?login_element?

Subversion Repositories NedoOS

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /*
  2. ** $Id: ltable.c $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6.  
  7. #define ltable_c
  8. #define LUA_CORE
  9.  
  10. #include "lprefix.h"
  11.  
  12.  
  13. /*
  14. ** Implementation of tables (aka arrays, objects, or hash tables).
  15. ** Tables keep its elements in two parts: an array part and a hash part.
  16. ** Non-negative integer keys are all candidates to be kept in the array
  17. ** part. The actual size of the array is the largest 'n' such that
  18. ** more than half the slots between 1 and n are in use.
  19. ** Hash uses a mix of chained scatter table with Brent's variation.
  20. ** A main invariant of these tables is that, if an element is not
  21. ** in its main position (i.e. the 'original' position that its hash gives
  22. ** to it), then the colliding element is in its own main position.
  23. ** Hence even when the load factor reaches 100%, performance remains good.
  24. */
  25.  
  26. #include <math.h>
  27. #include <limits.h>
  28.  
  29. #include "lua.h"
  30.  
  31. #include "ldebug.h"
  32. #include "ldo.h"
  33. #include "lgc.h"
  34. #include "lmem.h"
  35. #include "lobject.h"
  36. #include "lstate.h"
  37. #include "lstring.h"
  38. #include "ltable.h"
  39. #include "lvm.h"
  40.  
  41.  
  42. /*
  43. ** MAXABITS is the largest integer such that MAXASIZE fits in an
  44. ** unsigned int.
  45. */
  46. #define MAXABITS        cast_int(sizeof(int) * CHAR_BIT - 1)
  47.  
  48.  
  49. /*
  50. ** MAXASIZE is the maximum size of the array part. It is the minimum
  51. ** between 2^MAXABITS and the maximum size that, measured in bytes,
  52. ** fits in a 'size_t'.
  53. */
  54. #define MAXASIZE        luaM_limitN(1u << MAXABITS, TValue)
  55.  
  56. /*
  57. ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
  58. ** signed int.
  59. */
  60. #define MAXHBITS        (MAXABITS - 1)
  61.  
  62.  
  63. /*
  64. ** MAXHSIZE is the maximum size of the hash part. It is the minimum
  65. ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
  66. ** it fits in a 'size_t'.
  67. */
  68. #define MAXHSIZE        luaM_limitN(1u << MAXHBITS, Node)
  69.  
  70.  
  71. /*
  72. ** When the original hash value is good, hashing by a power of 2
  73. ** avoids the cost of '%'.
  74. */
  75. #define hashpow2(t,n)           (gnode(t, lmod((n), sizenode(t))))
  76.  
  77. /*
  78. ** for other types, it is better to avoid modulo by power of 2, as
  79. ** they can have many 2 factors.
  80. */
  81. #define hashmod(t,n)    (gnode(t, ((n) % ((sizenode(t)-1)|1))))
  82.  
  83.  
  84. #define hashstr(t,str)          hashpow2(t, (str)->hash)
  85. #define hashboolean(t,p)        hashpow2(t, p)
  86.  
  87.  
  88. #define hashpointer(t,p)        hashmod(t, point2uint(p))
  89.  
  90.  
  91. #define dummynode               (&dummynode_)
  92.  
  93. static const Node dummynode_ = {
  94.   {{NULL}, LUA_VEMPTY,  /* value's value and type */
  95.    LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
  96. };
  97.  
  98.  
  99. static const TValue absentkey = {ABSTKEYCONSTANT};
  100.  
  101.  
  102. /*
  103. ** Hash for integers. To allow a good hash, use the remainder operator
  104. ** ('%'). If integer fits as a non-negative int, compute an int
  105. ** remainder, which is faster. Otherwise, use an unsigned-integer
  106. ** remainder, which uses all bits and ensures a non-negative result.
  107. */
  108. static Node *hashint (const Table *t, lua_Integer i) {
  109.   lua_Unsigned ui = l_castS2U(i);
  110.   if (ui <= (unsigned int)INT_MAX)
  111.     return hashmod(t, cast_int(ui));
  112.   else
  113.     return hashmod(t, ui);
  114. }
  115.  
  116.  
  117. /*
  118. ** Hash for floating-point numbers.
  119. ** The main computation should be just
  120. **     n = frexp(n, &i); return (n * INT_MAX) + i
  121. ** but there are some numerical subtleties.
  122. ** In a two-complement representation, INT_MAX does not has an exact
  123. ** representation as a float, but INT_MIN does; because the absolute
  124. ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
  125. ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
  126. ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
  127. ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
  128. ** INT_MIN.
