4319.  
  4320. // Tests using FAIL with a streamed message.
  4321. TEST(AssertionWithMessageTest, FAIL) {
  4322.   EXPECT_FATAL_FAILURE(FAIL() << 0,
  4323.                        "0");
  4324. }
  4325.  
  4326. // Tests using SUCCEED with a streamed message.
  4327. TEST(AssertionWithMessageTest, SUCCEED) {
  4328.   SUCCEED() << "Success == " << 1;
  4329. }
  4330.  
  4331. // Tests using ASSERT_TRUE with a streamed message.
  4332. TEST(AssertionWithMessageTest, ASSERT_TRUE) {
  4333.   ASSERT_TRUE(true) << "This should succeed.";
  4334.   ASSERT_TRUE(true) << true;
  4335.   EXPECT_FATAL_FAILURE({  // NOLINT
  4336.     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
  4337.                        << static_cast<char *>(NULL);
  4338.   }, "(null)(null)");
  4339. }
  4340.  
  4341. #if GTEST_OS_WINDOWS
  4342. // Tests using wide strings in assertion messages.
  4343. TEST(AssertionWithMessageTest, WideStringMessage) {
  4344.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  4345.     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
  4346.   }, "This failure is expected.");
  4347.   EXPECT_FATAL_FAILURE({  // NOLINT
  4348.     ASSERT_EQ(1, 2) << "This failure is "
  4349.                     << L"expected too.\x8120";
  4350.   }, "This failure is expected too.");
  4351. }
  4352. #endif  // GTEST_OS_WINDOWS
  4353.  
  4354. // Tests EXPECT_TRUE.
  4355. TEST(ExpectTest, EXPECT_TRUE) {
  4356.   EXPECT_TRUE(true) << "Intentional success";
  4357.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
  4358.                           "Intentional failure #1.");
  4359.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
  4360.                           "Intentional failure #2.");
  4361.   EXPECT_TRUE(2 > 1);  // NOLINT
  4362.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
  4363.                           "Value of: 2 < 1\n"
  4364.                           "  Actual: false\n"
  4365.                           "Expected: true");
  4366.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
  4367.                           "2 > 3");
  4368. }
  4369.  
  4370. // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
  4371. TEST(ExpectTest, ExpectTrueWithAssertionResult) {
  4372.   EXPECT_TRUE(ResultIsEven(2));
  4373.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
  4374.                           "Value of: ResultIsEven(3)\n"
  4375.                           "  Actual: false (3 is odd)\n"
  4376.                           "Expected: true");
  4377.   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
  4378.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
  4379.                           "Value of: ResultIsEvenNoExplanation(3)\n"
  4380.                           "  Actual: false (3 is odd)\n"
  4381.                           "Expected: true");
  4382. }
  4383.  
  4384. // Tests EXPECT_FALSE with a streamed message.
  4385. TEST(ExpectTest, EXPECT_FALSE) {
  4386.   EXPECT_FALSE(2 < 1);  // NOLINT
  4387.   EXPECT_FALSE(false) << "Intentional success";
  4388.   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
  4389.                           "Intentional failure #1.");
  4390.   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
  4391.                           "Intentional failure #2.");
  4392.   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
  4393.                           "Value of: 2 > 1\n"
  4394.                           "  Actual: true\n"
  4395.                           "Expected: false");
  4396.   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
  4397.                           "2 < 3");
  4398. }
  4399.  
  4400. // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
  4401. TEST(ExpectTest, ExpectFalseWithAssertionResult) {
  4402.   EXPECT_FALSE(ResultIsEven(3));
  4403.   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
  4404.                           "Value of: ResultIsEven(2)\n"
  4405.                           "  Actual: true (2 is even)\n"
  4406.                           "Expected: false");
  4407.   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
  4408.   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
  4409.                           "Value of: ResultIsEvenNoExplanation(2)\n"
  4410.                           "  Actual: true\n"
  4411.                           "Expected: false");
  4412. }
  4413.  
  4414. #ifdef __BORLANDC__
  4415. // Restores warnings after previous "#pragma option push" suppressed them
  4416. # pragma option pop
  4417. #endif
  4418.  
  4419. // Tests EXPECT_EQ.
  4420. TEST(ExpectTest, EXPECT_EQ) {
  4421.   EXPECT_EQ(5, 2 + 3);
  4422.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
  4423.                           "Expected equality of these values:\n"
  4424.                           "  5\n"
  4425.                           "  2*3\n"
  4426.                           "    Which is: 6");
  4427.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
  4428.                           "2 - 3");
  4429. }
  4430.  
  4431. // Tests using EXPECT_EQ on double values.  The purpose is to make
  4432. // sure that the specialization we did for integer and anonymous enums
  4433. // isn't used for double arguments.
  4434. TEST(ExpectTest, EXPECT_EQ_Double) {
  4435.   // A success.
  4436.   EXPECT_EQ(5.6, 5.6);
  4437.  
  4438.   // A failure.
  4439.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
  4440.                           "5.1");
  4441. }
  4442.  
  4443. #if GTEST_CAN_COMPARE_NULL
  4444. // Tests EXPECT_EQ(NULL, pointer).
  4445. TEST(ExpectTest, EXPECT_EQ_NULL) {
  4446.   // A success.
  4447.   const char* p = NULL;
  4448.   // Some older GCC versions may issue a spurious warning in this or the next
  4449.   // assertion statement. This warning should not be suppressed with
  4450.   // static_cast since the test verifies the ability to use bare NULL as the
  4451.   // expected parameter to the macro.
  4452.   EXPECT_EQ(NULL, p);
  4453.  
  4454.   // A failure.
  4455.   int n = 0;
  4456.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
  4457.                           "  &n\n    Which is:");
  4458. }
  4459. #endif  // GTEST_CAN_COMPARE_NULL
  4460.  
  4461. // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
  4462. // treated as a null pointer by the compiler, we need to make sure
  4463. // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
  4464. // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
  4465. TEST(ExpectTest, EXPECT_EQ_0) {
  4466.   int n = 0;
  4467.  
  4468.   // A success.
  4469.   EXPECT_EQ(0, n);
  4470.  
  4471.   // A failure.
  4472.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
  4473.                           "  0\n  5.6");
  4474. }
  4475.  
  4476. // Tests EXPECT_NE.
  4477. TEST(ExpectTest, EXPECT_NE) {
  4478.   EXPECT_NE(6, 7);
  4479.  
  4480.   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
  4481.                           "Expected: ('a') != ('a'), "
  4482.                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
  4483.   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
  4484.                           "2");
  4485.   char* const p0 = NULL;
  4486.   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
  4487.                           "p0");
  4488.   // Only way to get the Nokia compiler to compile the cast
  4489.   // is to have a separate void* variable first. Putting
  4490.   // the two casts on the same line doesn't work, neither does
  4491.   // a direct C-style to char*.
  4492.   void* pv1 = (void*)0x1234;  // NOLINT
  4493.   char* const p1 = reinterpret_cast<char*>(pv1);
  4494.   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
  4495.                           "p1");
  4496. }
  4497.  
  4498. // Tests EXPECT_LE.
  4499. TEST(ExpectTest, EXPECT_LE) {
  4500.   EXPECT_LE(2, 3);
  4501.   EXPECT_LE(2, 2);
  4502.   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
  4503.                           "Expected: (2) <= (0), actual: 2 vs 0");
  4504.   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
  4505.                           "(1.1) <= (0.9)");
  4506. }
  4507.  
  4508. // Tests EXPECT_LT.
  4509. TEST(ExpectTest, EXPECT_LT) {
  4510.   EXPECT_LT(2, 3);
  4511.   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
  4512.                           "Expected: (2) < (2), actual: 2 vs 2");
  4513.   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
  4514.                           "(2) < (1)");
  4515. }
  4516.  
  4517. // Tests EXPECT_GE.
  4518. TEST(ExpectTest, EXPECT_GE) {
  4519.   EXPECT_GE(2, 1);
  4520.   EXPECT_GE(2, 2);
  4521.   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
  4522.                           "Expected: (2) >= (3), actual: 2 vs 3");
  4523.   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
  4524.                           "(0.9) >= (1.1)");
  4525. }
  4526.  
  4527. // Tests EXPECT_GT.
  4528. TEST(ExpectTest, EXPECT_GT) {
  4529.   EXPECT_GT(2, 1);
  4530.   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
  4531.                           "Expected: (2) > (2), actual: 2 vs 2");
  4532.   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
  4533.                           "(2) > (3)");
  4534. }
  4535.  
  4536. #if GTEST_HAS_EXCEPTIONS
  4537.  
  4538. // Tests EXPECT_THROW.
  4539. TEST(ExpectTest, EXPECT_THROW) {
  4540.   EXPECT_THROW(ThrowAnInteger(), int);
  4541.   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
  4542.                           "Expected: ThrowAnInteger() throws an exception of "
  4543.                           "type bool.\n  Actual: it throws a different type.");
  4544.   EXPECT_NONFATAL_FAILURE(
  4545.       EXPECT_THROW(ThrowNothing(), bool),
  4546.       "Expected: ThrowNothing() throws an exception of type bool.\n"
  4547.       "  Actual: it throws nothing.");
  4548. }
  4549.  
  4550. // Tests EXPECT_NO_THROW.
  4551. TEST(ExpectTest, EXPECT_NO_THROW) {
  4552.   EXPECT_NO_THROW(ThrowNothing());
  4553.   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
  4554.                           "Expected: ThrowAnInteger() doesn't throw an "
  4555.                           "exception.\n  Actual: it throws.");
  4556. }
  4557.  
  4558. // Tests EXPECT_ANY_THROW.
  4559. TEST(ExpectTest, EXPECT_ANY_THROW) {
  4560.   EXPECT_ANY_THROW(ThrowAnInteger());
  4561.   EXPECT_NONFATAL_FAILURE(
  4562.       EXPECT_ANY_THROW(ThrowNothing()),
  4563.       "Expected: ThrowNothing() throws an exception.\n"
  4564.       "  Actual: it doesn't.");
  4565. }
  4566.  
  4567. #endif  // GTEST_HAS_EXCEPTIONS
  4568.  
  4569. // Make sure we deal with the precedence of <<.
  4570. TEST(ExpectTest, ExpectPrecedence) {
  4571.   EXPECT_EQ(1 < 2, true);
  4572.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
  4573.                           "  true && false\n    Which is: false");
  4574. }
  4575.  
  4576.  
  4577. // Tests the StreamableToString() function.
  4578.  
  4579. // Tests using StreamableToString() on a scalar.
  4580. TEST(StreamableToStringTest, Scalar) {
  4581.   EXPECT_STREQ("5", StreamableToString(5).c_str());
  4582. }
  4583.  
  4584. // Tests using StreamableToString() on a non-char pointer.
  4585. TEST(StreamableToStringTest, Pointer) {
  4586.   int n = 0;
  4587.   int* p = &n;
  4588.   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
  4589. }
  4590.  
  4591. // Tests using StreamableToString() on a NULL non-char pointer.
  4592. TEST(StreamableToStringTest, NullPointer) {
  4593.   int* p = NULL;
  4594.   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
  4595. }
  4596.  
  4597. // Tests using StreamableToString() on a C string.
  4598. TEST(StreamableToStringTest, CString) {
  4599.   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
  4600. }
  4601.  
  4602. // Tests using StreamableToString() on a NULL C string.
  4603. TEST(StreamableToStringTest, NullCString) {
  4604.   char* p = NULL;
  4605.   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
  4606. }
  4607.  
  4608. // Tests using streamable values as assertion messages.
  4609.  
  4610. // Tests using std::string as an assertion message.
  4611. TEST(StreamableTest, string) {
  4612.   static const std::string str(
  4613.       "This failure message is a std::string, and is expected.");
  4614.   EXPECT_FATAL_FAILURE(FAIL() << str,
  4615.                        str.c_str());
  4616. }
  4617.  
  4618. // Tests that we can output strings containing embedded NULs.
  4619. // Limited to Linux because we can only do this with std::string's.
  4620. TEST(StreamableTest, stringWithEmbeddedNUL) {
  4621.   static const char char_array_with_nul[] =
  4622.       "Here's a NUL\0 and some more string";
  4623.   static const std::string string_with_nul(char_array_with_nul,
  4624.                                            sizeof(char_array_with_nul)
  4625.                                            - 1);  // drops the trailing NUL
  4626.   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
  4627.                        "Here's a NUL\\0 and some more string");
  4628. }
  4629.  
  4630. // Tests that we can output a NUL char.
  4631. TEST(StreamableTest, NULChar) {
  4632.   EXPECT_FATAL_FAILURE({  // NOLINT
  4633.     FAIL() << "A NUL" << '\0' << " and some more string";
  4634.   }, "A NUL\\0 and some more string");
  4635. }
  4636.  
  4637. // Tests using int as an assertion message.
  4638. TEST(StreamableTest, int) {
  4639.   EXPECT_FATAL_FAILURE(FAIL() << 900913,
  4640.                        "900913");
  4641. }
  4642.  
  4643. // Tests using NULL char pointer as an assertion message.
  4644. //
  4645. // In MSVC, streaming a NULL char * causes access violation.  Google Test
  4646. // implemented a workaround (substituting "(null)" for NULL).  This
  4647. // tests whether the workaround works.
  4648. TEST(StreamableTest, NullCharPtr) {
  4649.   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
  4650.                        "(null)");
  4651. }
  4652.  
  4653. // Tests that basic IO manipulators (endl, ends, and flush) can be
  4654. // streamed to testing::Message.
  4655. TEST(StreamableTest, BasicIoManip) {
  4656.   EXPECT_FATAL_FAILURE({  // NOLINT
  4657.     FAIL() << "Line 1." << std::endl
  4658.            << "A NUL char " << std::ends << std::flush << " in line 2.";
  4659.   }, "Line 1.\nA NUL char \\0 in line 2.");
  4660. }
  4661.  
  4662. // Tests the macros that haven't been covered so far.
  4663.  
  4664. void AddFailureHelper(bool* aborted) {
  4665.   *aborted = true;
  4666.   ADD_FAILURE() << "Intentional failure.";
  4667.   *aborted = false;
  4668. }
  4669.  
  4670. // Tests ADD_FAILURE.
  4671. TEST(MacroTest, ADD_FAILURE) {
  4672.   bool aborted = true;
  4673.   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
  4674.                           "Intentional failure.");
  4675.   EXPECT_FALSE(aborted);
  4676. }
  4677.  
  4678. // Tests ADD_FAILURE_AT.
  4679. TEST(MacroTest, ADD_FAILURE_AT) {
  4680.   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
  4681.   // the failure message contains the user-streamed part.
  4682.   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
  4683.  
  4684.   // Verifies that the user-streamed part is optional.
  4685.   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
  4686.  
  4687.   // Unfortunately, we cannot verify that the failure message contains
  4688.   // the right file path and line number the same way, as
  4689.   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
  4690.   // line number.  Instead, we do that in googletest-output-test_.cc.
  4691. }
  4692.  
  4693. // Tests FAIL.
  4694. TEST(MacroTest, FAIL) {
  4695.   EXPECT_FATAL_FAILURE(FAIL(),
  4696.                        "Failed");
  4697.   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
  4698.                        "Intentional failure.");
  4699. }
  4700.  
  4701. // Tests SUCCEED
  4702. TEST(MacroTest, SUCCEED) {
  4703.   SUCCEED();
  4704.   SUCCEED() << "Explicit success.";
  4705. }
  4706.  