  129. */
  130. #if !defined(l_hashfloat)
  131. static int l_hashfloat (lua_Number n) {
  132.   int i;
  133.   lua_Integer ni;
  134.   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
  135.   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
  136.     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
  137.     return 0;
  138.   }
  139.   else {  /* normal case */
  140.     unsigned int u = cast_uint(i) + cast_uint(ni);
  141.     return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
  142.   }
  143. }
  144. #endif
  145.  
  146.  
  147. /*
  148. ** returns the 'main' position of an element in a table (that is,
  149. ** the index of its hash value).
  150. */
  151. static Node *mainpositionTV (const Table *t, const TValue *key) {
  152.   switch (ttypetag(key)) {
  153.     case LUA_VNUMINT: {
  154.       lua_Integer i = ivalue(key);
  155.       return hashint(t, i);
  156.     }
  157.     case LUA_VNUMFLT: {
  158.       lua_Number n = fltvalue(key);
  159.       return hashmod(t, l_hashfloat(n));
  160.     }
  161.     case LUA_VSHRSTR: {
  162.       TString *ts = tsvalue(key);
  163.       return hashstr(t, ts);
  164.     }
  165.     case LUA_VLNGSTR: {
  166.       TString *ts = tsvalue(key);
  167.       return hashpow2(t, luaS_hashlongstr(ts));
  168.     }
  169.     case LUA_VFALSE:
  170.       return hashboolean(t, 0);
  171.     case LUA_VTRUE:
  172.       return hashboolean(t, 1);
  173.     case LUA_VLIGHTUSERDATA: {
  174.       void *p = pvalue(key);
  175.       return hashpointer(t, p);
  176.     }
  177.     case LUA_VLCF: {
  178.       lua_CFunction f = fvalue(key);
  179.       return hashpointer(t, f);
  180.     }
  181.     default: {
  182.       GCObject *o = gcvalue(key);
  183.       return hashpointer(t, o);
  184.     }
  185.   }
  186. }
  187.  
  188.  
  189. l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
  190.   TValue key;
  191.   getnodekey(cast(lua_State *, NULL), &key, nd);
  192.   return mainpositionTV(t, &key);
  193. }
  194.  
  195.  
  196. /*
  197. ** Check whether key 'k1' is equal to the key in node 'n2'. This
  198. ** equality is raw, so there are no metamethods. Floats with integer
  199. ** values have been normalized, so integers cannot be equal to
  200. ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
  201. ** that short strings are handled in the default case.
  202. ** A true 'deadok' means to accept dead keys as equal to their original
  203. ** values. All dead keys are compared in the default case, by pointer
  204. ** identity. (Only collectable objects can produce dead keys.) Note that
  205. ** dead long strings are also compared by identity.
  206. ** Once a key is dead, its corresponding value may be collected, and
  207. ** then another value can be created with the same address. If this
  208. ** other value is given to 'next', 'equalkey' will signal a false
  209. ** positive. In a regular traversal, this situation should never happen,
  210. ** as all keys given to 'next' came from the table itself, and therefore
  211. ** could not have been collected. Outside a regular traversal, we
  212. ** have garbage in, garbage out. What is relevant is that this false
  213. ** positive does not break anything.  (In particular, 'next' will return
  214. ** some other valid item on the table or nil.)
  215. */
  216. static int equalkey (const TValue *k1, const Node *n2, int deadok) {
  217.   if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
  218.        !(deadok && keyisdead(n2) && iscollectable(k1)))
  219.    return 0;  /* cannot be same key */
  220.   switch (keytt(n2)) {
  221.     case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
  222.       return 1;
  223.     case LUA_VNUMINT:
  224.       return (ivalue(k1) == keyival(n2));
  225.     case LUA_VNUMFLT:
  226.       return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
  227.     case LUA_VLIGHTUSERDATA:
  228.       return pvalue(k1) == pvalueraw(keyval(n2));
  229.     case LUA_VLCF:
  230.       return fvalue(k1) == fvalueraw(keyval(n2));
  231.     case ctb(LUA_VLNGSTR):
  232.       return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
  233.     default:
  234.       return gcvalue(k1) == gcvalueraw(keyval(n2));
  235.   }
  236. }
  237.  
  238.  
  239. /*
  240. ** True if value of 'alimit' is equal to the real size of the array
  241. ** part of table 't'. (Otherwise, the array part must be larger than
  242. ** 'alimit'.)
  243. */
  244. #define limitequalsasize(t)     (isrealasize(t) || ispow2((t)->alimit))
  245.  
  246.  
  247. /*
  248. ** Returns the real size of the 'array' array
  249. */
  250. LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
  251.   if (limitequalsasize(t))
  252.     return t->alimit;  /* this is the size */
  253.   else {
  254.     unsigned int size = t->alimit;
  255.     /* compute the smallest power of 2 not smaller than 'n' */
  256.     size |= (size >> 1);
  257.     size |= (size >> 2);
  258.     size |= (size >> 4);
  259.     size |= (size >> 8);
  260.     size |= (size >> 16);
  261. #if (UINT_MAX >> 30) > 3
  262.     size |= (size >> 32);  /* unsigned int has more than 32 bits */
  263. #endif
  264.     size++;
  265.     lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
  266.     return size;
  267.   }
  268. }
  269.  
  270.  
  271. /*
  272. ** Check whether real size of the array is a power of 2.
  273. ** (If it is not, 'alimit' cannot be changed to any other value
  274. ** without changing the real size.)
  275. */
  276. static int ispow2realasize (const Table *t) {
  277.   return (!isrealasize(t) || ispow2(t->alimit));
  278. }
  279.  
  280.  
  281. static unsigned int setlimittosize (Table *t) {
  282.   t->alimit = luaH_realasize(t);
  283.   setrealasize(t);
  284.   return t->alimit;
  285. }
  286.  
  287.  
  288. #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
  289.  
  290.  
  291.  
  292. /*
  293. ** "Generic" get version. (Not that generic: not valid for integers,
  294. ** which may be in array part, nor for floats with integral values.)
  295. ** See explanation about 'deadok' in function 'equalkey'.
  296. */
  297. static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
  298.   Node *n = mainpositionTV(t, key);
  299.   for (;;) {  /* check whether 'key' is somewhere in the chain */
  300.     if (equalkey(key, n, deadok))
  301.       return gval(n);  /* that's it */
  302.     else {
  303.       int nx = gnext(n);
  304.       if (nx == 0)
  305.         return &absentkey;  /* not found */
  306.       n += nx;
  307.     }
  308.   }
  309. }
  310.  
  311.  
  312. /*
  313. ** returns the index for 'k' if 'k' is an appropriate key to live in
  314. ** the array part of a table, 0 otherwise.
  315. */
  316. static unsigned int arrayindex (lua_Integer k) {
  317.   if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
  318.     return cast_uint(k);  /* 'key' is an appropriate array index */
  319.   else
  320.     return 0;
  321. }
  322.  
  323.  
  324. /*
  325. ** returns the index of a 'key' for table traversals. First goes all
  326. ** elements in the array part, then elements in the hash part. The
  327. ** beginning of a traversal is signaled by 0.
  328. */
  329. static unsigned int findindex (lua_State *L, Table *t, TValue *key,
  330.                                unsigned int asize) {
  331.   unsigned int i;
  332.   if (ttisnil(key)) return 0;  /* first iteration */
  333.   i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
  334.   if (i - 1u < asize)  /* is 'key' inside array part? */
  335.     return i;  /* yes; that's the index */
  336.   else {
  337.     const TValue *n = getgeneric(t, key, 1);
  338.     if (l_unlikely(isabstkey(n)))
  339.       luaG_runerror(L, "invalid key to 'next'");  /* key not found */
  340.     i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
  341.     /* hash elements are numbered after array ones */
  342.     return (i + 1) + asize;
  343.   }
  344. }
  345.  
  346.  
  347. int luaH_next (lua_State *L, Table *t, StkId key) {
  348.   unsigned int asize = luaH_realasize(t);
  349.   unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
  350.   for (; i < asize; i++) {  /* try first array part */
  351.     if (!isempty(&t->array[i])) {  /* a non-empty entry? */
  352.       setivalue(s2v(key), i + 1);
  353.       setobj2s(L, key + 1, &t->array[i]);
  354.       return 1;
  355.     }
  356.   }
  357.   for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
  358.     if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
  359.       Node *n = gnode(t, i);
  360.       getnodekey(L, s2v(key), n);
  361.       setobj2s(L, key + 1, gval(n));
  362.       return 1;
  363.     }
  364.   }
  365.   return 0;  /* no more elements */
  366. }
  367.  
  368.  
  369. static void freehash (lua_State *L, Table *t) {
  370.   if (!isdummy(t))
  371.     luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
  372. }
  373.  
  374.  
  375. /*
  376. ** {=============================================================
  377. ** Rehash
  378. ** ==============================================================
  379. */
  380.  