  4707. // Tests for EXPECT_EQ() and ASSERT_EQ().
  4708. //
  4709. // These tests fail *intentionally*, s.t. the failure messages can be
  4710. // generated and tested.
  4711. //
  4712. // We have different tests for different argument types.
  4713.  
  4714. // Tests using bool values in {EXPECT|ASSERT}_EQ.
  4715. TEST(EqAssertionTest, Bool) {
  4716.   EXPECT_EQ(true,  true);
  4717.   EXPECT_FATAL_FAILURE({
  4718.       bool false_value = false;
  4719.       ASSERT_EQ(false_value, true);
  4720.     }, "  false_value\n    Which is: false\n  true");
  4721. }
  4722.  
  4723. // Tests using int values in {EXPECT|ASSERT}_EQ.
  4724. TEST(EqAssertionTest, Int) {
  4725.   ASSERT_EQ(32, 32);
  4726.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
  4727.                           "  32\n  33");
  4728. }
  4729.  
  4730. // Tests using time_t values in {EXPECT|ASSERT}_EQ.
  4731. TEST(EqAssertionTest, Time_T) {
  4732.   EXPECT_EQ(static_cast<time_t>(0),
  4733.             static_cast<time_t>(0));
  4734.   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
  4735.                                  static_cast<time_t>(1234)),
  4736.                        "1234");
  4737. }
  4738.  
  4739. // Tests using char values in {EXPECT|ASSERT}_EQ.
  4740. TEST(EqAssertionTest, Char) {
  4741.   ASSERT_EQ('z', 'z');
  4742.   const char ch = 'b';
  4743.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
  4744.                           "  ch\n    Which is: 'b'");
  4745.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
  4746.                           "  ch\n    Which is: 'b'");
  4747. }
  4748.  
  4749. // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
  4750. TEST(EqAssertionTest, WideChar) {
  4751.   EXPECT_EQ(L'b', L'b');
  4752.  
  4753.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
  4754.                           "Expected equality of these values:\n"
  4755.                           "  L'\0'\n"
  4756.                           "    Which is: L'\0' (0, 0x0)\n"
  4757.                           "  L'x'\n"
  4758.                           "    Which is: L'x' (120, 0x78)");
  4759.  
  4760.   static wchar_t wchar;
  4761.   wchar = L'b';
  4762.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
  4763.                           "wchar");
  4764.   wchar = 0x8119;
  4765.   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
  4766.                        "  wchar\n    Which is: L'");
  4767. }
  4768.  
  4769. // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
  4770. TEST(EqAssertionTest, StdString) {
  4771.   // Compares a const char* to an std::string that has identical
  4772.   // content.
  4773.   ASSERT_EQ("Test", ::std::string("Test"));
  4774.  
  4775.   // Compares two identical std::strings.
  4776.   static const ::std::string str1("A * in the middle");
  4777.   static const ::std::string str2(str1);
  4778.   EXPECT_EQ(str1, str2);
  4779.  
  4780.   // Compares a const char* to an std::string that has different
  4781.   // content
  4782.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
  4783.                           "\"test\"");
  4784.  
  4785.   // Compares an std::string to a char* that has different content.
  4786.   char* const p1 = const_cast<char*>("foo");
  4787.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
  4788.                           "p1");
  4789.  
  4790.   // Compares two std::strings that have different contents, one of
  4791.   // which having a NUL character in the middle.  This should fail.
  4792.   static ::std::string str3(str1);
  4793.   str3.at(2) = '\0';
  4794.   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
  4795.                        "  str3\n    Which is: \"A \\0 in the middle\"");
  4796. }
  4797.  
  4798. #if GTEST_HAS_STD_WSTRING
  4799.  
  4800. // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
  4801. TEST(EqAssertionTest, StdWideString) {
  4802.   // Compares two identical std::wstrings.
  4803.   const ::std::wstring wstr1(L"A * in the middle");
  4804.   const ::std::wstring wstr2(wstr1);
  4805.   ASSERT_EQ(wstr1, wstr2);
  4806.  
  4807.   // Compares an std::wstring to a const wchar_t* that has identical
  4808.   // content.
  4809.   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
  4810.   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
  4811.  
  4812.   // Compares an std::wstring to a const wchar_t* that has different
  4813.   // content.
  4814.   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
  4815.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  4816.     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
  4817.   }, "kTestX8120");
  4818.  
  4819.   // Compares two std::wstrings that have different contents, one of
  4820.   // which having a NUL character in the middle.
  4821.   ::std::wstring wstr3(wstr1);
  4822.   wstr3.at(2) = L'\0';
  4823.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
  4824.                           "wstr3");
  4825.  
  4826.   // Compares a wchar_t* to an std::wstring that has different
  4827.   // content.
  4828.   EXPECT_FATAL_FAILURE({  // NOLINT
  4829.     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
  4830.   }, "");
  4831. }
  4832.  
  4833. #endif  // GTEST_HAS_STD_WSTRING
  4834.  
  4835. #if GTEST_HAS_GLOBAL_STRING
  4836. // Tests using ::string values in {EXPECT|ASSERT}_EQ.
  4837. TEST(EqAssertionTest, GlobalString) {
  4838.   // Compares a const char* to a ::string that has identical content.
  4839.   EXPECT_EQ("Test", ::string("Test"));
  4840.  
  4841.   // Compares two identical ::strings.
  4842.   const ::string str1("A * in the middle");
  4843.   const ::string str2(str1);
  4844.   ASSERT_EQ(str1, str2);
  4845.  
  4846.   // Compares a ::string to a const char* that has different content.
  4847.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
  4848.                           "test");
  4849.  
  4850.   // Compares two ::strings that have different contents, one of which
  4851.   // having a NUL character in the middle.
  4852.   ::string str3(str1);
  4853.   str3.at(2) = '\0';
  4854.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
  4855.                           "str3");
  4856.  
  4857.   // Compares a ::string to a char* that has different content.
  4858.   EXPECT_FATAL_FAILURE({  // NOLINT
  4859.     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
  4860.   }, "");
  4861. }
  4862.  
  4863. #endif  // GTEST_HAS_GLOBAL_STRING
  4864.  
  4865. #if GTEST_HAS_GLOBAL_WSTRING
  4866.  
  4867. // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
  4868. TEST(EqAssertionTest, GlobalWideString) {
  4869.   // Compares two identical ::wstrings.
  4870.   static const ::wstring wstr1(L"A * in the middle");
  4871.   static const ::wstring wstr2(wstr1);
  4872.   EXPECT_EQ(wstr1, wstr2);
  4873.  
  4874.   // Compares a const wchar_t* to a ::wstring that has identical content.
  4875.   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
  4876.   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
  4877.  
  4878.   // Compares a const wchar_t* to a ::wstring that has different
  4879.   // content.
  4880.   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
  4881.   EXPECT_NONFATAL_FAILURE({  // NOLINT
  4882.     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
  4883.   }, "Test\\x8119");
  4884.  
  4885.   // Compares a wchar_t* to a ::wstring that has different content.
  4886.   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
  4887.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
  4888.                           "bar");
  4889.  
  4890.   // Compares two ::wstrings that have different contents, one of which
  4891.   // having a NUL character in the middle.
  4892.   static ::wstring wstr3;
  4893.   wstr3 = wstr1;
  4894.   wstr3.at(2) = L'\0';
  4895.   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
  4896.                        "wstr3");
  4897. }
  4898.  
  4899. #endif  // GTEST_HAS_GLOBAL_WSTRING
  4900.  
  4901. // Tests using char pointers in {EXPECT|ASSERT}_EQ.
  4902. TEST(EqAssertionTest, CharPointer) {
  4903.   char* const p0 = NULL;
  4904.   // Only way to get the Nokia compiler to compile the cast
  4905.   // is to have a separate void* variable first. Putting
  4906.   // the two casts on the same line doesn't work, neither does
  4907.   // a direct C-style to char*.
  4908.   void* pv1 = (void*)0x1234;  // NOLINT
  4909.   void* pv2 = (void*)0xABC0;  // NOLINT
  4910.   char* const p1 = reinterpret_cast<char*>(pv1);
  4911.   char* const p2 = reinterpret_cast<char*>(pv2);
  4912.   ASSERT_EQ(p1, p1);
  4913.  
  4914.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
  4915.                           "  p2\n    Which is:");
  4916.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
  4917.                           "  p2\n    Which is:");
  4918.   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
  4919.                                  reinterpret_cast<char*>(0xABC0)),
  4920.                        "ABC0");
  4921. }
  4922.  
  4923. // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
  4924. TEST(EqAssertionTest, WideCharPointer) {
  4925.   wchar_t* const p0 = NULL;
  4926.   // Only way to get the Nokia compiler to compile the cast
  4927.   // is to have a separate void* variable first. Putting
  4928.   // the two casts on the same line doesn't work, neither does
  4929.   // a direct C-style to char*.
  4930.   void* pv1 = (void*)0x1234;  // NOLINT
  4931.   void* pv2 = (void*)0xABC0;  // NOLINT
  4932.   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
  4933.   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
  4934.   EXPECT_EQ(p0, p0);
  4935.  
  4936.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
  4937.                           "  p2\n    Which is:");
  4938.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
  4939.                           "  p2\n    Which is:");
  4940.   void* pv3 = (void*)0x1234;  // NOLINT
  4941.   void* pv4 = (void*)0xABC0;  // NOLINT
  4942.   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
  4943.   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
  4944.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
  4945.                           "p4");
  4946. }
  4947.  
  4948. // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
  4949. TEST(EqAssertionTest, OtherPointer) {
  4950.   ASSERT_EQ(static_cast<const int*>(NULL),
  4951.             static_cast<const int*>(NULL));
  4952.   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
  4953.                                  reinterpret_cast<const int*>(0x1234)),
  4954.                        "0x1234");
  4955. }
  4956.  
  4957. // A class that supports binary comparison operators but not streaming.
  4958. class UnprintableChar {
  4959.  public:
  4960.   explicit UnprintableChar(char ch) : char_(ch) {}
  4961.  
  4962.   bool operator==(const UnprintableChar& rhs) const {
  4963.     return char_ == rhs.char_;
  4964.   }
  4965.   bool operator!=(const UnprintableChar& rhs) const {
  4966.     return char_ != rhs.char_;
  4967.   }
  4968.   bool operator<(const UnprintableChar& rhs) const {
  4969.     return char_ < rhs.char_;
  4970.   }
  4971.   bool operator<=(const UnprintableChar& rhs) const {
  4972.     return char_ <= rhs.char_;
  4973.   }
  4974.   bool operator>(const UnprintableChar& rhs) const {
  4975.     return char_ > rhs.char_;
  4976.   }
  4977.   bool operator>=(const UnprintableChar& rhs) const {
  4978.     return char_ >= rhs.char_;
  4979.   }
  4980.  
  4981.  private:
  4982.   char char_;
  4983. };
  4984.  
  4985. // Tests that ASSERT_EQ() and friends don't require the arguments to
  4986. // be printable.
  4987. TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
  4988.   const UnprintableChar x('x'), y('y');
  4989.   ASSERT_EQ(x, x);
  4990.   EXPECT_NE(x, y);
  4991.   ASSERT_LT(x, y);
  4992.   EXPECT_LE(x, y);
  4993.   ASSERT_GT(y, x);
  4994.   EXPECT_GE(x, x);
  4995.  
  4996.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
  4997.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
  4998.   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
  4999.   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
  5000.   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
  5001.  
  5002.   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
  5003.   // variables, so we have to write UnprintableChar('x') instead of x.
  5004. #ifndef __BORLANDC__
  5005.   // ICE's in C++Builder.
  5006.   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
  5007.                        "1-byte object <78>");
  5008.   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
  5009.                        "1-byte object <78>");
  5010. #endif
  5011.   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
  5012.                        "1-byte object <79>");
  5013.   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
  5014.                        "1-byte object <78>");
  5015.   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
  5016.                        "1-byte object <79>");
  5017. }
  5018.  
  5019. // Tests the FRIEND_TEST macro.
  5020.  
  5021. // This class has a private member we want to test.  We will test it
  5022. // both in a TEST and in a TEST_F.
  5023. class Foo {
  5024.  public:
  5025.   Foo() {}
  5026.  
  5027.  private:
  5028.   int Bar() const { return 1; }
  5029.  
  5030.   // Declares the friend tests that can access the private member
  5031.   // Bar().
  5032.   FRIEND_TEST(FRIEND_TEST_Test, TEST);
  5033.   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
  5034. };
  5035.  
  5036. // Tests that the FRIEND_TEST declaration allows a TEST to access a
  5037. // class's private members.  This should compile.
  5038. TEST(FRIEND_TEST_Test, TEST) {
  5039.   ASSERT_EQ(1, Foo().Bar());
  5040. }
  5041.  
  5042. // The fixture needed to test using FRIEND_TEST with TEST_F.
  5043. class FRIEND_TEST_Test2 : public Test {
  5044.  protected:
  5045.   Foo foo;
  5046. };
  5047.  
  5048. // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
  5049. // class's private members.  This should compile.
  5050. TEST_F(FRIEND_TEST_Test2, TEST_F) {
  5051.   ASSERT_EQ(1, foo.Bar());
  5052. }
  5053.  
  5054. // Tests the life cycle of Test objects.
  5055.  
  5056. // The test fixture for testing the life cycle of Test objects.
  5057. //
  5058. // This class counts the number of live test objects that uses this
  5059. // fixture.
  5060. class TestLifeCycleTest : public Test {
  5061.  protected:
  5062.   // Constructor.  Increments the number of test objects that uses
  5063.   // this fixture.
  5064.   TestLifeCycleTest() { count_++; }
  5065.  
  5066.   // Destructor.  Decrements the number of test objects that uses this
  5067.   // fixture.
  5068.   ~TestLifeCycleTest() { count_--; }
  5069.  
  5070.   // Returns the number of live test objects that uses this fixture.
  5071.   int count() const { return count_; }
  5072.  
  5073.  private:
  5074.   static int count_;
  5075. };
  5076.  
  5077. int TestLifeCycleTest::count_ = 0;
  5078.  
  5079. // Tests the life cycle of test objects.
  5080. TEST_F(TestLifeCycleTest, Test1) {
  5081.   // There should be only one test object in this test case that's
  5082.   // currently alive.
  5083.   ASSERT_EQ(1, count());
  5084. }
  5085.  
  5086. // Tests the life cycle of test objects.
  5087. TEST_F(TestLifeCycleTest, Test2) {
  5088.   // After Test1 is done and Test2 is started, there should still be
  5089.   // only one live test object, as the object for Test1 should've been
  5090.   // deleted.
  5091.   ASSERT_EQ(1, count());
  5092. }
  5093.  
  5094. }  // namespace
  5095.  
  5096. // Tests that the copy constructor works when it is NOT optimized away by
  5097. // the compiler.
  5098. TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
  5099.   // Checks that the copy constructor doesn't try to dereference NULL pointers
  5100.   // in the source object.
  5101.   AssertionResult r1 = AssertionSuccess();
  5102.   AssertionResult r2 = r1;
  5103.   // The following line is added to prevent the compiler from optimizing
  5104.   // away the constructor call.
  5105.   r1 << "abc";
  5106.  