  381. /*
  382. ** Compute the optimal size for the array part of table 't'. 'nums' is a
  383. ** "count array" where 'nums[i]' is the number of integers in the table
  384. ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
  385. ** integer keys in the table and leaves with the number of keys that
  386. ** will go to the array part; return the optimal size.  (The condition
  387. ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
  388. */
  389. static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
  390.   int i;
  391.   unsigned int twotoi;  /* 2^i (candidate for optimal size) */
  392.   unsigned int a = 0;  /* number of elements smaller than 2^i */
  393.   unsigned int na = 0;  /* number of elements to go to array part */
  394.   unsigned int optimal = 0;  /* optimal size for array part */
  395.   /* loop while keys can fill more than half of total size */
  396.   for (i = 0, twotoi = 1;
  397.        twotoi > 0 && *pna > twotoi / 2;
  398.        i++, twotoi *= 2) {
  399.     a += nums[i];
  400.     if (a > twotoi/2) {  /* more than half elements present? */
  401.       optimal = twotoi;  /* optimal size (till now) */
  402.       na = a;  /* all elements up to 'optimal' will go to array part */
  403.     }
  404.   }
  405.   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
  406.   *pna = na;
  407.   return optimal;
  408. }
  409.  
  410.  
  411. static int countint (lua_Integer key, unsigned int *nums) {
  412.   unsigned int k = arrayindex(key);
  413.   if (k != 0) {  /* is 'key' an appropriate array index? */
  414.     nums[luaO_ceillog2(k)]++;  /* count as such */
  415.     return 1;
  416.   }
  417.   else
  418.     return 0;
  419. }
  420.  
  421.  
  422. /*
  423. ** Count keys in array part of table 't': Fill 'nums[i]' with
  424. ** number of keys that will go into corresponding slice and return
  425. ** total number of non-nil keys.
  426. */
  427. static unsigned int numusearray (const Table *t, unsigned int *nums) {
  428.   int lg;
  429.   unsigned int ttlg;  /* 2^lg */
  430.   unsigned int ause = 0;  /* summation of 'nums' */
  431.   unsigned int i = 1;  /* count to traverse all array keys */
  432.   unsigned int asize = limitasasize(t);  /* real array size */
  433.   /* traverse each slice */
  434.   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
  435.     unsigned int lc = 0;  /* counter */
  436.     unsigned int lim = ttlg;
  437.     if (lim > asize) {
  438.       lim = asize;  /* adjust upper limit */
  439.       if (i > lim)
  440.         break;  /* no more elements to count */
  441.     }
  442.     /* count elements in range (2^(lg - 1), 2^lg] */
  443.     for (; i <= lim; i++) {
  444.       if (!isempty(&t->array[i-1]))
  445.         lc++;
  446.     }
  447.     nums[lg] += lc;
  448.     ause += lc;
  449.   }
  450.   return ause;
  451. }
  452.  
  453.  
  454. static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
  455.   int totaluse = 0;  /* total number of elements */
  456.   int ause = 0;  /* elements added to 'nums' (can go to array part) */
  457.   int i = sizenode(t);
  458.   while (i--) {
  459.     Node *n = &t->node[i];
  460.     if (!isempty(gval(n))) {
  461.       if (keyisinteger(n))
  462.         ause += countint(keyival(n), nums);
  463.       totaluse++;
  464.     }
  465.   }
  466.   *pna += ause;
  467.   return totaluse;
  468. }
  469.  
  470.  
  471. /*
  472. ** Creates an array for the hash part of a table with the given
  473. ** size, or reuses the dummy node if size is zero.
  474. ** The computation for size overflow is in two steps: the first
  475. ** comparison ensures that the shift in the second one does not
  476. ** overflow.
  477. */
  478. static void setnodevector (lua_State *L, Table *t, unsigned int size) {
  479.   if (size == 0) {  /* no elements to hash part? */
  480.     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
  481.     t->lsizenode = 0;
  482.     t->lastfree = NULL;  /* signal that it is using dummy node */
  483.   }
  484.   else {
  485.     int i;
  486.     int lsize = luaO_ceillog2(size);
  487.     if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
  488.       luaG_runerror(L, "table overflow");
  489.     size = twoto(lsize);
  490.     t->node = luaM_newvector(L, size, Node);
  491.     for (i = 0; i < (int)size; i++) {
  492.       Node *n = gnode(t, i);
  493.       gnext(n) = 0;
  494.       setnilkey(n);
  495.       setempty(gval(n));
  496.     }
  497.     t->lsizenode = cast_byte(lsize);
  498.     t->lastfree = gnode(t, size);  /* all positions are free */
  499.   }
  500. }
  501.  
  502.  
  503. /*
  504. ** (Re)insert all elements from the hash part of 'ot' into table 't'.