  5107.   AssertionResult r3 = r1;
  5108.   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
  5109.   EXPECT_STREQ("abc", r1.message());
  5110. }
  5111.  
  5112. // Tests that AssertionSuccess and AssertionFailure construct
  5113. // AssertionResult objects as expected.
  5114. TEST(AssertionResultTest, ConstructionWorks) {
  5115.   AssertionResult r1 = AssertionSuccess();
  5116.   EXPECT_TRUE(r1);
  5117.   EXPECT_STREQ("", r1.message());
  5118.  
  5119.   AssertionResult r2 = AssertionSuccess() << "abc";
  5120.   EXPECT_TRUE(r2);
  5121.   EXPECT_STREQ("abc", r2.message());
  5122.  
  5123.   AssertionResult r3 = AssertionFailure();
  5124.   EXPECT_FALSE(r3);
  5125.   EXPECT_STREQ("", r3.message());
  5126.  
  5127.   AssertionResult r4 = AssertionFailure() << "def";
  5128.   EXPECT_FALSE(r4);
  5129.   EXPECT_STREQ("def", r4.message());
  5130.  
  5131.   AssertionResult r5 = AssertionFailure(Message() << "ghi");
  5132.   EXPECT_FALSE(r5);
  5133.   EXPECT_STREQ("ghi", r5.message());
  5134. }
  5135.  
  5136. // Tests that the negation flips the predicate result but keeps the message.
  5137. TEST(AssertionResultTest, NegationWorks) {
  5138.   AssertionResult r1 = AssertionSuccess() << "abc";
  5139.   EXPECT_FALSE(!r1);
  5140.   EXPECT_STREQ("abc", (!r1).message());
  5141.  
  5142.   AssertionResult r2 = AssertionFailure() << "def";
  5143.   EXPECT_TRUE(!r2);
  5144.   EXPECT_STREQ("def", (!r2).message());
  5145. }
  5146.  
  5147. TEST(AssertionResultTest, StreamingWorks) {
  5148.   AssertionResult r = AssertionSuccess();
  5149.   r << "abc" << 'd' << 0 << true;
  5150.   EXPECT_STREQ("abcd0true", r.message());
  5151. }
  5152.  
  5153. TEST(AssertionResultTest, CanStreamOstreamManipulators) {
  5154.   AssertionResult r = AssertionSuccess();
  5155.   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
  5156.   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
  5157. }
  5158.  
  5159. // The next test uses explicit conversion operators -- a C++11 feature.
  5160. #if GTEST_LANG_CXX11
  5161.  
  5162. TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
  5163.   struct ExplicitlyConvertibleToBool {
  5164.     explicit operator bool() const { return value; }
  5165.     bool value;
  5166.   };
  5167.   ExplicitlyConvertibleToBool v1 = {false};
  5168.   ExplicitlyConvertibleToBool v2 = {true};
  5169.   EXPECT_FALSE(v1);
  5170.   EXPECT_TRUE(v2);
  5171. }
  5172.  
  5173. #endif  // GTEST_LANG_CXX11
  5174.  
  5175. struct ConvertibleToAssertionResult {
  5176.   operator AssertionResult() const { return AssertionResult(true); }
  5177. };
  5178.  
  5179. TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
  5180.   ConvertibleToAssertionResult obj;
  5181.   EXPECT_TRUE(obj);
  5182. }
  5183.  
  5184. // Tests streaming a user type whose definition and operator << are
  5185. // both in the global namespace.
  5186. class Base {
  5187.  public:
  5188.   explicit Base(int an_x) : x_(an_x) {}
  5189.   int x() const { return x_; }
  5190.  private:
  5191.   int x_;
  5192. };
  5193. std::ostream& operator<<(std::ostream& os,
  5194.                          const Base& val) {
  5195.   return os << val.x();
  5196. }
  5197. std::ostream& operator<<(std::ostream& os,
  5198.                          const Base* pointer) {
  5199.   return os << "(" << pointer->x() << ")";
  5200. }
  5201.  
  5202. TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
  5203.   Message msg;
  5204.   Base a(1);
  5205.  
  5206.   msg << a << &a;  // Uses ::operator<<.
  5207.   EXPECT_STREQ("1(1)", msg.GetString().c_str());
  5208. }
  5209.  
  5210. // Tests streaming a user type whose definition and operator<< are
  5211. // both in an unnamed namespace.
  5212. namespace {
  5213. class MyTypeInUnnamedNameSpace : public Base {
  5214.  public:
  5215.   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
  5216. };
  5217. std::ostream& operator<<(std::ostream& os,
  5218.                          const MyTypeInUnnamedNameSpace& val) {
  5219.   return os << val.x();
  5220. }
  5221. std::ostream& operator<<(std::ostream& os,
  5222.                          const MyTypeInUnnamedNameSpace* pointer) {
  5223.   return os << "(" << pointer->x() << ")";
  5224. }
  5225. }  // namespace
  5226.  
  5227. TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
  5228.   Message msg;
  5229.   MyTypeInUnnamedNameSpace a(1);
  5230.  
  5231.   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
  5232.   EXPECT_STREQ("1(1)", msg.GetString().c_str());
  5233. }
  5234.  
  5235. // Tests streaming a user type whose definition and operator<< are
  5236. // both in a user namespace.
  5237. namespace namespace1 {
  5238. class MyTypeInNameSpace1 : public Base {
  5239.  public:
  5240.   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
  5241. };
  5242. std::ostream& operator<<(std::ostream& os,
  5243.                          const MyTypeInNameSpace1& val) {
  5244.   return os << val.x();
  5245. }
  5246. std::ostream& operator<<(std::ostream& os,
  5247.                          const MyTypeInNameSpace1* pointer) {
  5248.   return os << "(" << pointer->x() << ")";
  5249. }
  5250. }  // namespace namespace1
  5251.  
  5252. TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
  5253.   Message msg;
  5254.   namespace1::MyTypeInNameSpace1 a(1);
  5255.  
  5256.   msg << a << &a;  // Uses namespace1::operator<<.
  5257.   EXPECT_STREQ("1(1)", msg.GetString().c_str());
  5258. }
  5259.  
  5260. // Tests streaming a user type whose definition is in a user namespace
  5261. // but whose operator<< is in the global namespace.
  5262. namespace namespace2 {
  5263. class MyTypeInNameSpace2 : public ::Base {
  5264.  public:
  5265.   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
  5266. };
  5267. }  // namespace namespace2
  5268. std::ostream& operator<<(std::ostream& os,
  5269.                          const namespace2::MyTypeInNameSpace2& val) {
  5270.   return os << val.x();
  5271. }
  5272. std::ostream& operator<<(std::ostream& os,
  5273.                          const namespace2::MyTypeInNameSpace2* pointer) {
  5274.   return os << "(" << pointer->x() << ")";
  5275. }
  5276.  
  5277. TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
  5278.   Message msg;
  5279.   namespace2::MyTypeInNameSpace2 a(1);
  5280.  
  5281.   msg << a << &a;  // Uses ::operator<<.
  5282.   EXPECT_STREQ("1(1)", msg.GetString().c_str());
  5283. }
  5284.  
  5285. // Tests streaming NULL pointers to testing::Message.
  5286. TEST(MessageTest, NullPointers) {
  5287.   Message msg;
  5288.   char* const p1 = NULL;
  5289.   unsigned char* const p2 = NULL;
  5290.   int* p3 = NULL;
  5291.   double* p4 = NULL;
  5292.   bool* p5 = NULL;
  5293.   Message* p6 = NULL;
  5294.  
  5295.   msg << p1 << p2 << p3 << p4 << p5 << p6;
  5296.   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
  5297.                msg.GetString().c_str());
  5298. }
  5299.  
  5300. // Tests streaming wide strings to testing::Message.
  5301. TEST(MessageTest, WideStrings) {
  5302.   // Streams a NULL of type const wchar_t*.
  5303.   const wchar_t* const_wstr = NULL;
  5304.   EXPECT_STREQ("(null)",
  5305.                (Message() << const_wstr).GetString().c_str());
  5306.  
  5307.   // Streams a NULL of type wchar_t*.
  5308.   wchar_t* wstr = NULL;
  5309.   EXPECT_STREQ("(null)",
  5310.                (Message() << wstr).GetString().c_str());
  5311.  
  5312.   // Streams a non-NULL of type const wchar_t*.
  5313.   const_wstr = L"abc\x8119";
  5314.   EXPECT_STREQ("abc\xe8\x84\x99",
  5315.                (Message() << const_wstr).GetString().c_str());
  5316.  
  5317.   // Streams a non-NULL of type wchar_t*.
  5318.   wstr = const_cast<wchar_t*>(const_wstr);
  5319.   EXPECT_STREQ("abc\xe8\x84\x99",
  5320.                (Message() << wstr).GetString().c_str());
  5321. }
  5322.  
  5323.  
  5324. // This line tests that we can define tests in the testing namespace.
  5325. namespace testing {
  5326.  
  5327. // Tests the TestInfo class.
  5328.  
  5329. class TestInfoTest : public Test {
  5330.  protected:
  5331.   static const TestInfo* GetTestInfo(const char* test_name) {
  5332.     const TestCase* const test_case = GetUnitTestImpl()->
  5333.         GetTestCase("TestInfoTest", "", NULL, NULL);
  5334.  
  5335.     for (int i = 0; i < test_case->total_test_count(); ++i) {
  5336.       const TestInfo* const test_info = test_case->GetTestInfo(i);
  5337.       if (strcmp(test_name, test_info->name()) == 0)
  5338.         return test_info;
  5339.     }
  5340.     return NULL;
  5341.   }
  5342.  
  5343.   static const TestResult* GetTestResult(
  5344.       const TestInfo* test_info) {
  5345.     return test_info->result();
  5346.   }
  5347. };
  5348.  
  5349. // Tests TestInfo::test_case_name() and TestInfo::name().
  5350. TEST_F(TestInfoTest, Names) {
  5351.   const TestInfo* const test_info = GetTestInfo("Names");
  5352.  
  5353.   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
  5354.   ASSERT_STREQ("Names", test_info->name());
  5355. }
  5356.  
  5357. // Tests TestInfo::result().
  5358. TEST_F(TestInfoTest, result) {
  5359.   const TestInfo* const test_info = GetTestInfo("result");
  5360.  
  5361.   // Initially, there is no TestPartResult for this test.
  5362.   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
  5363.  
  5364.   // After the previous assertion, there is still none.
  5365.   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
  5366. }
  5367.  
  5368. #define VERIFY_CODE_LOCATION \
  5369.   const int expected_line = __LINE__ - 1; \
  5370.   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
  5371.   ASSERT_TRUE(test_info); \
  5372.   EXPECT_STREQ(__FILE__, test_info->file()); \
  5373.   EXPECT_EQ(expected_line, test_info->line())
  5374.  
  5375. TEST(CodeLocationForTEST, Verify) {
  5376.   VERIFY_CODE_LOCATION;
  5377. }
  5378.  
  5379. class CodeLocationForTESTF : public Test {
  5380. };
  5381.  
  5382. TEST_F(CodeLocationForTESTF, Verify) {
  5383.   VERIFY_CODE_LOCATION;
  5384. }
  5385.  
  5386. class CodeLocationForTESTP : public TestWithParam<int> {
  5387. };
  5388.  
  5389. TEST_P(CodeLocationForTESTP, Verify) {
  5390.   VERIFY_CODE_LOCATION;
  5391. }
  5392.  
  5393. INSTANTIATE_TEST_CASE_P(, CodeLocationForTESTP, Values(0));
  5394.  
  5395. template <typename T>
  5396. class CodeLocationForTYPEDTEST : public Test {
  5397. };
  5398.  
  5399. TYPED_TEST_CASE(CodeLocationForTYPEDTEST, int);
  5400.  
  5401. TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
  5402.   VERIFY_CODE_LOCATION;
  5403. }
  5404.  
  5405. template <typename T>
  5406. class CodeLocationForTYPEDTESTP : public Test {
  5407. };
  5408.  
  5409. TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP);
  5410.  
  5411. TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
  5412.   VERIFY_CODE_LOCATION;
  5413. }
  5414.  
  5415. REGISTER_TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP, Verify);
  5416.  
  5417. INSTANTIATE_TYPED_TEST_CASE_P(My, CodeLocationForTYPEDTESTP, int);
  5418.  
  5419. #undef VERIFY_CODE_LOCATION
  5420.  
  5421. // Tests setting up and tearing down a test case.
  5422.  
  5423. class SetUpTestCaseTest : public Test {
  5424.  protected:
  5425.   // This will be called once before the first test in this test case
  5426.   // is run.
  5427.   static void SetUpTestCase() {
  5428.     printf("Setting up the test case . . .\n");
  5429.  
  5430.     // Initializes some shared resource.  In this simple example, we
  5431.     // just create a C string.  More complex stuff can be done if
  5432.     // desired.
  5433.     shared_resource_ = "123";
  5434.  
  5435.     // Increments the number of test cases that have been set up.
  5436.     counter_++;
  5437.  
  5438.     // SetUpTestCase() should be called only once.
  5439.     EXPECT_EQ(1, counter_);
  5440.   }
  5441.  
  5442.   // This will be called once after the last test in this test case is
  5443.   // run.
  5444.   static void TearDownTestCase() {
  5445.     printf("Tearing down the test case . . .\n");
  5446.  
  5447.     // Decrements the number of test cases that have been set up.
  5448.     counter_--;
  5449.  
  5450.     // TearDownTestCase() should be called only once.
  5451.     EXPECT_EQ(0, counter_);
  5452.  
  5453.     // Cleans up the shared resource.
  5454.     shared_resource_ = NULL;
  5455.   }
  5456.  
  5457.   // This will be called before each test in this test case.
  5458.   virtual void SetUp() {
  5459.     // SetUpTestCase() should be called only once, so counter_ should
  5460.     // always be 1.
  5461.     EXPECT_EQ(1, counter_);
  5462.   }
  5463.  
  5464.   // Number of test cases that have been set up.
  5465.   static int counter_;
  5466.  
  5467.   // Some resource to be shared by all tests in this test case.
  5468.   static const char* shared_resource_;
  5469. };
  5470.  
  5471. int SetUpTestCaseTest::counter_ = 0;
  5472. const char* SetUpTestCaseTest::shared_resource_ = NULL;
  5473.  
  5474. // A test that uses the shared resource.
  5475. TEST_F(SetUpTestCaseTest, Test1) {
  5476.   EXPECT_STRNE(NULL, shared_resource_);
  5477. }
  5478.  
  5479. // Another test that uses the shared resource.
  5480. TEST_F(SetUpTestCaseTest, Test2) {
  5481.   EXPECT_STREQ("123", shared_resource_);
  5482. }
  5483.  
  5484.  
  5485. // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
  5486.  
  5487. // The Flags struct stores a copy of all Google Test flags.
  5488. struct Flags {
  5489.   // Constructs a Flags struct where each flag has its default value.
  5490.   Flags() : also_run_disabled_tests(false),
  5491.             break_on_failure(false),
  5492.             catch_exceptions(false),
  5493.             death_test_use_fork(false),
  5494.             filter(""),
  5495.             list_tests(false),
  5496.             output(""),
  5497.             print_time(true),
  5498.             random_seed(0),
  5499.             repeat(1),
  5500.             shuffle(false),
  5501.             stack_trace_depth(kMaxStackTraceDepth),
  5502.             stream_result_to(""),
  5503.             throw_on_failure(false) {}
  5504.  
  5505.   // Factory methods.
  5506.  
  5507.   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
  5508.   // the given value.
  5509.   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
  5510.     Flags flags;
  5511.     flags.also_run_disabled_tests = also_run_disabled_tests;
  5512.     return flags;
  5513.   }
  5514.  
  5515.   // Creates a Flags struct where the gtest_break_on_failure flag has
  5516.   // the given value.
  5517.   static Flags BreakOnFailure(bool break_on_failure) {
  5518.     Flags flags;
  5519.     flags.break_on_failure = break_on_failure;
  5520.     return flags;
  5521.   }
  5522.  
  5523.   // Creates a Flags struct where the gtest_catch_exceptions flag has
  5524.   // the given value.
  5525.   static Flags CatchExceptions(bool catch_exceptions) {
  5526.     Flags flags;
  5527.     flags.catch_exceptions = catch_exceptions;
  5528.     return flags;
  5529.   }
  5530.  
  5531.   // Creates a Flags struct where the gtest_death_test_use_fork flag has
  5532.   // the given value.
  5533.   static Flags DeathTestUseFork(bool death_test_use_fork) {
  5534.     Flags flags;
  5535.     flags.death_test_use_fork = death_test_use_fork;
  5536.     return flags;
  5537.   }
  5538.  
  5539.   // Creates a Flags struct where the gtest_filter flag has the given
  5540.   // value.
  5541.   static Flags Filter(const char* filter) {
  5542.     Flags flags;
  5543.     flags.filter = filter;
  5544.     return flags;
  5545.   }
  5546.  
  5547.   // Creates a Flags struct where the gtest_list_tests flag has the
  5548.   // given value.
  5549.   static Flags ListTests(bool list_tests) {
  5550.     Flags flags;
  5551.     flags.list_tests = list_tests;
  5552.     return flags;
  5553.   }
  5554.  
  5555.   // Creates a Flags struct where the gtest_output flag has the given
  5556.   // value.
  5557.   static Flags Output(const char* output) {
  5558.     Flags flags;
  5559.     flags.output = output;
  5560.     return flags;
  5561.   }
  5562.  
  5563.   // Creates a Flags struct where the gtest_print_time flag has the given
  5564.   // value.
  5565.   static Flags PrintTime(bool print_time) {
  5566.     Flags flags;
  5567.     flags.print_time = print_time;
  5568.     return flags;
  5569.   }
  5570.  
  5571.   // Creates a Flags struct where the gtest_random_seed flag has the given
  5572.   // value.
  5573.   static Flags RandomSeed(Int32 random_seed) {
  5574.     Flags flags;
  5575.     flags.random_seed = random_seed;
  5576.     return flags;
  5577.   }
  5578.  
  5579.   // Creates a Flags struct where the gtest_repeat flag has the given
  5580.   // value.
  5581.   static Flags Repeat(Int32 repeat) {
  5582.     Flags flags;
  5583.     flags.repeat = repeat;
  5584.     return flags;
  5585.   }
  5586.  
  5587.   // Creates a Flags struct where the gtest_shuffle flag has the given
  5588.   // value.
  5589.   static Flags Shuffle(bool shuffle) {
  5590.     Flags flags;
  5591.     flags.shuffle = shuffle;
  5592.     return flags;
  5593.   }
  5594.  
  5595.   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
  5596.   // the given value.
  5597.   static Flags StackTraceDepth(Int32 stack_trace_depth) {
  5598.     Flags flags;
  5599.     flags.stack_trace_depth = stack_trace_depth;
  5600.     return flags;
  5601.   }
  5602.  
  5603.   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
  5604.   // the given value.
  5605.   static Flags StreamResultTo(const char* stream_result_to) {
  5606.     Flags flags;
  5607.     flags.stream_result_to = stream_result_to;
  5608.     return flags;
  5609.   }
  5610.  
  5611.   // Creates a Flags struct where the gtest_throw_on_failure flag has
  5612.   // the given value.
  5613.   static Flags ThrowOnFailure(bool throw_on_failure) {
  5614.     Flags flags;
  5615.     flags.throw_on_failure = throw_on_failure;
  5616.     return flags;
  5617.   }
  5618.  
  5619.   // These fields store the flag values.
  5620.   bool also_run_disabled_tests;
  5621.   bool break_on_failure;
  5622.   bool catch_exceptions;
  5623.   bool death_test_use_fork;
  5624.   const char* filter;
  5625.   bool list_tests;
  5626.   const char* output;
  5627.   bool print_time;
  5628.   Int32 random_seed;
  5629.   Int32 repeat;
  5630.   bool shuffle;
  5631.   Int32 stack_trace_depth;
  5632.   const char* stream_result_to;
  5633.   bool throw_on_failure;
  5634. };
  5635.  
  5636. // Fixture for testing ParseGoogleTestFlagsOnly().
  5637. class ParseFlagsTest : public Test {
  5638.  protected:
  5639.   // Clears the flags before each test.
  5640.   virtual void SetUp() {
  5641.     GTEST_FLAG(also_run_disabled_tests) = false;
  5642.     GTEST_FLAG(break_on_failure) = false;
  5643.     GTEST_FLAG(catch_exceptions) = false;
  5644.     GTEST_FLAG(death_test_use_fork) = false;
  5645.     GTEST_FLAG(filter) = "";
  5646.     GTEST_FLAG(list_tests) = false;
  5647.     GTEST_FLAG(output) = "";
  5648.     GTEST_FLAG(print_time) = true;
  5649.     GTEST_FLAG(random_seed) = 0;
  5650.     GTEST_FLAG(repeat) = 1;
  5651.     GTEST_FLAG(shuffle) = false;
  5652.     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
  5653.     GTEST_FLAG(stream_result_to) = "";
  5654.     GTEST_FLAG(throw_on_failure) = false;
  5655.   }
  5656.  
  5657.   // Asserts that two narrow or wide string arrays are equal.
  5658.   template <typename CharType>
  5659.   static void AssertStringArrayEq(size_t size1, CharType** array1,
  5660.                                   size_t size2, CharType** array2) {
  5661.     ASSERT_EQ(size1, size2) << " Array sizes different.";
  5662.  
  5663.     for (size_t i = 0; i != size1; i++) {
  5664.       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
  5665.     }
  5666.   }
  5667.  
  5668.   // Verifies that the flag values match the expected values.
  5669.   static void CheckFlags(const Flags& expected) {
  5670.     EXPECT_EQ(expected.also_run_disabled_tests,
  5671.               GTEST_FLAG(also_run_disabled_tests));
  5672.     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
  5673.     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
  5674.     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
  5675.     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
  5676.     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
  5677.     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
  5678.     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
  5679.     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
  5680.     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
  5681.     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
  5682.     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
  5683.     EXPECT_STREQ(expected.stream_result_to,
  5684.                  GTEST_FLAG(stream_result_to).c_str());
  5685.     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
  5686.   }
  5687.  
  5688.   // Parses a command line (specified by argc1 and argv1), then
  5689.   // verifies that the flag values are expected and that the
  5690.   // recognized flags are removed from the command line.
  5691.   template <typename CharType>
  5692.   static void TestParsingFlags(int argc1, const CharType** argv1,
  5693.                                int argc2, const CharType** argv2,
  5694.                                const Flags& expected, bool should_print_help) {
  5695.     const bool saved_help_flag = ::testing::internal::g_help_flag;
  5696.     ::testing::internal::g_help_flag = false;
  5697.  
  5698. # if GTEST_HAS_STREAM_REDIRECTION
  5699.     CaptureStdout();
  5700. # endif
  5701.  
  5702.     // Parses the command line.
  5703.     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
  5704.  
  5705. # if GTEST_HAS_STREAM_REDIRECTION
  5706.     const std::string captured_stdout = GetCapturedStdout();
  5707. # endif
  5708.  
  5709.     // Verifies the flag values.
  5710.     CheckFlags(expected);
  5711.  
  5712.     // Verifies that the recognized flags are removed from the command
  5713.     // line.
  5714.     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
  5715.  
  5716.     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
  5717.     // help message for the flags it recognizes.
  5718.     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
  5719.  
  5720. # if GTEST_HAS_STREAM_REDIRECTION
  5721.     const char* const expected_help_fragment =
  5722.         "This program contains tests written using";
  5723.     if (should_print_help) {
  5724.       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
  5725.     } else {
  5726.       EXPECT_PRED_FORMAT2(IsNotSubstring,
  5727.                           expected_help_fragment, captured_stdout);
  5728.     }
  5729. # endif  // GTEST_HAS_STREAM_REDIRECTION
  5730.  
  5731.     ::testing::internal::g_help_flag = saved_help_flag;
  5732.   }
  5733.  
  5734.   // This macro wraps TestParsingFlags s.t. the user doesn't need
  5735.   // to specify the array sizes.
  5736.  
  5737. # define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
  5738.   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
  5739.                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
  5740.                    expected, should_print_help)
  5741. };
  5742.  
  5743. // Tests parsing an empty command line.
  5744. TEST_F(ParseFlagsTest, Empty) {
  5745.   const char* argv[] = {
  5746.     NULL
  5747.   };
  5748.  
  5749.   const char* argv2[] = {
  5750.     NULL
  5751.   };
  5752.  
  5753.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
  5754. }
  5755.  
  5756. // Tests parsing a command line that has no flag.
  5757. TEST_F(ParseFlagsTest, NoFlag) {
  5758.   const char* argv[] = {
  5759.     "foo.exe",
  5760.     NULL
  5761.   };
  5762.  
  5763.   const char* argv2[] = {
  5764.     "foo.exe",
  5765.     NULL
  5766.   };
  5767.  
  5768.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
  5769. }
  5770.  
  5771. // Tests parsing a bad --gtest_filter flag.
  5772. TEST_F(ParseFlagsTest, FilterBad) {
  5773.   const char* argv[] = {
  5774.     "foo.exe",
  5775.     "--gtest_filter",
  5776.     NULL
  5777.   };
  5778.  
  5779.   const char* argv2[] = {
  5780.     "foo.exe",
  5781.     "--gtest_filter",
  5782.     NULL
  5783.   };
  5784.  
  5785.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
  5786. }
  5787.  
  5788. // Tests parsing an empty --gtest_filter flag.
  5789. TEST_F(ParseFlagsTest, FilterEmpty) {
  5790.   const char* argv[] = {
  5791.     "foo.exe",
  5792.     "--gtest_filter=",
  5793.     NULL
  5794.   };
  5795.  
  5796.   const char* argv2[] = {
  5797.     "foo.exe",
  5798.     NULL
  5799.   };
  5800.  
  5801.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
  5802. }
  5803.  
  5804. // Tests parsing a non-empty --gtest_filter flag.
  5805. TEST_F(ParseFlagsTest, FilterNonEmpty) {
  5806.   const char* argv[] = {
  5807.     "foo.exe",
  5808.     "--gtest_filter=abc",
  5809.     NULL
  5810.   };
  5811.  
  5812.   const char* argv2[] = {
  5813.     "foo.exe",
  5814.     NULL
  5815.   };
  5816.  
  5817.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
  5818. }
  5819.  
  5820. // Tests parsing --gtest_break_on_failure.
  5821. TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
  5822.   const char* argv[] = {
  5823.     "foo.exe",
  5824.     "--gtest_break_on_failure",
  5825.     NULL
  5826. };
  5827.  
  5828.   const char* argv2[] = {
  5829.     "foo.exe",
  5830.     NULL
  5831.   };
  5832.  
  5833.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
  5834. }
  5835.  
  5836. // Tests parsing --gtest_break_on_failure=0.
  5837. TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
  5838.   const char* argv[] = {
  5839.     "foo.exe",
  5840.     "--gtest_break_on_failure=0",
  5841.     NULL
  5842.   };
  5843.  
  5844.   const char* argv2[] = {
  5845.     "foo.exe",
  5846.     NULL
  5847.   };
  5848.  
  5849.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
  5850. }
  5851.  
  5852. // Tests parsing --gtest_break_on_failure=f.
  5853. TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
  5854.   const char* argv[] = {
  5855.     "foo.exe",
  5856.     "--gtest_break_on_failure=f",
  5857.     NULL
  5858.   };
  5859.  
  5860.   const char* argv2[] = {
  5861.     "foo.exe",
  5862.     NULL
  5863.   };
  5864.  
  5865.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
  5866. }
  5867.  
  5868. // Tests parsing --gtest_break_on_failure=F.
  5869. TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
  5870.   const char* argv[] = {
  5871.     "foo.exe",
  5872.     "--gtest_break_on_failure=F",
  5873.     NULL
  5874.   };
  5875.  
  5876.   const char* argv2[] = {
  5877.     "foo.exe",
  5878.     NULL
  5879.   };
  5880.  
  5881.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
  5882. }
  5883.  
  5884. // Tests parsing a --gtest_break_on_failure flag that has a "true"
  5885. // definition.
  5886. TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
  5887.   const char* argv[] = {
  5888.     "foo.exe",
  5889.     "--gtest_break_on_failure=1",
  5890.     NULL
  5891.   };
  5892.  
  5893.   const char* argv2[] = {
  5894.     "foo.exe",
  5895.     NULL
  5896.   };
  5897.  
  5898.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
  5899. }
  5900.  
  5901. // Tests parsing --gtest_catch_exceptions.
  5902. TEST_F(ParseFlagsTest, CatchExceptions) {
  5903.   const char* argv[] = {
  5904.     "foo.exe",
  5905.     "--gtest_catch_exceptions",
  5906.     NULL
  5907.   };
  5908.  
  5909.   const char* argv2[] = {
  5910.     "foo.exe",
  5911.     NULL
  5912.   };
  5913.  
  5914.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
  5915. }
  5916.  
  5917. // Tests parsing --gtest_death_test_use_fork.
  5918. TEST_F(ParseFlagsTest, DeathTestUseFork) {
  5919.   const char* argv[] = {
  5920.     "foo.exe",
  5921.     "--gtest_death_test_use_fork",
  5922.     NULL
  5923.   };
  5924.  
  5925.   const char* argv2[] = {
  5926.     "foo.exe",
  5927.     NULL
  5928.   };
  5929.  
  5930.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
  5931. }
  5932.  
  5933. // Tests having the same flag twice with different values.  The
  5934. // expected behavior is that the one coming last takes precedence.
  5935. TEST_F(ParseFlagsTest, DuplicatedFlags) {
  5936.   const char* argv[] = {
  5937.     "foo.exe",
  5938.     "--gtest_filter=a",
  5939.     "--gtest_filter=b",
  5940.     NULL
  5941.   };
  5942.  
  5943.   const char* argv2[] = {
  5944.     "foo.exe",
  5945.     NULL
  5946.   };
  5947.  
  5948.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
  5949. }
  5950.  
  5951. // Tests having an unrecognized flag on the command line.
  5952. TEST_F(ParseFlagsTest, UnrecognizedFlag) {
  5953.   const char* argv[] = {
  5954.     "foo.exe",
  5955.     "--gtest_break_on_failure",
  5956.     "bar",  // Unrecognized by Google Test.
  5957.     "--gtest_filter=b",
  5958.     NULL
  5959.   };
  5960.  
  5961.   const char* argv2[] = {
  5962.     "foo.exe",
  5963.     "bar",
  5964.     NULL
  5965.   };
  5966.  