  505. */
  506. static void reinsert (lua_State *L, Table *ot, Table *t) {
  507.   int j;
  508.   int size = sizenode(ot);
  509.   for (j = 0; j < size; j++) {
  510.     Node *old = gnode(ot, j);
  511.     if (!isempty(gval(old))) {
  512.       /* doesn't need barrier/invalidate cache, as entry was
  513.          already present in the table */
  514.       TValue k;
  515.       getnodekey(L, &k, old);
  516.       luaH_set(L, t, &k, gval(old));
  517.     }
  518.   }
  519. }
  520.  
  521.  
  522. /*
  523. ** Exchange the hash part of 't1' and 't2'.
  524. */
  525. static void exchangehashpart (Table *t1, Table *t2) {
  526.   lu_byte lsizenode = t1->lsizenode;
  527.   Node *node = t1->node;
  528.   Node *lastfree = t1->lastfree;
  529.   t1->lsizenode = t2->lsizenode;
  530.   t1->node = t2->node;
  531.   t1->lastfree = t2->lastfree;
  532.   t2->lsizenode = lsizenode;
  533.   t2->node = node;
  534.   t2->lastfree = lastfree;
  535. }
  536.  
  537.  
  538. /*
  539. ** Resize table 't' for the new given sizes. Both allocations (for
  540. ** the hash part and for the array part) can fail, which creates some
  541. ** subtleties. If the first allocation, for the hash part, fails, an
  542. ** error is raised and that is it. Otherwise, it copies the elements from
  543. ** the shrinking part of the array (if it is shrinking) into the new
  544. ** hash. Then it reallocates the array part.  If that fails, the table
  545. ** is in its original state; the function frees the new hash part and then
  546. ** raises the allocation error. Otherwise, it sets the new hash part
  547. ** into the table, initializes the new part of the array (if any) with
  548. ** nils and reinserts the elements of the old hash back into the new
  549. ** parts of the table.
  550. */
  551. void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
  552.                                           unsigned int nhsize) {
  553.   unsigned int i;
  554.   Table newt;  /* to keep the new hash part */
  555.   unsigned int oldasize = setlimittosize(t);
  556.   TValue *newarray;
  557.   /* create new hash part with appropriate size into 'newt' */
  558.   setnodevector(L, &newt, nhsize);
  559.   if (newasize < oldasize) {  /* will array shrink? */
  560.     t->alimit = newasize;  /* pretend array has new size... */
  561.     exchangehashpart(t, &newt);  /* and new hash */
  562.     /* re-insert into the new hash the elements from vanishing slice */
  563.     for (i = newasize; i < oldasize; i++) {
  564.       if (!isempty(&t->array[i]))
  565.         luaH_setint(L, t, i + 1, &t->array[i]);
  566.     }
  567.     t->alimit = oldasize;  /* restore current size... */
  568.     exchangehashpart(t, &newt);  /* and hash (in case of errors) */
  569.   }
  570.   /* allocate new array */
  571.   newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
  572.   if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
  573.     freehash(L, &newt);  /* release new hash part */
  574.     luaM_error(L);  /* raise error (with array unchanged) */
  575.   }
  576.   /* allocation ok; initialize new part of the array */
  577.   exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
  578.   t->array = newarray;  /* set new array part */
  579.   t->alimit = newasize;
  580.   for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
  581.      setempty(&t->array[i]);
  582.   /* re-insert elements from old hash part into new parts */
  583.   reinsert(L, &newt, t);  /* 'newt' now has the old hash */
  584.   freehash(L, &newt);  /* free old hash part */
  585. }
  586.  
  587.  
  588. void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
  589.   int nsize = allocsizenode(t);
  590.   luaH_resize(L, t, nasize, nsize);
  591. }
  592.  
  593. /*
  594. ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
  595. */
  596. static void rehash (lua_State *L, Table *t, const TValue *ek) {
  597.   unsigned int asize;  /* optimal size for array part */
  598.   unsigned int na;  /* number of keys in the array part */
  599.   unsigned int nums[MAXABITS + 1];
  600.   int i;
  601.   int totaluse;
  602.   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
  603.   setlimittosize(t);
  604.   na = numusearray(t, nums);  /* count keys in array part */
  605.   totaluse = na;  /* all those keys are integer keys */
  606.   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
  607.   /* count extra key */
  608.   if (ttisinteger(ek))
  609.     na += countint(ivalue(ek), nums);
  610.   totaluse++;
  611.   /* compute new size for array part */
  612.   asize = computesizes(nums, &na);
  613.   /* resize the table to new computed sizes */
  614.   luaH_resize(L, t, asize, totaluse - na);
  615. }
  616.  
  617.  
  618.  
  619. /*
  620. ** }=============================================================
  621. */
  622.  