  5967.   Flags flags;
  5968.   flags.break_on_failure = true;
  5969.   flags.filter = "b";
  5970.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
  5971. }
  5972.  
  5973. // Tests having a --gtest_list_tests flag
  5974. TEST_F(ParseFlagsTest, ListTestsFlag) {
  5975.     const char* argv[] = {
  5976.       "foo.exe",
  5977.       "--gtest_list_tests",
  5978.       NULL
  5979.     };
  5980.  
  5981.     const char* argv2[] = {
  5982.       "foo.exe",
  5983.       NULL
  5984.     };
  5985.  
  5986.     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
  5987. }
  5988.  
  5989. // Tests having a --gtest_list_tests flag with a "true" value
  5990. TEST_F(ParseFlagsTest, ListTestsTrue) {
  5991.     const char* argv[] = {
  5992.       "foo.exe",
  5993.       "--gtest_list_tests=1",
  5994.       NULL
  5995.     };
  5996.  
  5997.     const char* argv2[] = {
  5998.       "foo.exe",
  5999.       NULL
  6000.     };
  6001.  
  6002.     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
  6003. }
  6004.  
  6005. // Tests having a --gtest_list_tests flag with a "false" value
  6006. TEST_F(ParseFlagsTest, ListTestsFalse) {
  6007.     const char* argv[] = {
  6008.       "foo.exe",
  6009.       "--gtest_list_tests=0",
  6010.       NULL
  6011.     };
  6012.  
  6013.     const char* argv2[] = {
  6014.       "foo.exe",
  6015.       NULL
  6016.     };
  6017.  
  6018.     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
  6019. }
  6020.  
  6021. // Tests parsing --gtest_list_tests=f.
  6022. TEST_F(ParseFlagsTest, ListTestsFalse_f) {
  6023.   const char* argv[] = {
  6024.     "foo.exe",
  6025.     "--gtest_list_tests=f",
  6026.     NULL
  6027.   };
  6028.  
  6029.   const char* argv2[] = {
  6030.     "foo.exe",
  6031.     NULL
  6032.   };
  6033.  
  6034.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
  6035. }
  6036.  
  6037. // Tests parsing --gtest_list_tests=F.
  6038. TEST_F(ParseFlagsTest, ListTestsFalse_F) {
  6039.   const char* argv[] = {
  6040.     "foo.exe",
  6041.     "--gtest_list_tests=F",
  6042.     NULL
  6043.   };
  6044.  
  6045.   const char* argv2[] = {
  6046.     "foo.exe",
  6047.     NULL
  6048.   };
  6049.  
  6050.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
  6051. }
  6052.  
  6053. // Tests parsing --gtest_output (invalid).
  6054. TEST_F(ParseFlagsTest, OutputEmpty) {
  6055.   const char* argv[] = {
  6056.     "foo.exe",
  6057.     "--gtest_output",
  6058.     NULL
  6059.   };
  6060.  
  6061.   const char* argv2[] = {
  6062.     "foo.exe",
  6063.     "--gtest_output",
  6064.     NULL
  6065.   };
  6066.  
  6067.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
  6068. }
  6069.  
  6070. // Tests parsing --gtest_output=xml
  6071. TEST_F(ParseFlagsTest, OutputXml) {
  6072.   const char* argv[] = {
  6073.     "foo.exe",
  6074.     "--gtest_output=xml",
  6075.     NULL
  6076.   };
  6077.  
  6078.   const char* argv2[] = {
  6079.     "foo.exe",
  6080.     NULL
  6081.   };
  6082.  
  6083.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
  6084. }
  6085.  
  6086. // Tests parsing --gtest_output=xml:file
  6087. TEST_F(ParseFlagsTest, OutputXmlFile) {
  6088.   const char* argv[] = {
  6089.     "foo.exe",
  6090.     "--gtest_output=xml:file",
  6091.     NULL
  6092.   };
  6093.  
  6094.   const char* argv2[] = {
  6095.     "foo.exe",
  6096.     NULL
  6097.   };
  6098.  
  6099.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
  6100. }
  6101.  
  6102. // Tests parsing --gtest_output=xml:directory/path/
  6103. TEST_F(ParseFlagsTest, OutputXmlDirectory) {
  6104.   const char* argv[] = {
  6105.     "foo.exe",
  6106.     "--gtest_output=xml:directory/path/",
  6107.     NULL
  6108.   };
  6109.  
  6110.   const char* argv2[] = {
  6111.     "foo.exe",
  6112.     NULL
  6113.   };
  6114.  
  6115.   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
  6116.                             Flags::Output("xml:directory/path/"), false);
  6117. }
  6118.  
  6119. // Tests having a --gtest_print_time flag
  6120. TEST_F(ParseFlagsTest, PrintTimeFlag) {
  6121.     const char* argv[] = {
  6122.       "foo.exe",
  6123.       "--gtest_print_time",
  6124.       NULL
  6125.     };
  6126.  
  6127.     const char* argv2[] = {
  6128.       "foo.exe",
  6129.       NULL
  6130.     };
  6131.  
  6132.     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
  6133. }
  6134.  
  6135. // Tests having a --gtest_print_time flag with a "true" value
  6136. TEST_F(ParseFlagsTest, PrintTimeTrue) {
  6137.     const char* argv[] = {
  6138.       "foo.exe",
  6139.       "--gtest_print_time=1",
  6140.       NULL
  6141.     };
  6142.  
  6143.     const char* argv2[] = {
  6144.       "foo.exe",
  6145.       NULL
  6146.     };
  6147.  
  6148.     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
  6149. }
  6150.  
  6151. // Tests having a --gtest_print_time flag with a "false" value
  6152. TEST_F(ParseFlagsTest, PrintTimeFalse) {
  6153.     const char* argv[] = {
  6154.       "foo.exe",
  6155.       "--gtest_print_time=0",
  6156.       NULL
  6157.     };
  6158.  
  6159.     const char* argv2[] = {
  6160.       "foo.exe",
  6161.       NULL
  6162.     };
  6163.  
  6164.     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
  6165. }
  6166.  
  6167. // Tests parsing --gtest_print_time=f.
  6168. TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
  6169.   const char* argv[] = {
  6170.     "foo.exe",
  6171.     "--gtest_print_time=f",
  6172.     NULL
  6173.   };
  6174.  
  6175.   const char* argv2[] = {
  6176.     "foo.exe",
  6177.     NULL
  6178.   };
  6179.  
  6180.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
  6181. }
  6182.  
  6183. // Tests parsing --gtest_print_time=F.
  6184. TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
  6185.   const char* argv[] = {
  6186.     "foo.exe",
  6187.     "--gtest_print_time=F",
  6188.     NULL
  6189.   };
  6190.  
  6191.   const char* argv2[] = {
  6192.     "foo.exe",
  6193.     NULL
  6194.   };
  6195.  
  6196.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
  6197. }
  6198.  
  6199. // Tests parsing --gtest_random_seed=number
  6200. TEST_F(ParseFlagsTest, RandomSeed) {
  6201.   const char* argv[] = {
  6202.     "foo.exe",
  6203.     "--gtest_random_seed=1000",
  6204.     NULL
  6205.   };
  6206.  
  6207.   const char* argv2[] = {
  6208.     "foo.exe",
  6209.     NULL
  6210.   };
  6211.  
  6212.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
  6213. }
  6214.  
  6215. // Tests parsing --gtest_repeat=number
  6216. TEST_F(ParseFlagsTest, Repeat) {
  6217.   const char* argv[] = {
  6218.     "foo.exe",
  6219.     "--gtest_repeat=1000",
  6220.     NULL
  6221.   };
  6222.  
  6223.   const char* argv2[] = {
  6224.     "foo.exe",
  6225.     NULL
  6226.   };
  6227.  
  6228.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
  6229. }
  6230.  
  6231. // Tests having a --gtest_also_run_disabled_tests flag
  6232. TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
  6233.     const char* argv[] = {
  6234.       "foo.exe",
  6235.       "--gtest_also_run_disabled_tests",
  6236.       NULL
  6237.     };
  6238.  
  6239.     const char* argv2[] = {
  6240.       "foo.exe",
  6241.       NULL
  6242.     };
  6243.  
  6244.     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
  6245.                               Flags::AlsoRunDisabledTests(true), false);
  6246. }
  6247.  
  6248. // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
  6249. TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
  6250.     const char* argv[] = {
  6251.       "foo.exe",
  6252.       "--gtest_also_run_disabled_tests=1",
  6253.       NULL
  6254.     };
  6255.  
  6256.     const char* argv2[] = {
  6257.       "foo.exe",
  6258.       NULL
  6259.     };
  6260.  
  6261.     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
  6262.                               Flags::AlsoRunDisabledTests(true), false);
  6263. }
  6264.  
  6265. // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
  6266. TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
  6267.     const char* argv[] = {
  6268.       "foo.exe",
  6269.       "--gtest_also_run_disabled_tests=0",
  6270.       NULL
  6271.     };
  6272.  
  6273.     const char* argv2[] = {
  6274.       "foo.exe",
  6275.       NULL
  6276.     };
  6277.  
  6278.     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
  6279.                               Flags::AlsoRunDisabledTests(false), false);
  6280. }
  6281.  
  6282. // Tests parsing --gtest_shuffle.
  6283. TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
  6284.   const char* argv[] = {
  6285.     "foo.exe",
  6286.     "--gtest_shuffle",
  6287.     NULL
  6288. };
  6289.  
  6290.   const char* argv2[] = {
  6291.     "foo.exe",
  6292.     NULL
  6293.   };
  6294.  
  6295.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
  6296. }
  6297.  
  6298. // Tests parsing --gtest_shuffle=0.
  6299. TEST_F(ParseFlagsTest, ShuffleFalse_0) {
  6300.   const char* argv[] = {
  6301.     "foo.exe",
  6302.     "--gtest_shuffle=0",
  6303.     NULL
  6304.   };
  6305.  
  6306.   const char* argv2[] = {
  6307.     "foo.exe",
  6308.     NULL
  6309.   };
  6310.  
  6311.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
  6312. }
  6313.  
  6314. // Tests parsing a --gtest_shuffle flag that has a "true" definition.
  6315. TEST_F(ParseFlagsTest, ShuffleTrue) {
  6316.   const char* argv[] = {
  6317.     "foo.exe",
  6318.     "--gtest_shuffle=1",
  6319.     NULL
  6320.   };
  6321.  
  6322.   const char* argv2[] = {
  6323.     "foo.exe",
  6324.     NULL
  6325.   };
  6326.  
  6327.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
  6328. }
  6329.  
  6330. // Tests parsing --gtest_stack_trace_depth=number.
  6331. TEST_F(ParseFlagsTest, StackTraceDepth) {
  6332.   const char* argv[] = {
  6333.     "foo.exe",
  6334.     "--gtest_stack_trace_depth=5",
  6335.     NULL
  6336.   };
  6337.  
  6338.   const char* argv2[] = {
  6339.     "foo.exe",
  6340.     NULL
  6341.   };
  6342.  
  6343.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
  6344. }
  6345.  
  6346. TEST_F(ParseFlagsTest, StreamResultTo) {
  6347.   const char* argv[] = {
  6348.     "foo.exe",
  6349.     "--gtest_stream_result_to=localhost:1234",
  6350.     NULL
  6351.   };
  6352.  
  6353.   const char* argv2[] = {
  6354.     "foo.exe",
  6355.     NULL
  6356.   };
  6357.  
  6358.   GTEST_TEST_PARSING_FLAGS_(
  6359.       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
  6360. }
  6361.  
  6362. // Tests parsing --gtest_throw_on_failure.
  6363. TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
  6364.   const char* argv[] = {
  6365.     "foo.exe",
  6366.     "--gtest_throw_on_failure",
  6367.     NULL
  6368. };
  6369.  
  6370.   const char* argv2[] = {
  6371.     "foo.exe",
  6372.     NULL
  6373.   };
  6374.  
  6375.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
  6376. }
  6377.  
  6378. // Tests parsing --gtest_throw_on_failure=0.
  6379. TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
  6380.   const char* argv[] = {
  6381.     "foo.exe",
  6382.     "--gtest_throw_on_failure=0",
  6383.     NULL
  6384.   };
  6385.  
  6386.   const char* argv2[] = {
  6387.     "foo.exe",
  6388.     NULL
  6389.   };
  6390.  
  6391.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
  6392. }
  6393.  
  6394. // Tests parsing a --gtest_throw_on_failure flag that has a "true"
  6395. // definition.
  6396. TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
  6397.   const char* argv[] = {
  6398.     "foo.exe",
  6399.     "--gtest_throw_on_failure=1",
  6400.     NULL
  6401.   };
  6402.  
  6403.   const char* argv2[] = {
  6404.     "foo.exe",
  6405.     NULL
  6406.   };
  6407.  
  6408.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
  6409. }
  6410.  
  6411. # if GTEST_OS_WINDOWS
  6412. // Tests parsing wide strings.
  6413. TEST_F(ParseFlagsTest, WideStrings) {
  6414.   const wchar_t* argv[] = {
  6415.     L"foo.exe",
  6416.     L"--gtest_filter=Foo*",
  6417.     L"--gtest_list_tests=1",
  6418.     L"--gtest_break_on_failure",
  6419.     L"--non_gtest_flag",
  6420.     NULL
  6421.   };
  6422.  
  6423.   const wchar_t* argv2[] = {
  6424.     L"foo.exe",
  6425.     L"--non_gtest_flag",
  6426.     NULL
  6427.   };
  6428.  
  6429.   Flags expected_flags;
  6430.   expected_flags.break_on_failure = true;
  6431.   expected_flags.filter = "Foo*";
  6432.   expected_flags.list_tests = true;
  6433.  
  6434.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
  6435. }
  6436. # endif  // GTEST_OS_WINDOWS
  6437.  
  6438. #if GTEST_USE_OWN_FLAGFILE_FLAG_
  6439. class FlagfileTest : public ParseFlagsTest {
  6440.  public:
  6441.   virtual void SetUp() {
  6442.     ParseFlagsTest::SetUp();
  6443.  
  6444.     testdata_path_.Set(internal::FilePath(
  6445.         testing::TempDir() + internal::GetCurrentExecutableName().string() +
  6446.         "_flagfile_test"));
  6447.     testing::internal::posix::RmDir(testdata_path_.c_str());
  6448.     EXPECT_TRUE(testdata_path_.CreateFolder());
  6449.   }
  6450.  
  6451.   virtual void TearDown() {
  6452.     testing::internal::posix::RmDir(testdata_path_.c_str());
  6453.     ParseFlagsTest::TearDown();
  6454.   }
  6455.  
  6456.   internal::FilePath CreateFlagfile(const char* contents) {
  6457.     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
  6458.         testdata_path_, internal::FilePath("unique"), "txt"));
  6459.     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
  6460.     fprintf(f, "%s", contents);
  6461.     fclose(f);
  6462.     return file_path;
  6463.   }
  6464.  
  6465.  private:
  6466.   internal::FilePath testdata_path_;
  6467. };
  6468.  
  6469. // Tests an empty flagfile.
  6470. TEST_F(FlagfileTest, Empty) {
  6471.   internal::FilePath flagfile_path(CreateFlagfile(""));
  6472.   std::string flagfile_flag =
  6473.       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
  6474.  
  6475.   const char* argv[] = {
  6476.     "foo.exe",
  6477.     flagfile_flag.c_str(),
  6478.     NULL
  6479.   };
  6480.  