  623.  
  624. Table *luaH_new (lua_State *L) {
  625.   GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
  626.   Table *t = gco2t(o);
  627.   t->metatable = NULL;
  628.   t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
  629.   t->array = NULL;
  630.   t->alimit = 0;
  631.   setnodevector(L, t, 0);
  632.   return t;
  633. }
  634.  
  635.  
  636. void luaH_free (lua_State *L, Table *t) {
  637.   freehash(L, t);
  638.   luaM_freearray(L, t->array, luaH_realasize(t));
  639.   luaM_free(L, t);
  640. }
  641.  
  642.  
  643. static Node *getfreepos (Table *t) {
  644.   if (!isdummy(t)) {
  645.     while (t->lastfree > t->node) {
  646.       t->lastfree--;
  647.       if (keyisnil(t->lastfree))
  648.         return t->lastfree;
  649.     }
  650.   }
  651.   return NULL;  /* could not find a free place */
  652. }
  653.  
  654.  
  655.  
  656. /*
  657. ** inserts a new key into a hash table; first, check whether key's main
  658. ** position is free. If not, check whether colliding node is in its main
  659. ** position or not: if it is not, move colliding node to an empty place and
  660. ** put new key in its main position; otherwise (colliding node is in its main
  661. ** position), new key goes to an empty position.
  662. */
  663. void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
  664.   Node *mp;
  665.   TValue aux;
  666.   if (l_unlikely(ttisnil(key)))
  667.     luaG_runerror(L, "table index is nil");
  668.   else if (ttisfloat(key)) {
  669.     lua_Number f = fltvalue(key);
  670.     lua_Integer k;
  671.     if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
  672.       setivalue(&aux, k);
  673.       key = &aux;  /* insert it as an integer */
  674.     }
  675.     else if (l_unlikely(luai_numisnan(f)))
  676.       luaG_runerror(L, "table index is NaN");
  677.   }
  678.   if (ttisnil(value))
  679.     return;  /* do not insert nil values */
  680.   mp = mainpositionTV(t, key);
  681.   if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
  682.     Node *othern;
  683.     Node *f = getfreepos(t);  /* get a free place */
  684.     if (f == NULL) {  /* cannot find a free place? */
  685.       rehash(L, t, key);  /* grow table */
  686.       /* whatever called 'newkey' takes care of TM cache */
  687.       luaH_set(L, t, key, value);  /* insert key into grown table */
  688.       return;
  689.     }
  690.     lua_assert(!isdummy(t));
  691.     othern = mainpositionfromnode(t, mp);
  692.     if (othern != mp) {  /* is colliding node out of its main position? */
  693.       /* yes; move colliding node into free position */
  694.       while (othern + gnext(othern) != mp)  /* find previous */
  695.         othern += gnext(othern);
  696.       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
  697.       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
  698.       if (gnext(mp) != 0) {
  699.         gnext(f) += cast_int(mp - f);  /* correct 'next' */
  700.         gnext(mp) = 0;  /* now 'mp' is free */
  701.       }
  702.       setempty(gval(mp));
  703.     }
  704.     else {  /* colliding node is in its own main position */
  705.       /* new node will go into free position */
  706.       if (gnext(mp) != 0)
  707.         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
  708.       else lua_assert(gnext(f) == 0);
  709.       gnext(mp) = cast_int(f - mp);
  710.       mp = f;
  711.     }
  712.   }
  713.   setnodekey(L, mp, key);
  714.   luaC_barrierback(L, obj2gco(t), key);
  715.   lua_assert(isempty(gval(mp)));
  716.   setobj2t(L, gval(mp), value);
  717. }
  718.  
  719.  
  720. /*
  721. ** Search function for integers. If integer is inside 'alimit', get it
  722. ** directly from the array part. Otherwise, if 'alimit' is not equal to
  723. ** the real size of the array, key still can be in the array part. In
  724. ** this case, try to avoid a call to 'luaH_realasize' when key is just
  725. ** one more than the limit (so that it can be incremented without
  726. ** changing the real size of the array).
  727. */
  728. const TValue *luaH_getint (Table *t, lua_Integer key) {
  729.   if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
  730.     return &t->array[key - 1];
  731.   else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
  732.            (l_castS2U(key) == t->alimit + 1 ||
  733.             l_castS2U(key) - 1u < luaH_realasize(t))) {
  734.     t->alimit = cast_uint(key);  /* probably '#t' is here now */
  735.     return &t->array[key - 1];
  736.   }
  737.   else {
  738.     Node *n = hashint(t, key);
  739.     for (;;) {  /* check whether 'key' is somewhere in the chain */
  740.       if (keyisinteger(n) && keyival(n) == key)
  741.         return gval(n);  /* that's it */
  742.       else {
  743.         int nx = gnext(n);
  744.         if (nx == 0) break;
  745.         n += nx;
  746.       }
  747.     }
  748.     return &absentkey;
  749.   }
  750. }
  751.  