  6481.   const char* argv2[] = {
  6482.     "foo.exe",
  6483.     NULL
  6484.   };
  6485.  
  6486.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
  6487. }
  6488.  
  6489. // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
  6490. TEST_F(FlagfileTest, FilterNonEmpty) {
  6491.   internal::FilePath flagfile_path(CreateFlagfile(
  6492.       "--"  GTEST_FLAG_PREFIX_  "filter=abc"));
  6493.   std::string flagfile_flag =
  6494.       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
  6495.  
  6496.   const char* argv[] = {
  6497.     "foo.exe",
  6498.     flagfile_flag.c_str(),
  6499.     NULL
  6500.   };
  6501.  
  6502.   const char* argv2[] = {
  6503.     "foo.exe",
  6504.     NULL
  6505.   };
  6506.  
  6507.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
  6508. }
  6509.  
  6510. // Tests passing several flags via --gtest_flagfile.
  6511. TEST_F(FlagfileTest, SeveralFlags) {
  6512.   internal::FilePath flagfile_path(CreateFlagfile(
  6513.       "--"  GTEST_FLAG_PREFIX_  "filter=abc\n"
  6514.       "--"  GTEST_FLAG_PREFIX_  "break_on_failure\n"
  6515.       "--"  GTEST_FLAG_PREFIX_  "list_tests"));
  6516.   std::string flagfile_flag =
  6517.       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
  6518.  
  6519.   const char* argv[] = {
  6520.     "foo.exe",
  6521.     flagfile_flag.c_str(),
  6522.     NULL
  6523.   };
  6524.  
  6525.   const char* argv2[] = {
  6526.     "foo.exe",
  6527.     NULL
  6528.   };
  6529.  
  6530.   Flags expected_flags;
  6531.   expected_flags.break_on_failure = true;
  6532.   expected_flags.filter = "abc";
  6533.   expected_flags.list_tests = true;
  6534.  
  6535.   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
  6536. }
  6537. #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
  6538.  
  6539. // Tests current_test_info() in UnitTest.
  6540. class CurrentTestInfoTest : public Test {
  6541.  protected:
  6542.   // Tests that current_test_info() returns NULL before the first test in
  6543.   // the test case is run.
  6544.   static void SetUpTestCase() {
  6545.     // There should be no tests running at this point.
  6546.     const TestInfo* test_info =
  6547.       UnitTest::GetInstance()->current_test_info();
  6548.     EXPECT_TRUE(test_info == NULL)
  6549.         << "There should be no tests running at this point.";
  6550.   }
  6551.  
  6552.   // Tests that current_test_info() returns NULL after the last test in
  6553.   // the test case has run.
  6554.   static void TearDownTestCase() {
  6555.     const TestInfo* test_info =
  6556.       UnitTest::GetInstance()->current_test_info();
  6557.     EXPECT_TRUE(test_info == NULL)
  6558.         << "There should be no tests running at this point.";
  6559.   }
  6560. };
  6561.  
  6562. // Tests that current_test_info() returns TestInfo for currently running
  6563. // test by checking the expected test name against the actual one.
  6564. TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
  6565.   const TestInfo* test_info =
  6566.     UnitTest::GetInstance()->current_test_info();
  6567.   ASSERT_TRUE(NULL != test_info)
  6568.       << "There is a test running so we should have a valid TestInfo.";
  6569.   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
  6570.       << "Expected the name of the currently running test case.";
  6571.   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
  6572.       << "Expected the name of the currently running test.";
  6573. }
  6574.  
  6575. // Tests that current_test_info() returns TestInfo for currently running
  6576. // test by checking the expected test name against the actual one.  We
  6577. // use this test to see that the TestInfo object actually changed from
  6578. // the previous invocation.
  6579. TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
  6580.   const TestInfo* test_info =
  6581.     UnitTest::GetInstance()->current_test_info();
  6582.   ASSERT_TRUE(NULL != test_info)
  6583.       << "There is a test running so we should have a valid TestInfo.";
  6584.   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
  6585.       << "Expected the name of the currently running test case.";
  6586.   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
  6587.       << "Expected the name of the currently running test.";
  6588. }
  6589.  
  6590. }  // namespace testing
  6591.  
  6592.  
  6593. // These two lines test that we can define tests in a namespace that
  6594. // has the name "testing" and is nested in another namespace.
  6595. namespace my_namespace {
  6596. namespace testing {
  6597.  
  6598. // Makes sure that TEST knows to use ::testing::Test instead of
  6599. // ::my_namespace::testing::Test.
  6600. class Test {};
  6601.  
  6602. // Makes sure that an assertion knows to use ::testing::Message instead of
  6603. // ::my_namespace::testing::Message.
  6604. class Message {};
  6605.  
  6606. // Makes sure that an assertion knows to use
  6607. // ::testing::AssertionResult instead of
  6608. // ::my_namespace::testing::AssertionResult.
  6609. class AssertionResult {};
  6610.  
  6611. // Tests that an assertion that should succeed works as expected.
  6612. TEST(NestedTestingNamespaceTest, Success) {
  6613.   EXPECT_EQ(1, 1) << "This shouldn't fail.";
  6614. }
  6615.  
  6616. // Tests that an assertion that should fail works as expected.
  6617. TEST(NestedTestingNamespaceTest, Failure) {
  6618.   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
  6619.                        "This failure is expected.");
  6620. }
  6621.  
  6622. }  // namespace testing
  6623. }  // namespace my_namespace
  6624.  
  6625. // Tests that one can call superclass SetUp and TearDown methods--
  6626. // that is, that they are not private.
  6627. // No tests are based on this fixture; the test "passes" if it compiles
  6628. // successfully.
  6629. class ProtectedFixtureMethodsTest : public Test {
  6630.  protected:
  6631.   virtual void SetUp() {
  6632.     Test::SetUp();
  6633.   }
  6634.   virtual void TearDown() {
  6635.     Test::TearDown();
  6636.   }
  6637. };
  6638.  
  6639. // StreamingAssertionsTest tests the streaming versions of a representative
  6640. // sample of assertions.
  6641. TEST(StreamingAssertionsTest, Unconditional) {
  6642.   SUCCEED() << "expected success";
  6643.   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
  6644.                           "expected failure");
  6645.   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
  6646.                        "expected failure");
  6647. }
  6648.  
  6649. #ifdef __BORLANDC__
  6650. // Silences warnings: "Condition is always true", "Unreachable code"
  6651. # pragma option push -w-ccc -w-rch
  6652. #endif
  6653.  
  6654. TEST(StreamingAssertionsTest, Truth) {
  6655.   EXPECT_TRUE(true) << "unexpected failure";
  6656.   ASSERT_TRUE(true) << "unexpected failure";
  6657.   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
  6658.                           "expected failure");
  6659.   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
  6660.                        "expected failure");
  6661. }
  6662.  
  6663. TEST(StreamingAssertionsTest, Truth2) {
  6664.   EXPECT_FALSE(false) << "unexpected failure";
  6665.   ASSERT_FALSE(false) << "unexpected failure";
  6666.   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
  6667.                           "expected failure");
  6668.   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
  6669.                        "expected failure");
  6670. }
  6671.  
  6672. #ifdef __BORLANDC__
  6673. // Restores warnings after previous "#pragma option push" suppressed them
  6674. # pragma option pop
  6675. #endif
  6676.  
  6677. TEST(StreamingAssertionsTest, IntegerEquals) {
  6678.   EXPECT_EQ(1, 1) << "unexpected failure";
  6679.   ASSERT_EQ(1, 1) << "unexpected failure";
  6680.   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
  6681.                           "expected failure");
  6682.   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
  6683.                        "expected failure");
  6684. }
  6685.  
  6686. TEST(StreamingAssertionsTest, IntegerLessThan) {
  6687.   EXPECT_LT(1, 2) << "unexpected failure";
  6688.   ASSERT_LT(1, 2) << "unexpected failure";
  6689.   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
  6690.                           "expected failure");
  6691.   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
  6692.                        "expected failure");
  6693. }
  6694.  
  6695. TEST(StreamingAssertionsTest, StringsEqual) {
  6696.   EXPECT_STREQ("foo", "foo") << "unexpected failure";
  6697.   ASSERT_STREQ("foo", "foo") << "unexpected failure";
  6698.   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
  6699.                           "expected failure");
  6700.   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
  6701.                        "expected failure");
  6702. }
  6703.  
  6704. TEST(StreamingAssertionsTest, StringsNotEqual) {
  6705.   EXPECT_STRNE("foo", "bar") << "unexpected failure";
  6706.   ASSERT_STRNE("foo", "bar") << "unexpected failure";
  6707.   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
  6708.                           "expected failure");
  6709.   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
  6710.                        "expected failure");
  6711. }
  6712.  
  6713. TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
  6714.   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
  6715.   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
  6716.   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
  6717.                           "expected failure");
  6718.   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
  6719.                        "expected failure");
  6720. }
  6721.  
  6722. TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
  6723.   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
  6724.   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
  6725.   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
  6726.                           "expected failure");
  6727.   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
  6728.                        "expected failure");
  6729. }
  6730.  
  6731. TEST(StreamingAssertionsTest, FloatingPointEquals) {
  6732.   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
  6733.   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
  6734.   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
  6735.                           "expected failure");
  6736.   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
  6737.                        "expected failure");
  6738. }
  6739.  
  6740. #if GTEST_HAS_EXCEPTIONS
  6741.  
  6742. TEST(StreamingAssertionsTest, Throw) {
  6743.   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
  6744.   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
  6745.   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
  6746.                           "expected failure", "expected failure");
  6747.   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
  6748.                        "expected failure", "expected failure");
  6749. }
  6750.  
  6751. TEST(StreamingAssertionsTest, NoThrow) {
  6752.   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
  6753.   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
  6754.   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
  6755.                           "expected failure", "expected failure");
  6756.   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
  6757.                        "expected failure", "expected failure");
  6758. }
  6759.  
  6760. TEST(StreamingAssertionsTest, AnyThrow) {
  6761.   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
  6762.   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
  6763.   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
  6764.                           "expected failure", "expected failure");
  6765.   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
  6766.                        "expected failure", "expected failure");
  6767. }
  6768.  
  6769. #endif  // GTEST_HAS_EXCEPTIONS
  6770.  
  6771. // Tests that Google Test correctly decides whether to use colors in the output.
  6772.  
  6773. TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
  6774.   GTEST_FLAG(color) = "yes";
  6775.  
  6776.   SetEnv("TERM", "xterm");  // TERM supports colors.
  6777.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6778.   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
  6779.  
  6780.   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
  6781.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6782.   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
  6783. }
  6784.  
  6785. TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
  6786.   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
  6787.  
  6788.   GTEST_FLAG(color) = "True";
  6789.   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
  6790.  
  6791.   GTEST_FLAG(color) = "t";
  6792.   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
  6793.  
  6794.   GTEST_FLAG(color) = "1";
  6795.   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
  6796. }
  6797.  
  6798. TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
  6799.   GTEST_FLAG(color) = "no";
  6800.  
  6801.   SetEnv("TERM", "xterm");  // TERM supports colors.
  6802.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6803.   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
  6804.  
  6805.   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
  6806.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6807.   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
  6808. }
  6809.  
  6810. TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
  6811.   SetEnv("TERM", "xterm");  // TERM supports colors.
  6812.  
  6813.   GTEST_FLAG(color) = "F";
  6814.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6815.  
  6816.   GTEST_FLAG(color) = "0";
  6817.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6818.  
  6819.   GTEST_FLAG(color) = "unknown";
  6820.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6821. }
  6822.  
  6823. TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
  6824.   GTEST_FLAG(color) = "auto";
  6825.  
  6826.   SetEnv("TERM", "xterm");  // TERM supports colors.
  6827.   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
  6828.   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
  6829. }
  6830.  
  6831. TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
  6832.   GTEST_FLAG(color) = "auto";
  6833.  
  6834. #if GTEST_OS_WINDOWS
  6835.   // On Windows, we ignore the TERM variable as it's usually not set.
  6836.  
  6837.   SetEnv("TERM", "dumb");
  6838.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6839.  
  6840.   SetEnv("TERM", "");
  6841.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6842.  
  6843.   SetEnv("TERM", "xterm");
  6844.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6845. #else
  6846.   // On non-Windows platforms, we rely on TERM to determine if the
  6847.   // terminal supports colors.
  6848.  
  6849.   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
  6850.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6851.  
  6852.   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
  6853.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6854.  
  6855.   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
  6856.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6857.  
  6858.   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
  6859.   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
  6860.  
  6861.   SetEnv("TERM", "xterm");  // TERM supports colors.
  6862.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6863.  
  6864.   SetEnv("TERM", "xterm-color");  // TERM supports colors.
  6865.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6866.  
  6867.   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
  6868.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6869.  
  6870.   SetEnv("TERM", "screen");  // TERM supports colors.
  6871.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6872.  
  6873.   SetEnv("TERM", "screen-256color");  // TERM supports colors.
  6874.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6875.  
  6876.   SetEnv("TERM", "tmux");  // TERM supports colors.
  6877.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6878.  
  6879.   SetEnv("TERM", "tmux-256color");  // TERM supports colors.
  6880.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6881.  
  6882.   SetEnv("TERM", "rxvt-unicode");  // TERM supports colors.
  6883.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6884.  
  6885.   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
  6886.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6887.  
  6888.   SetEnv("TERM", "linux");  // TERM supports colors.
  6889.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6890.  
  6891.   SetEnv("TERM", "cygwin");  // TERM supports colors.
  6892.   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
  6893. #endif  // GTEST_OS_WINDOWS
  6894. }
  6895.  
  6896. // Verifies that StaticAssertTypeEq works in a namespace scope.
  6897.  
  6898. static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
  6899. static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
  6900.     StaticAssertTypeEq<const int, const int>();
  6901.  
  6902. // Verifies that StaticAssertTypeEq works in a class.
  6903.  
  6904. template <typename T>
  6905. class StaticAssertTypeEqTestHelper {
  6906.  public:
  6907.   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
  6908. };
  6909.  
  6910. TEST(StaticAssertTypeEqTest, WorksInClass) {
  6911.   StaticAssertTypeEqTestHelper<bool>();
  6912. }
  6913.  
  6914. // Verifies that StaticAssertTypeEq works inside a function.
  6915.  
  6916. typedef int IntAlias;
  6917.  
  6918. TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
  6919.   StaticAssertTypeEq<int, IntAlias>();
  6920.   StaticAssertTypeEq<int*, IntAlias*>();
  6921. }
  6922.  
  6923. TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
  6924.   EXPECT_FALSE(HasNonfatalFailure());
  6925. }
  6926.  
  6927. static void FailFatally() { FAIL(); }
  6928.  
  6929. TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
  6930.   FailFatally();
  6931.   const bool has_nonfatal_failure = HasNonfatalFailure();
  6932.   ClearCurrentTestPartResults();
  6933.   EXPECT_FALSE(has_nonfatal_failure);
  6934. }
  6935.  
  6936. TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
  6937.   ADD_FAILURE();
  6938.   const bool has_nonfatal_failure = HasNonfatalFailure();
  6939.   ClearCurrentTestPartResults();
  6940.   EXPECT_TRUE(has_nonfatal_failure);
  6941. }
  6942.  