  752.  
  753. /*
  754. ** search function for short strings
  755. */
  756. const TValue *luaH_getshortstr (Table *t, TString *key) {
  757.   Node *n = hashstr(t, key);
  758.   lua_assert(key->tt == LUA_VSHRSTR);
  759.   for (;;) {  /* check whether 'key' is somewhere in the chain */
  760.     if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
  761.       return gval(n);  /* that's it */
  762.     else {
  763.       int nx = gnext(n);
  764.       if (nx == 0)
  765.         return &absentkey;  /* not found */
  766.       n += nx;
  767.     }
  768.   }
  769. }
  770.  
  771.  
  772. const TValue *luaH_getstr (Table *t, TString *key) {
  773.   if (key->tt == LUA_VSHRSTR)
  774.     return luaH_getshortstr(t, key);
  775.   else {  /* for long strings, use generic case */
  776.     TValue ko;
  777.     setsvalue(cast(lua_State *, NULL), &ko, key);
  778.     return getgeneric(t, &ko, 0);
  779.   }
  780. }
  781.  
  782.  
  783. /*
  784. ** main search function
  785. */
  786. const TValue *luaH_get (Table *t, const TValue *key) {
  787.   switch (ttypetag(key)) {
  788.     case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
  789.     case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
  790.     case LUA_VNIL: return &absentkey;
  791.     case LUA_VNUMFLT: {
  792.       lua_Integer k;
  793.       if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
  794.         return luaH_getint(t, k);  /* use specialized version */
  795.       /* else... */
  796.     }  /* FALLTHROUGH */
  797.     default:
  798.       return getgeneric(t, key, 0);
  799.   }
  800. }
  801.  
  802.  
  803. /*
  804. ** Finish a raw "set table" operation, where 'slot' is where the value
  805. ** should have been (the result of a previous "get table").
  806. ** Beware: when using this function you probably need to check a GC
  807. ** barrier and invalidate the TM cache.
  808. */
  809. void luaH_finishset (lua_State *L, Table *t, const TValue *key,
  810.                                    const TValue *slot, TValue *value) {
  811.   if (isabstkey(slot))
  812.     luaH_newkey(L, t, key, value);
  813.   else
  814.     setobj2t(L, cast(TValue *, slot), value);
  815. }
  816.  
  817.  
  818. /*
  819. ** beware: when using this function you probably need to check a GC
  820. ** barrier and invalidate the TM cache.
  821. */
  822. void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
  823.   const TValue *slot = luaH_get(t, key);
  824.   luaH_finishset(L, t, key, slot, value);
  825. }
  826.  
  827.  
  828. void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
  829.   const TValue *p = luaH_getint(t, key);
  830.   if (isabstkey(p)) {
  831.     TValue k;
  832.     setivalue(&k, key);
  833.     luaH_newkey(L, t, &k, value);
  834.   }
  835.   else
  836.     setobj2t(L, cast(TValue *, p), value);
  837. }
  838.  
  839.  
  840. /*
  841. ** Try to find a boundary in the hash part of table 't'. From the
  842. ** caller, we know that 'j' is zero or present and that 'j + 1' is
  843. ** present. We want to find a larger key that is absent from the
  844. ** table, so that we can do a binary search between the two keys to
  845. ** find a boundary. We keep doubling 'j' until we get an absent index.
  846. ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
  847. ** absent, we are ready for the binary search. ('j', being max integer,
  848. ** is larger or equal to 'i', but it cannot be equal because it is
  849. ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
  850. ** boundary. ('j + 1' cannot be a present integer key because it is
  851. ** not a valid integer in Lua.)
  852. */
  853. static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
  854.   lua_Unsigned i;
  855.   if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
  856.   do {
  857.     i = j;  /* 'i' is a present index */
  858.     if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
  859.       j *= 2;
  860.     else {
  861.       j = LUA_MAXINTEGER;
  862.       if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
  863.         break;  /* 'j' now is an absent index */
  864.       else  /* weird case */
  865.         return j;  /* well, max integer is a boundary... */
  866.     }
  867.   } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
  868.   /* i < j  &&  t[i] present  &&  t[j] absent */
  869.   while (j - i > 1u) {  /* do a binary search between them */
  870.     lua_Unsigned m = (i + j) / 2;
  871.     if (isempty(luaH_getint(t, m))) j = m;
  872.     else i = m;
  873.   }
  874.   return i;
  875. }
  876.  
  877.  
  878. static unsigned int binsearch (const TValue *array, unsigned int i,
  879.                                                     unsigned int j) {
  880.   while (j - i > 1u) {  /* binary search */
  881.     unsigned int m = (i + j) / 2;
  882.     if (isempty(&array[m - 1])) j = m;
  883.     else i = m;
  884.   }
  885.   return i;
  886. }
  887.  
  888.  
  889. /*
  890. ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
  891. ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
  892. ** and 'maxinteger' if t[maxinteger] is present.)
  893. ** (In the next explanation, we use Lua indices, that is, with base 1.
  894. ** The code itself uses base 0 when indexing the array part of the table.)
  895. ** The code starts with 'limit = t->alimit', a position in the array
  896. ** part that may be a boundary.
  897. **
  898. ** (1) If 't[limit]' is empty, there must be a boundary before it.
  899. ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
  900. ** is present. If so, it is a boundary. Otherwise, do a binary search
  901. ** between 0 and limit to find a boundary. In both cases, try to
  902. ** use this boundary as the new 'alimit', as a hint for the next call.
  903. **
  904. ** (2) If 't[limit]' is not empty and the array has more elements
  905. ** after 'limit', try to find a boundary there. Again, try first
  906. ** the special case (which should be quite frequent) where 'limit+1'
  907. ** is empty, so that 'limit' is a boundary. Otherwise, check the
  908. ** last element of the array part. If it is empty, there must be a
  909. ** boundary between the old limit (present) and the last element
  910. ** (absent), which is found with a binary search. (This boundary always
  911. ** can be a new limit.)
  912. **
  913. ** (3) The last case is when there are no elements in the array part
  914. ** (limit == 0) or its last element (the new limit) is present.
  915. ** In this case, must check the hash part. If there is no hash part
  916. ** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
  917. ** 'hash_search' to find a boundary in the hash part of the table.
  918. ** (In those cases, the boundary is not inside the array part, and
  919. ** therefore cannot be used as a new limit.)
  920. */
  921. lua_Unsigned luaH_getn (Table *t) {
  922.   unsigned int limit = t->alimit;
  923.   if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
  924.     /* there must be a boundary before 'limit' */
  925.     if (limit >= 2 && !isempty(&t->array[limit - 2])) {
  926.       /* 'limit - 1' is a boundary; can it be a new limit? */
  927.       if (ispow2realasize(t) && !ispow2(limit - 1)) {
  928.         t->alimit = limit - 1;
  929.         setnorealasize(t);  /* now 'alimit' is not the real size */
  930.       }
  931.       return limit - 1;
  932.     }
  933.     else {  /* must search for a boundary in [0, limit] */
  934.       unsigned int boundary = binsearch(t->array, 0, limit);
  935.       /* can this boundary represent the real size of the array? */
  936.       if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
  937.         t->alimit = boundary;  /* use it as the new limit */
  938.         setnorealasize(t);
  939.       }
  940.       return boundary;
  941.     }
  942.   }
  943.   /* 'limit' is zero or present in table */
  944.   if (!limitequalsasize(t)) {  /* (2)? */
  945.     /* 'limit' > 0 and array has more elements after 'limit' */
  946.     if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
  947.       return limit;  /* this is the boundary */
  948.     /* else, try last element in the array */
  949.     limit = luaH_realasize(t);
  950.     if (isempty(&t->array[limit - 1])) {  /* empty? */
  951.       /* there must be a boundary in the array after old limit,
  952.          and it must be a valid new limit */
  953.       unsigned int boundary = binsearch(t->array, t->alimit, limit);
  954.       t->alimit = boundary;
  955.       return boundary;
  956.     }
  957.     /* else, new limit is present in the table; check the hash part */
  958.   }
  959.   /* (3) 'limit' is the last element and either is zero or present in table */
  960.   lua_assert(limit == luaH_realasize(t) &&
  961.              (limit == 0 || !isempty(&t->array[limit - 1])));
  962.   if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
  963.     return limit;  /* 'limit + 1' is absent */
  964.   else  /* 'limit + 1' is also present */
  965.     return hash_search(t, limit);
  966. }
  967.  
  968.  
  969.  
  970. #if defined(LUA_DEBUG)
  971.  
  972. /* export these functions for the test library */
  973.  
  974. Node *luaH_mainposition (const Table *t, const TValue *key) {
  975.   return mainpositionTV(t, key);
  976. }
  977.  
  978. int luaH_isdummy (const Table *t) { return isdummy(t); }
  979.  
  980. #endif
  981.