  6943. TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
  6944.   FailFatally();
  6945.   ADD_FAILURE();
  6946.   const bool has_nonfatal_failure = HasNonfatalFailure();
  6947.   ClearCurrentTestPartResults();
  6948.   EXPECT_TRUE(has_nonfatal_failure);
  6949. }
  6950.  
  6951. // A wrapper for calling HasNonfatalFailure outside of a test body.
  6952. static bool HasNonfatalFailureHelper() {
  6953.   return testing::Test::HasNonfatalFailure();
  6954. }
  6955.  
  6956. TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
  6957.   EXPECT_FALSE(HasNonfatalFailureHelper());
  6958. }
  6959.  
  6960. TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
  6961.   ADD_FAILURE();
  6962.   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
  6963.   ClearCurrentTestPartResults();
  6964.   EXPECT_TRUE(has_nonfatal_failure);
  6965. }
  6966.  
  6967. TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
  6968.   EXPECT_FALSE(HasFailure());
  6969. }
  6970.  
  6971. TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
  6972.   FailFatally();
  6973.   const bool has_failure = HasFailure();
  6974.   ClearCurrentTestPartResults();
  6975.   EXPECT_TRUE(has_failure);
  6976. }
  6977.  
  6978. TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
  6979.   ADD_FAILURE();
  6980.   const bool has_failure = HasFailure();
  6981.   ClearCurrentTestPartResults();
  6982.   EXPECT_TRUE(has_failure);
  6983. }
  6984.  
  6985. TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
  6986.   FailFatally();
  6987.   ADD_FAILURE();
  6988.   const bool has_failure = HasFailure();
  6989.   ClearCurrentTestPartResults();
  6990.   EXPECT_TRUE(has_failure);
  6991. }
  6992.  
  6993. // A wrapper for calling HasFailure outside of a test body.
  6994. static bool HasFailureHelper() { return testing::Test::HasFailure(); }
  6995.  
  6996. TEST(HasFailureTest, WorksOutsideOfTestBody) {
  6997.   EXPECT_FALSE(HasFailureHelper());
  6998. }
  6999.  
  7000. TEST(HasFailureTest, WorksOutsideOfTestBody2) {
  7001.   ADD_FAILURE();
  7002.   const bool has_failure = HasFailureHelper();
  7003.   ClearCurrentTestPartResults();
  7004.   EXPECT_TRUE(has_failure);
  7005. }
  7006.  
  7007. class TestListener : public EmptyTestEventListener {
  7008.  public:
  7009.   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
  7010.   TestListener(int* on_start_counter, bool* is_destroyed)
  7011.       : on_start_counter_(on_start_counter),
  7012.         is_destroyed_(is_destroyed) {}
  7013.  
  7014.   virtual ~TestListener() {
  7015.     if (is_destroyed_)
  7016.       *is_destroyed_ = true;
  7017.   }
  7018.  
  7019.  protected:
  7020.   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
  7021.     if (on_start_counter_ != NULL)
  7022.       (*on_start_counter_)++;
  7023.   }
  7024.  
  7025.  private:
  7026.   int* on_start_counter_;
  7027.   bool* is_destroyed_;
  7028. };
  7029.  
  7030. // Tests the constructor.
  7031. TEST(TestEventListenersTest, ConstructionWorks) {
  7032.   TestEventListeners listeners;
  7033.  
  7034.   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
  7035.   EXPECT_TRUE(listeners.default_result_printer() == NULL);
  7036.   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
  7037. }
  7038.  
  7039. // Tests that the TestEventListeners destructor deletes all the listeners it
  7040. // owns.
  7041. TEST(TestEventListenersTest, DestructionWorks) {
  7042.   bool default_result_printer_is_destroyed = false;
  7043.   bool default_xml_printer_is_destroyed = false;
  7044.   bool extra_listener_is_destroyed = false;
  7045.   TestListener* default_result_printer = new TestListener(
  7046.       NULL, &default_result_printer_is_destroyed);
  7047.   TestListener* default_xml_printer = new TestListener(
  7048.       NULL, &default_xml_printer_is_destroyed);
  7049.   TestListener* extra_listener = new TestListener(
  7050.       NULL, &extra_listener_is_destroyed);
  7051.  
  7052.   {
  7053.     TestEventListeners listeners;
  7054.     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
  7055.                                                         default_result_printer);
  7056.     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
  7057.                                                        default_xml_printer);
  7058.     listeners.Append(extra_listener);
  7059.   }
  7060.   EXPECT_TRUE(default_result_printer_is_destroyed);
  7061.   EXPECT_TRUE(default_xml_printer_is_destroyed);
  7062.   EXPECT_TRUE(extra_listener_is_destroyed);
  7063. }
  7064.  
  7065. // Tests that a listener Append'ed to a TestEventListeners list starts
  7066. // receiving events.
  7067. TEST(TestEventListenersTest, Append) {
  7068.   int on_start_counter = 0;
  7069.   bool is_destroyed = false;
  7070.   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
  7071.   {
  7072.     TestEventListeners listeners;
  7073.     listeners.Append(listener);
  7074.     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7075.         *UnitTest::GetInstance());
  7076.     EXPECT_EQ(1, on_start_counter);
  7077.   }
  7078.   EXPECT_TRUE(is_destroyed);
  7079. }
  7080.  
  7081. // Tests that listeners receive events in the order they were appended to
  7082. // the list, except for *End requests, which must be received in the reverse
  7083. // order.
  7084. class SequenceTestingListener : public EmptyTestEventListener {
  7085.  public:
  7086.   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
  7087.       : vector_(vector), id_(id) {}
  7088.  
  7089.  protected:
  7090.   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
  7091.     vector_->push_back(GetEventDescription("OnTestProgramStart"));
  7092.   }
  7093.  
  7094.   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
  7095.     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
  7096.   }
  7097.  
  7098.   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
  7099.                                     int /*iteration*/) {
  7100.     vector_->push_back(GetEventDescription("OnTestIterationStart"));
  7101.   }
  7102.  
  7103.   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
  7104.                                   int /*iteration*/) {
  7105.     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
  7106.   }
  7107.  
  7108.  private:
  7109.   std::string GetEventDescription(const char* method) {
  7110.     Message message;
  7111.     message << id_ << "." << method;
  7112.     return message.GetString();
  7113.   }
  7114.  
  7115.   std::vector<std::string>* vector_;
  7116.   const char* const id_;
  7117.  
  7118.   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
  7119. };
  7120.  
  7121. TEST(EventListenerTest, AppendKeepsOrder) {
  7122.   std::vector<std::string> vec;
  7123.   TestEventListeners listeners;
  7124.   listeners.Append(new SequenceTestingListener(&vec, "1st"));
  7125.   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
  7126.   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
  7127.  
  7128.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7129.       *UnitTest::GetInstance());
  7130.   ASSERT_EQ(3U, vec.size());
  7131.   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
  7132.   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
  7133.   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
  7134.  
  7135.   vec.clear();
  7136.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
  7137.       *UnitTest::GetInstance());
  7138.   ASSERT_EQ(3U, vec.size());
  7139.   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
  7140.   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
  7141.   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
  7142.  
  7143.   vec.clear();
  7144.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
  7145.       *UnitTest::GetInstance(), 0);
  7146.   ASSERT_EQ(3U, vec.size());
  7147.   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
  7148.   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
  7149.   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
  7150.  
  7151.   vec.clear();
  7152.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
  7153.       *UnitTest::GetInstance(), 0);
  7154.   ASSERT_EQ(3U, vec.size());
  7155.   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
  7156.   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
  7157.   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
  7158. }
  7159.  
  7160. // Tests that a listener removed from a TestEventListeners list stops receiving
  7161. // events and is not deleted when the list is destroyed.
  7162. TEST(TestEventListenersTest, Release) {
  7163.   int on_start_counter = 0;
  7164.   bool is_destroyed = false;
  7165.   // Although Append passes the ownership of this object to the list,
  7166.   // the following calls release it, and we need to delete it before the
  7167.   // test ends.
  7168.   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
  7169.   {
  7170.     TestEventListeners listeners;
  7171.     listeners.Append(listener);
  7172.     EXPECT_EQ(listener, listeners.Release(listener));
  7173.     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7174.         *UnitTest::GetInstance());
  7175.     EXPECT_TRUE(listeners.Release(listener) == NULL);
  7176.   }
  7177.   EXPECT_EQ(0, on_start_counter);
  7178.   EXPECT_FALSE(is_destroyed);
  7179.   delete listener;
  7180. }
  7181.  
  7182. // Tests that no events are forwarded when event forwarding is disabled.
  7183. TEST(EventListenerTest, SuppressEventForwarding) {
  7184.   int on_start_counter = 0;
  7185.   TestListener* listener = new TestListener(&on_start_counter, NULL);
  7186.  
  7187.   TestEventListeners listeners;
  7188.   listeners.Append(listener);
  7189.   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
  7190.   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
  7191.   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
  7192.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7193.       *UnitTest::GetInstance());
  7194.   EXPECT_EQ(0, on_start_counter);
  7195. }
  7196.  
  7197. // Tests that events generated by Google Test are not forwarded in
  7198. // death test subprocesses.
  7199. TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
  7200.   EXPECT_DEATH_IF_SUPPORTED({
  7201.       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
  7202.           *GetUnitTestImpl()->listeners())) << "expected failure";},
  7203.       "expected failure");
  7204. }
  7205.  
  7206. // Tests that a listener installed via SetDefaultResultPrinter() starts
  7207. // receiving events and is returned via default_result_printer() and that
  7208. // the previous default_result_printer is removed from the list and deleted.
  7209. TEST(EventListenerTest, default_result_printer) {
  7210.   int on_start_counter = 0;
  7211.   bool is_destroyed = false;
  7212.   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
  7213.  
  7214.   TestEventListeners listeners;
  7215.   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
  7216.  
  7217.   EXPECT_EQ(listener, listeners.default_result_printer());
  7218.  
  7219.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7220.       *UnitTest::GetInstance());
  7221.  
  7222.   EXPECT_EQ(1, on_start_counter);
  7223.  
  7224.   // Replacing default_result_printer with something else should remove it
  7225.   // from the list and destroy it.
  7226.   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
  7227.  
  7228.   EXPECT_TRUE(listeners.default_result_printer() == NULL);
  7229.   EXPECT_TRUE(is_destroyed);
  7230.  
  7231.   // After broadcasting an event the counter is still the same, indicating
  7232.   // the listener is not in the list anymore.
  7233.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7234.       *UnitTest::GetInstance());
  7235.   EXPECT_EQ(1, on_start_counter);
  7236. }
  7237.  
  7238. // Tests that the default_result_printer listener stops receiving events
  7239. // when removed via Release and that is not owned by the list anymore.
  7240. TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
  7241.   int on_start_counter = 0;
  7242.   bool is_destroyed = false;
  7243.   // Although Append passes the ownership of this object to the list,
  7244.   // the following calls release it, and we need to delete it before the
  7245.   // test ends.
  7246.   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
  7247.   {
  7248.     TestEventListeners listeners;
  7249.     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
  7250.  
  7251.     EXPECT_EQ(listener, listeners.Release(listener));
  7252.     EXPECT_TRUE(listeners.default_result_printer() == NULL);
  7253.     EXPECT_FALSE(is_destroyed);
  7254.  
  7255.     // Broadcasting events now should not affect default_result_printer.
  7256.     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7257.         *UnitTest::GetInstance());
  7258.     EXPECT_EQ(0, on_start_counter);
  7259.   }
  7260.   // Destroying the list should not affect the listener now, too.
  7261.   EXPECT_FALSE(is_destroyed);
  7262.   delete listener;
  7263. }
  7264.  
  7265. // Tests that a listener installed via SetDefaultXmlGenerator() starts
  7266. // receiving events and is returned via default_xml_generator() and that
  7267. // the previous default_xml_generator is removed from the list and deleted.
  7268. TEST(EventListenerTest, default_xml_generator) {
  7269.   int on_start_counter = 0;
  7270.   bool is_destroyed = false;
  7271.   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
  7272.  
  7273.   TestEventListeners listeners;
  7274.   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
  7275.  
  7276.   EXPECT_EQ(listener, listeners.default_xml_generator());
  7277.  
  7278.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7279.       *UnitTest::GetInstance());
  7280.  
  7281.   EXPECT_EQ(1, on_start_counter);
  7282.  
  7283.   // Replacing default_xml_generator with something else should remove it
  7284.   // from the list and destroy it.
  7285.   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
  7286.  
  7287.   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
  7288.   EXPECT_TRUE(is_destroyed);
  7289.  
  7290.   // After broadcasting an event the counter is still the same, indicating
  7291.   // the listener is not in the list anymore.
  7292.   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7293.       *UnitTest::GetInstance());
  7294.   EXPECT_EQ(1, on_start_counter);
  7295. }
  7296.  
  7297. // Tests that the default_xml_generator listener stops receiving events
  7298. // when removed via Release and that is not owned by the list anymore.
  7299. TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
  7300.   int on_start_counter = 0;
  7301.   bool is_destroyed = false;
  7302.   // Although Append passes the ownership of this object to the list,
  7303.   // the following calls release it, and we need to delete it before the
  7304.   // test ends.
  7305.   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
  7306.   {
  7307.     TestEventListeners listeners;
  7308.     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
  7309.  
  7310.     EXPECT_EQ(listener, listeners.Release(listener));
  7311.     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
  7312.     EXPECT_FALSE(is_destroyed);
  7313.  
  7314.     // Broadcasting events now should not affect default_xml_generator.
  7315.     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
  7316.         *UnitTest::GetInstance());
  7317.     EXPECT_EQ(0, on_start_counter);
  7318.   }
  7319.   // Destroying the list should not affect the listener now, too.
  7320.   EXPECT_FALSE(is_destroyed);
  7321.   delete listener;
  7322. }
  7323.  
  7324. // Sanity tests to ensure that the alternative, verbose spellings of
  7325. // some of the macros work.  We don't test them thoroughly as that
  7326. // would be quite involved.  Since their implementations are
  7327. // straightforward, and they are rarely used, we'll just rely on the
  7328. // users to tell us when they are broken.
  7329. GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
  7330.   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
  7331.  
  7332.   // GTEST_FAIL is the same as FAIL.
  7333.   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
  7334.                        "An expected failure");
  7335.  
  7336.   // GTEST_ASSERT_XY is the same as ASSERT_XY.
  7337.  
  7338.   GTEST_ASSERT_EQ(0, 0);
  7339.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
  7340.                        "An expected failure");
  7341.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
  7342.                        "An expected failure");
  7343.  
  7344.   GTEST_ASSERT_NE(0, 1);
  7345.   GTEST_ASSERT_NE(1, 0);
  7346.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
  7347.                        "An expected failure");
  7348.  
  7349.   GTEST_ASSERT_LE(0, 0);
  7350.   GTEST_ASSERT_LE(0, 1);
  7351.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
  7352.                        "An expected failure");
  7353.  
  7354.   GTEST_ASSERT_LT(0, 1);
  7355.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
  7356.                        "An expected failure");
  7357.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
  7358.                        "An expected failure");
  7359.  
  7360.   GTEST_ASSERT_GE(0, 0);
  7361.   GTEST_ASSERT_GE(1, 0);
  7362.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
  7363.                        "An expected failure");
  7364.  
  7365.   GTEST_ASSERT_GT(1, 0);
  7366.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
  7367.                        "An expected failure");
  7368.   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
  7369.                        "An expected failure");
  7370. }
  7371.  
  7372. // Tests for internal utilities necessary for implementation of the universal
  7373. // printing.
  7374. // FIXME: Find a better home for them.
  7375.  
  7376. class ConversionHelperBase {};
  7377. class ConversionHelperDerived : public ConversionHelperBase {};
  7378.  
  7379. // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
  7380. TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
  7381.   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
  7382.                         const_true);
  7383.   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
  7384. }
  7385.  
  7386. // Tests that IsAProtocolMessage<T>::value is true when T is
  7387. // proto2::Message or a sub-class of it.
  7388. TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
  7389.   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
  7390.   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
  7391. }
  7392.  
  7393. // Tests that IsAProtocolMessage<T>::value is false when T is neither
  7394. // ProtocolMessage nor a sub-class of it.
  7395. TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
  7396.   EXPECT_FALSE(IsAProtocolMessage<int>::value);
  7397.   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
  7398. }
  7399.  
  7400. // Tests that CompileAssertTypesEqual compiles when the type arguments are
  7401. // equal.
  7402. TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
  7403.   CompileAssertTypesEqual<void, void>();
  7404.   CompileAssertTypesEqual<int*, int*>();
  7405. }
  7406.  
  7407. // Tests that RemoveReference does not affect non-reference types.
  7408. TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
  7409.   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
  7410.   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
  7411. }
  7412.  
  7413. // Tests that RemoveReference removes reference from reference types.
  7414. TEST(RemoveReferenceTest, RemovesReference) {
  7415.   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
  7416.   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
  7417. }
  7418.  
  7419. // Tests GTEST_REMOVE_REFERENCE_.
  7420.  
  7421. template <typename T1, typename T2>
  7422. void TestGTestRemoveReference() {
  7423.   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
  7424. }
  7425.  
  7426. TEST(RemoveReferenceTest, MacroVersion) {
  7427.   TestGTestRemoveReference<int, int>();
  7428.   TestGTestRemoveReference<const char, const char&>();
  7429. }
  7430.  
  7431.  
  7432. // Tests that RemoveConst does not affect non-const types.
  7433. TEST(RemoveConstTest, DoesNotAffectNonConstType) {
  7434.   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
  7435.   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
  7436. }
  7437.  
  7438. // Tests that RemoveConst removes const from const types.
  7439. TEST(RemoveConstTest, RemovesConst) {
  7440.   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
  7441.   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
  7442.   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
  7443. }
  7444.  
  7445. // Tests GTEST_REMOVE_CONST_.
  7446.  
  7447. template <typename T1, typename T2>
  7448. void TestGTestRemoveConst() {
  7449.   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
  7450. }
  7451.  
  7452. TEST(RemoveConstTest, MacroVersion) {
  7453.   TestGTestRemoveConst<int, int>();
  7454.   TestGTestRemoveConst<double&, double&>();
  7455.   TestGTestRemoveConst<char, const char>();
  7456. }
  7457.  
  7458. // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
  7459.  
  7460. template <typename T1, typename T2>
  7461. void TestGTestRemoveReferenceAndConst() {
  7462.   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
  7463. }
  7464.  
  7465. TEST(RemoveReferenceToConstTest, Works) {
  7466.   TestGTestRemoveReferenceAndConst<int, int>();
  7467.   TestGTestRemoveReferenceAndConst<double, double&>();
  7468.   TestGTestRemoveReferenceAndConst<char, const char>();
  7469.   TestGTestRemoveReferenceAndConst<char, const char&>();
  7470.   TestGTestRemoveReferenceAndConst<const char*, const char*>();
  7471. }
  7472.  
  7473. // Tests that AddReference does not affect reference types.
  7474. TEST(AddReferenceTest, DoesNotAffectReferenceType) {
  7475.   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
  7476.   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
  7477. }
  7478.  
  7479. // Tests that AddReference adds reference to non-reference types.
  7480. TEST(AddReferenceTest, AddsReference) {
  7481.   CompileAssertTypesEqual<int&, AddReference<int>::type>();
  7482.   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
  7483. }
  7484.  
  7485. // Tests GTEST_ADD_REFERENCE_.
  7486.  
  7487. template <typename T1, typename T2>
  7488. void TestGTestAddReference() {
  7489.   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
  7490. }
  7491.  
  7492. TEST(AddReferenceTest, MacroVersion) {
  7493.   TestGTestAddReference<int&, int>();
  7494.   TestGTestAddReference<const char&, const char&>();
  7495. }
  7496.  
  7497. // Tests GTEST_REFERENCE_TO_CONST_.
  7498.  
  7499. template <typename T1, typename T2>
  7500. void TestGTestReferenceToConst() {
  7501.   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
  7502. }
  7503.  
  7504. TEST(GTestReferenceToConstTest, Works) {
  7505.   TestGTestReferenceToConst<const char&, char>();
  7506.   TestGTestReferenceToConst<const int&, const int>();
  7507.   TestGTestReferenceToConst<const double&, double>();
  7508.   TestGTestReferenceToConst<const std::string&, const std::string&>();
  7509. }
  7510.  
  7511. // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
  7512. TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
  7513.   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
  7514.   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
  7515.                         const_false);
  7516. }
  7517.  
  7518. // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
  7519. // be implicitly converted to T2.
  7520. TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
  7521.   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
  7522.   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
  7523.   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
  7524.   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
  7525.   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
  7526.                                      const ConversionHelperBase&>::value));
  7527.   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
  7528.                                      ConversionHelperBase>::value));
  7529. }
  7530.  
  7531. // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
  7532. // cannot be implicitly converted to T2.
  7533. TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
  7534.   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
  7535.   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
  7536.   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
  7537.   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
  7538.                                       ConversionHelperDerived&>::value));
  7539. }
  7540.  
  7541. // Tests IsContainerTest.
  7542.  
  7543. class NonContainer {};
  7544.  
  7545. TEST(IsContainerTestTest, WorksForNonContainer) {
  7546.   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
  7547.   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
  7548.   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
  7549. }
  7550.  
  7551. TEST(IsContainerTestTest, WorksForContainer) {
  7552.   EXPECT_EQ(sizeof(IsContainer),
  7553.             sizeof(IsContainerTest<std::vector<bool> >(0)));
  7554.   EXPECT_EQ(sizeof(IsContainer),
  7555.             sizeof(IsContainerTest<std::map<int, double> >(0)));
  7556. }
  7557.  
  7558. #if GTEST_LANG_CXX11
  7559. struct ConstOnlyContainerWithPointerIterator {
  7560.   using const_iterator = int*;
  7561.   const_iterator begin() const;
  7562.   const_iterator end() const;
  7563. };
  7564.  
  7565. struct ConstOnlyContainerWithClassIterator {
  7566.   struct const_iterator {
  7567.     const int& operator*() const;
  7568.     const_iterator& operator++(/* pre-increment */);
  7569.   };
  7570.   const_iterator begin() const;
  7571.   const_iterator end() const;
  7572. };
  7573.  
  7574. TEST(IsContainerTestTest, ConstOnlyContainer) {
  7575.   EXPECT_EQ(sizeof(IsContainer),
  7576.             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
  7577.   EXPECT_EQ(sizeof(IsContainer),
  7578.             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
  7579. }
  7580. #endif  // GTEST_LANG_CXX11
  7581.  
  7582. // Tests IsHashTable.
  7583. struct AHashTable {
  7584.   typedef void hasher;
  7585. };
  7586. struct NotReallyAHashTable {
  7587.   typedef void hasher;
  7588.   typedef void reverse_iterator;
  7589. };
  7590. TEST(IsHashTable, Basic) {
  7591.   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
  7592.   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
  7593. #if GTEST_LANG_CXX11
  7594.   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
  7595.   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
  7596. #endif  // GTEST_LANG_CXX11
  7597. #if GTEST_HAS_HASH_SET_
  7598.   EXPECT_TRUE(testing::internal::IsHashTable<__gnu_cxx::hash_set<int>>::value);
  7599. #endif  // GTEST_HAS_HASH_SET_
  7600. }
  7601.  
  7602. // Tests ArrayEq().
  7603.  
  7604. TEST(ArrayEqTest, WorksForDegeneratedArrays) {
  7605.   EXPECT_TRUE(ArrayEq(5, 5L));
  7606.   EXPECT_FALSE(ArrayEq('a', 0));
  7607. }
  7608.  
  7609. TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
  7610.   // Note that a and b are distinct but compatible types.
  7611.   const int a[] = { 0, 1 };
  7612.   long b[] = { 0, 1 };
  7613.   EXPECT_TRUE(ArrayEq(a, b));
  7614.   EXPECT_TRUE(ArrayEq(a, 2, b));
  7615.  
  7616.   b[0] = 2;
  7617.   EXPECT_FALSE(ArrayEq(a, b));
  7618.   EXPECT_FALSE(ArrayEq(a, 1, b));
  7619. }
  7620.  
  7621. TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
  7622.   const char a[][3] = { "hi", "lo" };
  7623.   const char b[][3] = { "hi", "lo" };
  7624.   const char c[][3] = { "hi", "li" };
  7625.  
  7626.   EXPECT_TRUE(ArrayEq(a, b));
  7627.   EXPECT_TRUE(ArrayEq(a, 2, b));
  7628.  
  7629.   EXPECT_FALSE(ArrayEq(a, c));
  7630.   EXPECT_FALSE(ArrayEq(a, 2, c));
  7631. }
  7632.  
  7633. // Tests ArrayAwareFind().
  7634.  
  7635. TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
  7636.   const char a[] = "hello";
  7637.   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
  7638.   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
  7639. }
  7640.  
  7641. TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
  7642.   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
  7643.   const int b[2] = { 2, 3 };
  7644.   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
  7645.  
  7646.   const int c[2] = { 6, 7 };
  7647.   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
  7648. }
  7649.  
  7650. // Tests CopyArray().
  7651.  
  7652. TEST(CopyArrayTest, WorksForDegeneratedArrays) {
  7653.   int n = 0;
  7654.   CopyArray('a', &n);
  7655.   EXPECT_EQ('a', n);
  7656. }
  7657.  
  7658. TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
  7659.   const char a[3] = "hi";
  7660.   int b[3];
  7661. #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
  7662.   CopyArray(a, &b);
  7663.   EXPECT_TRUE(ArrayEq(a, b));
  7664. #endif
  7665.  
  7666.   int c[3];
  7667.   CopyArray(a, 3, c);
  7668.   EXPECT_TRUE(ArrayEq(a, c));
  7669. }
  7670.  
  7671. TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
  7672.   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
  7673.   int b[2][3];
  7674. #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
  7675.   CopyArray(a, &b);
  7676.   EXPECT_TRUE(ArrayEq(a, b));
  7677. #endif
  7678.  
  7679.   int c[2][3];
  7680.   CopyArray(a, 2, c);
  7681.   EXPECT_TRUE(ArrayEq(a, c));
  7682. }
  7683.  
  7684. // Tests NativeArray.
  7685.  
  7686. TEST(NativeArrayTest, ConstructorFromArrayWorks) {
  7687.   const int a[3] = { 0, 1, 2 };
  7688.   NativeArray<int> na(a, 3, RelationToSourceReference());
  7689.   EXPECT_EQ(3U, na.size());
  7690.   EXPECT_EQ(a, na.begin());
  7691. }
  7692.  
  7693. TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
  7694.   typedef int Array[2];
  7695.   Array* a = new Array[1];
  7696.   (*a)[0] = 0;
  7697.   (*a)[1] = 1;
  7698.   NativeArray<int> na(*a, 2, RelationToSourceCopy());
  7699.   EXPECT_NE(*a, na.begin());
  7700.   delete[] a;
  7701.   EXPECT_EQ(0, na.begin()[0]);
  7702.   EXPECT_EQ(1, na.begin()[1]);
  7703.  
  7704.   // We rely on the heap checker to verify that na deletes the copy of
  7705.   // array.
  7706. }
  7707.  
  7708. TEST(NativeArrayTest, TypeMembersAreCorrect) {
  7709.   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
  7710.   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
  7711.  
  7712.   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
  7713.   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
  7714. }
  7715.  
  7716. TEST(NativeArrayTest, MethodsWork) {
  7717.   const int a[3] = { 0, 1, 2 };
  7718.   NativeArray<int> na(a, 3, RelationToSourceCopy());
  7719.   ASSERT_EQ(3U, na.size());
  7720.   EXPECT_EQ(3, na.end() - na.begin());
  7721.  
  7722.   NativeArray<int>::const_iterator it = na.begin();
  7723.   EXPECT_EQ(0, *it);
  7724.   ++it;
  7725.   EXPECT_EQ(1, *it);
  7726.   it++;
  7727.   EXPECT_EQ(2, *it);
  7728.   ++it;
  7729.   EXPECT_EQ(na.end(), it);
  7730.  
  7731.   EXPECT_TRUE(na == na);
  7732.  
  7733.   NativeArray<int> na2(a, 3, RelationToSourceReference());
  7734.   EXPECT_TRUE(na == na2);
  7735.  
  7736.   const int b1[3] = { 0, 1, 1 };
  7737.   const int b2[4] = { 0, 1, 2, 3 };
  7738.   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
  7739.   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
  7740. }
  7741.  
  7742. TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
  7743.   const char a[2][3] = { "hi", "lo" };
  7744.   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
  7745.   ASSERT_EQ(2U, na.size());
  7746.   EXPECT_EQ(a, na.begin());
  7747. }
  7748.  
  7749. // Tests SkipPrefix().
  7750.  
  7751. TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
  7752.   const char* const str = "hello";
  7753.  
  7754.   const char* p = str;
  7755.   EXPECT_TRUE(SkipPrefix("", &p));
  7756.   EXPECT_EQ(str, p);
  7757.  
  7758.   p = str;
  7759.   EXPECT_TRUE(SkipPrefix("hell", &p));
  7760.   EXPECT_EQ(str + 4, p);
  7761. }
  7762.  
  7763. TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
  7764.   const char* const str = "world";
  7765.  
  7766.   const char* p = str;
  7767.   EXPECT_FALSE(SkipPrefix("W", &p));
  7768.   EXPECT_EQ(str, p);
  7769.  
  7770.   p = str;
  7771.   EXPECT_FALSE(SkipPrefix("world!", &p));
  7772.   EXPECT_EQ(str, p);
  7773. }
  7774.  
  7775. // Tests ad_hoc_test_result().
  7776.  
  7777. class AdHocTestResultTest : public testing::Test {
  7778.  protected:
  7779.   static void SetUpTestCase() {
  7780.     FAIL() << "A failure happened inside SetUpTestCase().";
  7781.   }
  7782. };
  7783.  
  7784. TEST_F(AdHocTestResultTest, AdHocTestResultForTestCaseShowsFailure) {
  7785.   const testing::TestResult& test_result = testing::UnitTest::GetInstance()
  7786.                                                ->current_test_case()
  7787.                                                ->ad_hoc_test_result();
  7788.   EXPECT_TRUE(test_result.Failed());
  7789. }
  7790.  
  7791. TEST_F(AdHocTestResultTest, AdHocTestResultTestForUnitTestDoesNotShowFailure) {
  7792.   const testing::TestResult& test_result =
  7793.       testing::UnitTest::GetInstance()->ad_hoc_test_result();
  7794.   EXPECT_FALSE(test_result.Failed());
  7795. }
  7796.